Table 1.
Strategy | Algorithm | Sn | Sp | Ac | MCC | AUC |
---|---|---|---|---|---|---|
10FCV Training | C4.5 | 0.8766 | 0.7832 | 0.8371 | 0.6646 | 0.832 |
Bayes net | 0.6594 | 0.8034 | 0.7203 | 0.4585 | 0.807 | |
RBF | 0.9463 | 0.7613 | 0.8681 | 0.7315 | 0.854 | |
SMO | 0.9474 | 0.8783 | 0.9182 | 0.8321 | 0.913 | |
NN | 0.9177 | 0.8128 | 0.8734 | 0.7395 | 0.865 | |
Testing | C4.5 | 0.7667 | 0.8627 | 0.8108 | 0.6280 | 0.811 |
Bayes net | 0.6333 | 0.8039 | 0.7117 | 0.4398 | 0.764 | |
RBF | 0.8500 | 0.8235 | 0.8378 | 0.6735 | 0.837 | |
SMO | 0.8667 | 0.9020 | 0.8829 | 0.7664 | 0.884 | |
NN | 0.8667 | 0.8039 | 0.8378 | 0.6730 | 0.835 | |
10FCV All | C4.5 | 0.8759 | 0.8020 | 0.8445 | 0.6809 | 0.841 |
Bayes net | 0.6877 | 0.7905 | 0.7314 | 0.4730 | 0.815 | |
RBF | 0.9358 | 0.7746 | 0.8672 | 0.7290 | 0.855 | |
SMO | 0.9422 | 0.8887 | 0.9195 | 0.8349 | 0.915 | |
NN | 0.9112 | 0.8165 | 0.8709 | 0.7349 | 0.864 |
These algorithms were evaluated using the 10FCV on the Training dataset, the Testing dataset and the All dataset.