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Abstract
The interplay between vector and pathogen is essential for vector-borne disease transmission.
Dissecting the molecular basis of refractoriness of some vectors may pave the way to novel
disease control mechanisms. A pathogen often needs to overcome several physical barriers, such
as the peritrophic matrix, midgut epithelium and salivary glands. Additionally, the arthropod
vector elicites immune responses that can severely limit transmission success. One important step
in the transmission of most vector-borne diseases is the entry of the disease agent into the salivary
glands of its arthropod vector. The salivary glands of blood-feeding arthropods produce a complex
mixture of molecules that facilitate blood feeding by inhibition of the host haemostasis,
inflammation and immune reactions. Pathogen entry into salivary glands is a receptor-mediated
process, which requires molecules on the surface of the pathogen and salivary gland. In most
cases, the nature of these molecules remains unknown. Recent advances in our understanding of
malaria parasite entry into mosquito salivary glands strongly suggests that specific carbohydrate
molecules on the salivary gland surface function as docking receptors for malaria parasites.
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1. Introduction
Vector-borne diseases continue to be a major public health threat throughout the world.
Usually transmitted by arthropods, their causative agents include helminths and protozoa, as
well as microbial pathogens and viruses. Few vaccines are available and disease control and
prevention in the majority of cases relies on vector control and, to a lesser extent, on drug
treatment of the infected human population. Since the 1970s, vector-borne diseases have
been on the rise. The underlying causes are complex and include political, sociological and
biological factors, such as emergence of drug-resistant strains of pathogens, as well as
insecticide-resistant vector populations. Other approaches to disease control are envisioned.
These include the use of transmission-blocking vaccines against the pathogen (most recently
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reviewed by Coutinho-Abreu and Ramalho-Ortigao, 2010) or vector (Trager, 1939), and the
use of refractory vectors for population replacement. The development of these strategies
requires an intimate knowledge of vector biology and pathogen-vector interactions in order
to identify potential molecular targets. In this article, we summarize our current
understanding of salivary gland invasion, arguably the most important step for transmission
in the majority of vector-borne diseases, using malaria as the best-studied example.

2. Salivation is the most common transmission strategy employed by
vector-borne disease agents

Pathogens always enter their vector species with the blood meal. However, their
transmission to the vertebrate host is more varied. While this transfer usually occurs during
blood feeding on the vertebrate host, different exit strategies are used. Table 1 summarizes
the different mechanisms of horizontal transmission, including salivation, active and passive
escape through the cuticle, posterior exit with arthropod feces (stercoration), regurgitation,
and in rare cases, ingestion of the vector. Host entry by salivation is the most commonly
utilized and efficient transmission method, e.g. all known arthropod-borne viruses are
transmitted this way. The pathogen is directly injected into the host during probing or blood
feeding. This method cannot be employed by pathogens that remain in the gut or the
hemocoel of the vector as it requires entry into the salivary glands. Therefore, invasion of
salivary glands can be considered as one of the most important events required for vector-
borne disease transmission.

The molecular make-up of salivary glands of a variety of hematophagous arthropods,
including of several mosquito species (Valenzuela et al., 2002, 2003; Calvo et al., 2004,
2007, 2010; Ribeiro et al., 2004b; Arca et al., 2005, 2007), sandflies (Ribeiro et al., 2000),
blackflies (Andersen et al., 2009), triatome bugs (Ribeiro et al., 2004a), fleas (Andersen et
al., 2007), and hard and soft tick species (Ribeiro et al., 1991; Santos et al., 2004;
Francischetti et al., 2005; Mans et al., 2008), have been analyzed in detail. As a
consequence, we have detailed understanding of the saliva components, which contribute to
blood feeding in different ways, including regulation of blood haemostasis by vasodilators,
inhibitors of blood clotting and platelet aggregation. In contrast, the salivary gland surface
molecules that are required for pathogen entry are mostly unknown. Additionally, the cell
biological events occurring during this invasion process have only been described for a
handful of vector-borne disease pathogens. The following sections discuss the currently
best-understood system of salivary gland invasion: the cross-talk of the malaria parasite,
Plasmodium spp. with its mosquito vector, Anopheles spp..

