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ABSTRACT

Motivation: Transmembrane β-barrels (TMBBs) belong to a
special structural class of proteins predominately found in the
outer membranes of Gram-negative bacteria, mitochondria and
chloroplasts. TMBBs are surface-exposed proteins that perform a
variety of functions ranging from nutrient acquisition to osmotic
regulation. These properties suggest that TMBBs have great potential
for use in vaccine or drug therapy development. However, membrane
proteins, such as TMBBs, are notoriously difficult to identify and
characterize using traditional experimental approaches and current
prediction methods are still unreliable.
Results: A prediction method based on the physicochemical
properties of experimentally characterized TMBB structures was
developed to predict TMBB-encoding genes from genomic
databases. The Freeman–Wimley prediction algorithm developed in
this study has an accuracy of 99% and MCC of 0.748 when using the
most efficient prediction criteria, which is better than any previously
published algorithm.
Availability: The MS Windows-compatible application is available
for download at http://www.tulane.edu/∼biochem/WW/apps.html
Contact: wwimley@tulane.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The transmembrane β-barrel (TMBB) is one of two major structural
classes of membrane-spanning proteins; TM helical bundles are
the other. TMBBs are found in the outer membranes of Gram-
negative bacteria, mitochondria and chloroplasts, while TM helical
bundles are found in the cytoplasmic membranes of all living
organisms. Although genes that encode TMBBs are estimated to
represent at least 3% of all protein-coding genes in Gram-negative
bacteria, TMBBs represent only 1% of the solved protein structures
from Gram-negative organisms. As a rapidly expanding number of
genomic sequences become available, using in silico methods to
identify previously unknown TMBBs is an appealing alternative
to more difficult and time-consuming experimental methods such
as crystallography. Computational TMBB prediction methods
can identify candidate genes in order to perform experimental
validation or structural proteomics on a more focused population.

∗To whom correspondence should be addressed.

These methods also provide the opportunity to identify and
characterize TMBBs that may not be expressed under standard
culturing conditions and thus, would go unobserved using traditional
screening methods such as proteomic analysis.

Computational prediction methods have been used to predict
TM helices with an accuracy of 99% for nearly a decade. TM
helices are simple stretches of 19–25 hydrophobic residues, which
can be predicted with near-perfect accuracy using experimentally
determined hydrophobicity scales; an example of such a program
is MPEX (Jayasinghe et al., 2001; Snider et al., 2009). However,
the prediction of TMBBs presents a more difficult challenge due
to the cryptic nature of the TMBB structure (Wimley, 2002). The
TMBB structure is a series of anti-parallel β-strands that are arranged
in a cylindrical geometry forming a structure that resembles a
barrel (Schulz, 2000). The TM β-strands of TMBBs consist of
∼10 amino acids arranged in an alternating, dyad repeat pattern
of hydrophobic and hydrophilic residues, where the hydrophobic
side-chains face the lipid environment and the hydrophilic side-
chains face the interior of the β-barrel. The β-hairpin, which is the
major structural unit of the TMBB, is a pair of anti-parallel TM
β-strands connected by a short loop of 3–7 residues (i.e., hairpin
turn). The β-hairpins are connected to each other by loops of varying
length. The complexities and irregularities in the structure including
the variations in loop length and composition, deviations from the
pattern of hydrophobicity in some β-strands, and the low information
content (e.g., only five hydrophobic residues in a TM strand) make
the identification of TMBBs especially problematic (Wimley, 2003).

There are a wide variety of TMBB prediction algorithms that
utilize machine learning methods ranging from Bayesian networks to
k-nearest neighbor methods. Machine learning methods are designed
to identify the common features of the TMBBs in a training dataset as
well as features that distinguish TMBBs from other types of proteins.
The distinguishing variables, as interpreted by the algorithm, are
used as rules to classify a test sequence (Gromiha and Suwa, 2006).
Although these methods can yield reasonable TMBB prediction
accuracies (64–97%), their predictions are still less reliable than
those made for TM helical bundles (Gromiha and Suwa, 2006;
Hu and Yan, 2008). Besides achieving less than ideal prediction
accuracy, a major disadvantage of using a machine learning method
is that it cannot be used for hypothesis testing because the variables
used to make the predictions are either hidden or arbitrary, thus there
is no discernable link between the variables and the physicochemical
properties of the experimentally solved TMBB structures.

