Skip to main content
. 2010 Aug 2;26(16):2051–2052. doi: 10.1093/bioinformatics/btq299

Table 1.

The prediction performance by five classification approaches, C4.5 decision tree, Bayes network, SVM with the RBF kernel, SMO and nearest neighbor

Strategy Algorithm Sn Sp Ac MCC AUC
10FCV Training C4.5 0.8766 0.7832 0.8371 0.6646 0.832
Bayes net 0.6594 0.8034 0.7203 0.4585 0.807
RBF 0.9463 0.7613 0.8681 0.7315 0.854
SMO 0.9474 0.8783 0.9182 0.8321 0.913
NN 0.9177 0.8128 0.8734 0.7395 0.865
Testing C4.5 0.7667 0.8627 0.8108 0.6280 0.811
Bayes net 0.6333 0.8039 0.7117 0.4398 0.764
RBF 0.8500 0.8235 0.8378 0.6735 0.837
SMO 0.8667 0.9020 0.8829 0.7664 0.884
NN 0.8667 0.8039 0.8378 0.6730 0.835
10FCV All C4.5 0.8759 0.8020 0.8445 0.6809 0.841
Bayes net 0.6877 0.7905 0.7314 0.4730 0.815
RBF 0.9358 0.7746 0.8672 0.7290 0.855
SMO 0.9422 0.8887 0.9195 0.8349 0.915
NN 0.9112 0.8165 0.8709 0.7349 0.864

These algorithms were evaluated using the 10FCV on the Training dataset, the Testing dataset and the All dataset.