3. The cell biology of malaria parasite invasion of mosquito epithelia
The Plasmodium parasite undergoes a complex life cycle encompassing heterophasic
generational changes, and obligatorily fulfills its sexual life cycle in the mosquito. Male and
female gametocytes, taken up with the blood meal, undergo gametogenesis within the lumen
of the mosquito midgut. Fertilization takes place within approximately 2 h after a blood
meal and the resulting zygote undergoes meiosis and develops into the motile ookinete.
Approximately 1 day after the infectious blood meal, the ookinete traverses the peritrophic
matrix and subsequently the midgut epithelium itself. The ookinete then rounds up and
forms the oocyst, the stage in which sporogony occurs. Approximately 2 weeks after the
blood meal sporozoites are released into the hemocoel. They then reach the salivary glands
and again traverse an epithelium, in this case to penetrate into the salivary gland lumen,
where they mix with the saliva and are injected into the next vertebrate host (recently
reviewed by Baton and Ranford-Cartwright, 2005b).
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3.1. Midgut invasion
The cellular processes that occur during ookinete invasion and traversal of the midgut
epithelium (Fig. 1A) have been under intense investigation and various aspects have recently
been reviewed extensively (Baton and Ranford-Cartwright, 2005a,b;Kumar and Barillas-
Mury, 2005;Vinetz, 2005;Vlachou et al., 2006;Whitten et al., 2006). The ookinete
presumably migrates actively in the blood bolus before encountering its first barrier, the
peritrophic matrix (Sieber et al., 1991). Some parasite species require the secretion of
chitinase to cross this barrier in order to reach the microvilli of the midgut epithelium
(Huber et al., 1991;Tsai et al., 2001). Midgut cell entry is thought to be mediated by a yet to
be identified specific receptor-ligand interaction and occurs into the apical-lateral membrane
where three epithelial cells converge (Baton and Ranford-Cartwright, 2004). Ookinete
invasion is an active process that requires gliding motility, a type of movement typical for
all invasive apicomplexan parasites (Keeley and Soldati, 2004). The invasion induces
tyrosine nitration in the invaded midgut cells, which involves nitric oxide synthase (NOS)
up-regulation followed by increased peroxidase activity (Kumar and Barillas-Mury, 2005).
Such a defense reaction generating toxic chemicals is potentially harmful to the host, often
leading to apoptosis. Indeed, ookinete invasion of midgut epithelia induces apoptosis of the
invaded cells, which are expelled from the epithelium by actin-based restitution mechanisms
(Time-bomb model; Han et al., 2000;Gupta et al., 2005). A single ookinete often serially
invades several cells, which all become apoptotic and are excluded from the epithelium. The
parasite exits the midgut epithelium at its basal side and is at that stage covered by
lamellipodia that form a “hood” around the parasite (Vlachou et al., 2006). The
accumulation of actin around the parasite at the time of egress has been also noted (Vernick
et al., 1995;Whitten et al., 2006). The interaction of the extracellular ookinete with the basal
lamina is believed to induce transformation to the oocyst stage (Weathersby, 1952). The
passage of an individual ookinete is thought to take no more than 30 min. However,
ookinete invasion is asynchronous and continuous up to 36 h after a blood meal. Eventually,
the remaining parasites present in the midgut lumen are excreted with the digested blood
meal.

3.2. Reaching the salivary gland
Once oocysts are established, mitotic divisions occur and ultimately sporozoites are formed.
Upon egress from mature oocysts, sporozoites travel via the hemolymph to the salivary
glands, where they invade salivary gland secretory cells. Sporozoites can be found
throughout the mosquito hemocoel (Garnham, 1966; Golenda et al., 1990) and are passively
carried through the hemolymph to the salivary glands (Akaki and Dvorak, 2005; Hillyer et
al., 2007). Less than 20% of the sporozoites entering the hemocoel ultimately reside within
the salivary gland and the remaining 80% of parasites are eliminated from the hemolymph
(Hillyer et al., 2007) and within the salivary gland (Pinto et al., 2008) by an unknown
mechanism.