A TMBB prediction algorithm based on the physicochemical
properties of TMBBs was developed in this lab (Wimley, 2002). This
algorithm is based on an analysis of the structure and composition
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of known TMBBs. The algorithm identifies the positions of TM
β-strands using a simple pattern-recognition scheme, which utilizes
the statistical amino acid abundance data derived from known
structures. The observed amino acid abundances from the TM
β-strands are compared to the expected genomic abundance, and
the difference between the two abundances yields information about
patterns and composition unique to the TM segments of TMBBs. The
algorithm uses the resulting abundance values to identify 10-residue-
long β-strands with dyad repeat patterns. Next, adjacent β-strands
are scored for β-hairpin-forming potential, and the β-hairpin score
data is used in a function to give a protein sequence a single β-barrel
score. The β-barrel score is a rating of the overall propensity of the
sequence to fold into a TMBB.

The initial goal of this work was to rigorously evaluate the
performance of this algorithm since it was intended to make
predictions for genomic sequences, which will be listed in an
annotated database. The performance of the original algorithm was
evaluated using a non-redundant protein database (NRPDB) with
14 238 proteins of known structure from the Protein Data Bank
(PDB; Berman et al., 2000). Each sequence was given a β-barrel
score, which was used as a threshold-dependent binomial classifier
to identify each sequence as either a TMBB or non-TMBB. Using
the NRPDB as a stringent test set, the performances of the original
prediction algorithm, as well as other prediction algorithms, were
unsatisfactory because they had very large rates of false positive
predictions.

The algorithm described in this work was developed to address
the specific weaknesses in the ability of the original algorithm to
discriminate against non-TMBBs. The modified algorithm, which
we call the Freeman–Wimley algorithm, showed a substantial
improvement, from 87% to 99% when analyzing the NRPDB.
The accuracy of the Freeman–Wimley algorithm is comparable to
the accuracy of TM helix prediction and exceeds the accuracy of
other TMBB prediction methods. Furthermore, an analysis of the
Escherichia coli genome has revealed that the Freeman–Wimley
algorithm is more efficient at distinguishing TMBBs from non-
TMBBs in genomic databases compared to the NRPDB. This work
represents significant progress in the computational identification of
genomic TMBB sequences.

2 METHODS

2.1 Database construction
An NRPDB was constructed from the seqres text file available on the ftp site
of the PDB (ftp://snapshots.rcsb.org/20080107/pub/pdb/derived_data/). The
corresponding 50% clustering file (ftp://snapshots.rcsb.org/20080107/pub/
pdb/derived_data/NR/) was used to select a set of protein sequences that
were 50% or less identical to all other proteins. The database was further
refined by the exclusion of proteins outside the chain length constraints of
the prediction algorithm, i.e. between 60 and 4000 residues long, limiting
the total number of members in the database to 14 238.

2.2 TMBB structural analysis and amino acid
abundance values

A total of 22 non-redundant (≤40% identical) TMBBs were analyzed
for structural bioinformatic data (listed in Supplementary Table S1) as
was previously done by Wimley (2002). Briefly, transformation of PDB
coordinates to a bilayer plane was performed essentially as done by Wimley
except the software used was the Accelerys DS Viewer available as a free

Fig. 1. Analysis of TMBB structures. (A) The 3D coordinates of the
structures were transformed to a bilayer plane as described in methods.
The aromatic residues, shown in space-filling modeling, were used among
other cues to identify the TM domain. (B) The internal- and external-facing
residues were identified in each TM strand along with the respective distance
from the bilayer mid-plane. (C) The abundance values of all 20 natural amino
acids were calculated in 4 structural subdomains.

download. The hydrophobicity profile used to center the TM section of each
TMBB was performed by calculating the average hydrophobicity of the
external residues using the Wimley–White hydrophobicity scale (White and
Wimley, 1998). The average hydrophobicity within a 5-Å sliding window
was calculated along the Y -axis using the structural Y -coordinates of the
β-carbons (except for glycine where the α-carbon was used). The midpoint
of the hydrophobic surface was used to transform the XYZ coordinates of
a structure to a bilayer plane centered at 0 Å; the distance of the residues
from that center was used to determine if they were located in the core
region (0–6.5 Å) or in the interfacial region (>6.5–13.5 Å) (see Fig. 1).
The resulting raw abundance values were normalized by comparison to the
expected genome-wide abundance values (Supplementary Table S2). The
abundances determined in this analysis were averaged with those generated
by Wimley, weighting each group by the respective number of amino acids
that contributed to the value calculation.