3.3. Salivary gland invasion
Morphological studies of the passage of Plasmodium sporozoites through the salivary gland
of their mosquito vectors have been performed by electron microscopy using avian and
rodent malaria models (Sterling et al., 1973; Meis et al., 1992; Pimenta et al., 1994; Ando et
al., 1999). Similar to midgut invasion, the sporozoite takes an intracellular route through the
salivary gland epithelium to reach its final destination in the mosquito, the salivary gland
duct. However, the cell-biological events that occur during sporozoite invasion of salivary
gland epithelial cells (summarized in Fig. 1B) differ substantially from those occurring
during midgut invasion. The sporozoite approaches the salivary gland epithelium from the
basal side and first has to recognize, attach to and subsequently penetrate the basal lamina in
order to reach the epithelial cell. Invasion itself, as in midgut epithelia, is thought to be
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mediated via receptor-ligand interactions and involves parasite gliding motility (Sultan et al.,
1997) and the possible formation of moving junctions (Pimenta et al., 1994). During cell
invasion, the sporozoite is initially surrounded by a second membrane (Pimenta et al., 1994),
which has been interpreted as a transient parasitophorous vacuole (PV) (Rodriguez and
Hernandez-Hernandez Fde, 2004). The origin of this membrane is unclear. The sporozoite
subsequently escapes the vacuole by an unknown mechanism, and exits the host cell into the
secretory cavity. The majority of sporozoites remain in these cavities and only a few enter
the salivary duct (Frischknecht et al., 2004). The invasion process has little visible effect on
the invaded host cell. No apoptosis or actin rearrangements of parasite-invaded salivary
gland epithelial cells have been described. In contrast to midgut invasion, NOS is either not
transcriptionally altered or is down-regulated in Plasmodium berghei-infected salivary
glands (Rosinski-Chupin et al., 2007; Dimopoulos et al., 1998), and the enzyme is not
detectable by immunofluorescence analysis (Pinto et al., 2008).

4. Parasite molecules required for Plasmodium spp. salivary gland invasion
The molecular mechanisms responsible for the interaction between the malaria parasites and
molecules on the surface of mosquito salivary glands are complex and not well understood.
Apicomplexan parasites are named after their apical complex, an anterior structure formed
by three organelles: the rhoptries, dense granules and micronemes. While molecules released
from the rhoptries participate in PV formation (Lingelbach and Joiner, 1998), molecules
from dense granules complete the establishment of parasites in their host cell, and the
content of micronemes is required for host cell invasion. Micronemes are vesicles containing
molecules that after secretion are maintained on the surface of the parasite. These molecules
participate in adhesion to target cells, gliding motility and the invasion process (Donahue et
al., 2000).

To date, no data formally show rhoptry, dense granule or microneme secretions to be
required for sporozoite invasion of the mosquito salivary gland. However, several
micronemal proteins have been shown to be important in salivary gland invasion: the
circumsporozoite protein (CSP), the apical membrane antigen/erythrocyte binding-like
protein (MAEBL), the thrombospondin-related anonymous protein (TRAP), and the up-
regulated-in-oocysts sporozoites protein 3 (UOS3) (Mikolajczak et al., 2008), also called S6/
TREP (Combe et al., 2009; Steinbuechel and Matuschewski, 2009). CSP is a parasite
surface molecule essential for sporozoite development within oocysts and invasion of
salivary glands (Menard et al., 1997, Sidjanski, 1997). An 18 amino acid N-terminal peptide
fragment of CSP that includes Region I has been shown to specifically bind to salivary
glands (Sidjanski et al., 1997; Myung et al., 2004). Together with CSP, the malaria
sporozoite utilizes a second protein, MAEBL, to facilitate attachment to salivary glands
(Kariu et al., 2002). MAEBL displays adhesive features involved in attachment of target
organs. Mutant parasites developed normally within the mosquito vector but were unable to
invade salivary glands or hepatocytes. While MAEBL expression is necessary for salivary
gland invasion, conflicting data exist on its role in sporozoite motility (Kariu et al., 2002),
(F. Frischknecht, K. Michel, A.K. Mueller, unpublished data). Midgut and salivary gland
sporozoites express two dominant alternatively spliced MAEBL mRNAs, encoding a
transmembrane and a secreted MAEBL isoform (Singh et al., 2004). Using knockout and
allelic replacement experiments, Saenz et al., (2008) recently showed that the MAEBL
transmembrane isoform is essential for salivary gland invasion by human malaria parasites.

The third micronemal protein, TRAP, also displays complex interactions with salivary
glands (Sultan et al., 1997; Kappe et al., 1999). TRAP is a member of a family comprising at
least six type I transmembrane invasins, which also include circumsporozoite and TRAP-
related protein (CTRP; Dessens et al., 1999), merozoite TRAP (MTRAP, Baum et al.,
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2006), Plasmodium thrombospondin-related apical merozoite protein (PTRAMP; Thompson
et al., 2004), TRAP-related protein (TREP, originally named UOS3/S6), and TRAP-like
protein (TLP). In contrast to CSP and MAEBL, TRAP is not required for initial attachment
to salivary glands but for the gliding movement of sporozoites, by functioning as a bridge
between the outer membrane surface and the intracellular actin-myosin motor complex
through binding to the actin-bridging molecule aldolase. TRAP is also needed for the
invasion process of salivary glands and hepatocytes (Sultan et al., 1997; Kappe et al., 1999;
Matuschewski et al., 2002a). These two functions can be genetically isolated and are
mediated by distinct domains of the protein (Kappe et al., 1999; Matuschewski et al.,
2002a). The extracellular portion of TRAP needs to be shed from the parasite surface for
gliding motility and host cell invasion to occur. This process is potentially mediated by the
rhomboid protease ROM4, which in cell-based assays cleaves TRAP within its
transmembrane domain and causes the release of its extracellular portion (Baker et al.,
2006). The function of the cytoplasmic domain of TRAP during sporozoite invasion of
mosquito salivary glands and hepatocytes can be partially complemented by the cytoplasmic
domain of at least one other member of the type I transmembrane invasins, TLP (Heiss et
al., 2008). However, knockout-TLP P. berghei parasites produce normal numbers of
salivary gland sporozoites, indicating that TLP might not be involved or only plays a non-
redundant role for sporozoite invasion of salivary glands (Heiss et al., 2008). In contrast,
TLP is required for cell/tissue traversal in the vertebrate host, as knockout parasites exhibit
defects in hepatocyte cell traversal in vitro and in mouse infectivity in vivo (Moreira et al.,
2008).

Whole genome approaches have been used to identify parasite genes required for infection
of specific tissues (Matuschewski et al., 2002b; Kaiser et al., 2004; Mikolajczak et al., 2008;
Tarun et al., 2008). Two of these studies identified a putative transmembrane protein, UOS3/
S6, a member of the TRAP protein family, also called TREP (Combe et al., 2009). Unlike
TRAP, UOS3/S6 lacks apparent adhesion motifs such as the Von Willebrand factor A-
domain and only contains a degenerate thrombospondin type I motif in its extracelluar
region. UOS3/S6 knockout sporozoites display reduced infectivity to salivary glands
(Steinbuechel and Matuschewski, 2009). Using advanced microscopy techniques, UOS3/S6
has been shown to mediate attachment and detachment to substrate surfaces, and to interact
with TRAP and TLP during gliding motility (Hegge et al., 2010).

In addition to the proteins described above, the sporozoite surface proteins Cysteine Repeat
Modular Proteins (CRMPs) 1 and 2 are also required for salivary invasion (Thompson et al.,
2007). Knockout of these two proteins does not seem to affect motility and sporozoites
remain infectious to the vertebrate host, however no salivary gland sporozoites were
observed.

5. Salivary gland surface molecules required for parasite binding
As described in Section 4, sporozoite attachment to salivary glands is facilitated by several
different proteins on the sporozoite surface. The sporozoite encounters the salivary gland
from the basal side. It initially attaches to the basal lamina of this epithelium and
subsequently binds to the basolateral membrane of the epithelial cells. Initial attachment and
presumably invasion are facilitated by the interaction of sporozoite surface molecules with
molecules present on the salivary gland surface; so what do we know about its molecular
composition?

Mosquito salivary glands bind a variety of lectins, indicative of sugar molecules on their
surface, most likely present in the basal lamina (Molyneux et al., 1990; Mohamed and
Ingram, 1993; Barreau et al., 1995). Indeed, salivary glands prepared from adult female
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Anopheles stephensi mosquitoes contain chondroitin sulfate and heparan sulfate, members of
the glycosaminoglycan family of heteropolysaccharides (Sinnis et al., 2007). These sugar
moiteties are likely to participate in parasite entry as lectin binding to Aedes aegypti salivary
glands blocks Plasmodium gallinaceum sporozoite invasion (Barreau et al., 1995). The
parasite surface molecule CSP binds to mammalian heparan sulfate (Sinnis et al., 1994;
Ying et al., 1997; Rathore et al., 2001), which is required for liver cell invasion (Frevert et
al., 1993; Pinzon-Ortiz et al., 2001). The demonstration that CSP binds to mosquito heparan
sulfates (Sinnis et al., 2007) suggests that this may be the salivary gland molecule to which
CSP binds.

In addition to lectins, polyclonal antibodies raised against salivary gland extracts can also
block sporozoite salivary gland invasion (Barreau et al., 1995; Brennan et al., 2000). These
antibodies recognize epitopes in the basal lamina, suggesting that this specialized
extracelluar matrix may have receptors that mediate sporozoite attachment (Barreau et al.,
1995). Subsequently, using purified monoclonal antibodies that specifically bound to
median and distal lateral salivary gland lobes, the regions preferentially invaded by
sporozoites (Sterling et al., 1973), a new Salivary Gland Surface (SGS) protein family was
identified (Korochkina et al., 2006). SGS1 is a large protein of more than 220 kDa that is
present in the basal lamina of female salivary glands. It contains heparin-binding and tyrosin
O-sulfation motifs, suggesting that this protein is highly glycosylated in vivo. How SGS1
contributes to parasite invasion is unclear. Based on its heparin-binding domain, it is
possible that SGS proteins bind a soluble heparin-like glycosaminoglycan present in the
haemolymph that in turn could bind to CSP (Korochkina et al., 2006).

Two additional proteins that are only expressed in the distal lobes of female salivary glands
have been shown to serve as sporozoite receptors (Brennan et al., 2000; Korochkina et al.,
2006). One of these proteins, called Saglin, is a secreted protein that contains several
putative glycosylation sites (Okulate et al., 2007) and its expression is induced by blood
feeding (Korochkina et al., 2006). Furthermore, Saglin can bind to the A domain of TRAP in
vitro (Ghosh et al., 2009), the same domain that had previously been shown to be required
for parasite invasion (Matuschewski et al., 2002a). It is likely that the binding of TRAP to
Saglin is also required in vivo, as this interaction can be inhibited in vivo by a synthetic
peptide, called SM1, which binds to Saglin and abolishes the parasite’s ability to invade
salivary glands (Ghosh et al., 2001).

Taken together, these studies indicate that malaria sporozoites utilize at least two receptor-
ligand interactions to bind to the mosquito salivary glands. Given that at least five other
sporozoite surface proteins with unknown binding partners are involved in the invasion
process, the interaction between parasite and gland surface is likely to be more complex.

6. Epithelial defense mechanisms limit parasite success during salivary
gland invasion

Once the sporozoite has attached to and migrated through the basal lamina, it actively
invades the salivary gland epithelial cells. Under laboratory conditions, invasion of often
hundreds to thousands of malaria sporozoites into a single salivary gland has seemingly little
effect on the invaded cells (Pimenta et al., 1994; Pinto et al., 2008). In contrast, ookinete
invasion of the mosquito midgut epithelium causes major cytoskeleton restructuring that
ultimately leads to apoptosis and expulsion of the invaded cells from the epithelium (Han
and Barillas-Mury, 2002; Baton and Ranford-Cartwright, 2004; Vlachou et al., 2004). In
parallel, midgut and haemolymph-derived factors kill nearly 80% of the invading ookinete
population (Blandin et al., 2004). These observations are reflected in the transcriptional
changes observed in these two epithelia during parasite infection. While up to 7% of the
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mosquito midgut transcriptome was altered (Abraham et al., 2004; Vlachou et al., 2005; Xu
et al., 2005; Dong et al., 2006), less than 1% of salivary gland transcripts changed (Rosinski-
Chupin et al., 2007). Among these were 37 immune-related genes, indicating that salivary
glands mount an acute immune response against invading sporozoites. Interestingly, four
genes showed similar regulation in both epithelia: a fatty acid synthase was downregulated
by parasite invasion in both tissues, while a GTP-binding nuclear protein, a lysosomal
thioreductase precursor and SRPN6, (which belongs to a mosquito-specific expansion group
(Michel et al., 2005) that is ortholgous to Drosophila Spn28D, (Scherfer et al., 2008)) were
up-regulated in both tissues. SRPN6 knockdown in mosquito midguts and salivary glands
leads to an increased number of parasites in the respective tissue (Abraham et al., 2005;
Pinto et al., 2008), indicative of a common epithelial immune response to malaria parasite
invasion.

Additionally, transcriptomes of naïve salivary glands of blood-feeding arthropods encode for
anti-microbial peptides, lysozyme and pathogen pattern recognition polypeptides (Arca et
al., 2005; Calvo et al., 2010). Their potential effect on pathogens and parasites within the
salivary gland has not been characterized.

7. Future perspectives
Our understanding of pathogen and parasite interactions with salivary glands of their
arthropod vectors remains incomplete. Over the last 10 years substantial progress has been
made in the identification of the molecular interactions between Plasmodium spp.
sporozoites and Anopheles spp. salivary glands. Two receptor-ligand interactions have been
characterized and several other sporozoite surface molecules are now known to be required
for invasion. Additionally, an epithelial immune response common in midguts and salivary
glands against invading ookinetes and sporozoites, respectively, has been identified.
However, even in this arguably best understood parasite-vector system, several basic
questions are unanswered. Firstly, no detailed morphological description of the sporozoite
invasion process of mosquito salivary glands exists for any of the human malaria parasite
species. Second, proteomic studies of sporozoite surface or micronemes have not been
performed and the molecular make-up of the salivary gland basal lamina or the surface of
the basolateral epithelial cell membrane is largely uncharacterized. A recent description of
the micronemal proteome of ookinetes (Lal et al., 2009) identified more than 50 putatively
secreted proteins of unknown function, of which at least some are most likely important for
midgut epithelial cell invasion. A similar description of the micronemal proteome of midgut
sporozoites would be highly desirable. However, preparation of enough material for these
studies is severely hampered by the lack of culturing methods to produce sporozoites in
vitro. Third, the mechanism of the SRPN6-dependent common epithelial immune response
against ookinete and sporozoite invasion of mosquito epithelia is unknown. Its manipulation
could simultaneously affect the two bottlenecks of parasite development in the mosquito,
which makes it an ideal tool for creating refractory mosquitoes.

Overall, the study of Plasmodium parasite-mosquito salivary gland interactions is severely
limited by the lack of experimental ex vivo or in vitro systems. The development of salivary
gland epithelial cell lines or robust organ culturing systems as well as culturing techniques
for the mosquito stages of malaria parasites should be research priorities and would greatly
facilitate the description of the molecular parasite-vector interface.
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Fig. 1.
Comparison of malaria parasite entry into midgut and salivary gland epithelia. A) Ookinete
invasion of midgut epithelia. The ookinete crosses the peritrophic matrix (1) and actively
enters the epithelial cell 24–28 h after a bloodmeal, often sequentially invading several
midgut cells (2). The ookinete egresses the epithelial cell at the basal site, which is
accompanied by lamellipodia formation by the invaded cell as well as its neighbors (3). In
the extracellular space of the basal labyrinth the ookinete starts to round up beneath the basal
lamina (BL) and transforms into the oocyst (4). The invaded midgut cells undergo many
severe physiological changes, among those nitric oxide (NO) production. Ultimately, the
cells undergo apoptosis and are expelled from the epithelium. B) Salivary gland infection by
sporozoites can be divided into several stages: (I) Sporozoite attachment, likely due to
receptor-ligand interactions; (II) sporozoite invasion of epithelial cells with the formation of
a transient vacuole; and (III) maturation phase, where sporozoites rest in the extracellular
space of the secretory cavity, while (IV) few enter the salivary duct.
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Table 1

Vector-borne pathogens/parasites and their mechanisms of transmission.

Infectious agent Parasites Class Vector Transmission Disease

Parasites

Babesia microti Apicomplexa Tick salivation Babesiosis

Brugia malayi Nematoda Mosquito active escape Filariasis

Drancunculus medinensis Nematoda Copepod ingestion Dracunculiasis

Leishmania spp. Euglenozoa Sandfly regurgitation Leishmaniasis

Loa loa Nematoda Deer fly active escape Filariasis

Mansonella ozzardi Nematoda Blackfly active escape Mansonellosis

Mansonella perstans Nematoda Biting midge active escape Mansonellosis

Onchocerca volvulus Nematoda Blackfly active escape River blindness

Plasmodium spp. Apicomplexa Mosquito salivation Malaria

Trypanosoma brucei Euglenozoa Tsetse fly salivation Sleeping sickness

Trypanosoma cruzi Euglenozoa Triatome bug stercorarian Chagas disease

Wuchereria bancrofti Nematoda Mosquito active escape Filariasis

Viruses

CCHF virusc Bunyaviridae Ixodid tick salivation Crimean Congo hemorrhagic fever

Chikungunya virusc Togaviridae Mosquito salivation Chikungunya fever

DEN virus Flavirviridae Mosquito salivation Dengue

JE virusb Flavirviridae Mosquito salivation Japanese Encephalitis

LCE virusb Bunyaviridae Mosquito salivation LaCrosse Encephalitis

Ross River virus Togaviridae Mosquito salivation Ross River fever

RSSE virusc, CEE virusc Flavirviridae Ixodid tick salivation Tick-Borne Encephalitis

RVF virusa Bunyaviridae Mosquito salivation Rift Valley Fever

SLE virus Flavirviridae Mosquito salivation Saint Louis Encephalitis

VEE virusb Togaviridae Mosquito salivation Venezuelan Equine Encephalomyelitis

WNE virusb Flavirviridae Mosquito salivation West Nile Encephalitis

Yellow fever virusc Flavirviridae Mosquito salivation Yellow Fever

Bacteria

Anaplasma phagocytophilum Alphaproteobacteria Hard Tick salivation Human Granulocytic Anaplasmosis

Bartonella bacilliformis Alphaproteobacteria Sand fly salivation Carrion’s disease

Bartonella quintana Alphaproteobacteria Louse stercorarian Trench fever

Borrelia burgdorferi Spirochaeta Tick salivation Lyme Disease

Borrelia hermsii Spirochaeta Soft Tick salivation Tick-borne relapsing fever

Borrelia recurrentis Spirochaeta Louse passive escape Louse-borne relapsing fever

Ehrlichia chaffeensis Alphaproteobacteria Hard Tick salivation Human Monocytic Ehrlichiosis

Francisella tularensisa Gammaproteobacteria Hard Tick, Deer fly salivation Tularemia

Orientia tsutsugamushi Alphaproteobacteria Mite salivation Scrub typhus

Rickettsia prowazekiib Alphaproteobacteria Louse stercorarian Epidemic typhus

Rickettsia rickettsiic Alphaproteobacteria Hard Tick salivation Rocky Mountain spotted fever
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Infectious agent Parasites Class Vector Transmission Disease

Rickettsia typhic Alphaproteobacteria Flea salivation Murine typhus

Yersinia pestisa Gammaproteobacteria Flea regurgitation Plague

National Institute of Allergy and Infectious Diseases Biodefense Category Aa, Bb, Cc priority pathogens
(http://www.niaid.nih.gov/topics/biodefenserelated/biodefense/research/pages/cata.aspx)

Int J Parasitol. Author manuscript; available in PMC 2011 September 1.

http://www.niaid.nih.gov/topics/biodefenserelated/biodefense/research/pages/cata.aspx