2.3 TMBB prediction algorithm
The TMBB prediction algorithm used was based on the method previously
published by this lab (Wimley, 2002) with some modifications. Sequences
shorter than 60 and longer than 4000 residues were excluded; these limits
were set because sequences with fewer than 60 residues most likely cannot
fold into TMBBs, which must have at least eight β-strands, and sequences
longer than 4000 residues are uncommon and unlikely to be TMBBs (all
of the known TMBBs are shorter than 1000 residues). Sequences were
assigned abundance values (Fig. 1) in an alternating (dyad repeat) pattern of
internal/external and external/internal using the core and interfacial values
for the respective surfaces resulting in two separate abundance assignments
(see Fig. 2 and Supplementary Fig. S1). The β-strand scores were calculated
with a 10-residue-long sliding window that steps through the sequence one
position at a time. Within the sliding window, the three anterior and posterior
residues were assigned interfacial abundances while the four middle positions
were assigned core abundances. This differs from the original algorithm that
used an average of the core and interfacial values known as the whole or
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Fig. 2. Sequence analysis by the Freeman–Wimley algorithm. The schematic
shows the typical amino acid side-chain orientations in a TM β-hairpin, where
half of the membrane-spanning side-chains are lipid-exposed (external) and
the other half face the pore (internal). The sequence analysis is performed as
follows: (i) the amino acid abundances are assigned to each residue within
a 10-residue sliding window, with the terminal residues assigned as bilayer
interfacial residues, and the remainder as bilayer core residues; (ii) the sum
within the window is taken as the β-strand score for the median residue, thus
peaks indicate the middle of predicted β-strands; (iii) a 25-residue sliding
window analysis of the β-strand score is used to identify β-hairpins, where
two β-strand peaks are separated by a five-residue gap (representing the
hairpin turn); and (iv) the topology prediction shown in the β-hairpin score
is simplified to a single value called the β-barrel score as described in methods
and Supplementary Figure S1.

average bilayer value. The values within the two windows were summed and
the greater sum was taken as the β-strand score of the median residue in the
window, i.e. the 5.5th residue in the window. Next, the β-strand score was
analyzed for β-hairpins using two 10-residue sliding windows separated by
5 fixed residues, which represents the hairpin turn. The maximum β-strand
score was identified in each 10-residue window, stepping through one value
in the data at a time. The β-hairpin score for the median residue in the
window is the sum of the maxima in each 10-residue window. The β-barrel
score is calculated as the sum of all β-hairpin score points whose value is
greater than six divided by the natural log of the length of the sequence.
The original algorithm used just the length of the sequence as the divisor;
however, the natural log of the length is more appropriate as discussed in the
results and discussion.

2.4 Definitions and equations for algorithm
performance

(1) True positive (TP) prediction—a TMBB whose β-barrel score is at
least equal to the test threshold

(2) True negative (TN) prediction—a non-TMBB whose β-barrel score is
less than the test threshold

(3) False positive (FP) prediction—a non-TMBB whose β-barrel score
is at least equal to the test threshold

(4) False negative (FN) prediction—a TMBB whose β-barrel score is less
than the test threshold

(5) Sensitivity—proportion of TMBBs positively identified by test out of
known TMBBs in the dataset

Sensitivity= TP

TP+FN

(6) Specificity—proportion of non-TMBBs eliminated by test out of know
non-TMBBs in the dataset

Specificity= TN

TN+FP

(7) Positive predictive value (PPV)—a number from 0 to 1 that indicates
the likelihood that a positive prediction is correct, 1 being most likely

PPV= TP

TP+FP

(8) Accuracy—all correct positive and negative predictions out of the
whole dataset

Accuracy= TP+TN

TP+TN+FP+FN

(9) Matthews correlation coefficient (MCC)—a metric of overall
efficiency of a prediction algorithm ranging from 0 to 1 (Matthews,
1975). An MCC of 0 means the predictions are completely random
and 1 means the predictions are perfect.

MCC=
[(

TP∗TN
)−(

FP∗FN
)]

√(
TP+FN

)(
TP+FP

)(
TN+FN

)(
TN+FP

)

2.5 Randomized sequence analysis
It was observed that many of the false positive predictions (i.e. non-TMBBs
with high β-barrel scores) had a considerable abundance of amino acids that
are typically more abundant in TMBBs, such as Tyr, which could lead to an
artificially high β-barrel score. In an extreme example, a 100-residue-long
sequence consisting only of Tyr residues receives a β-barrel score near 300,
which is exceptionally high and would always be predicted to be a β-barrel.
This observation led to the hypothesis that a gene whose composition is rich
in high-scoring amino acids would receive a similarly high β-barrel score
using either the native sequence or a randomized one. Therefore, a method
was developed to test this hypothesis for TMBBs and non-TMBBs. Each
protein sequence was randomly scrambled 1000 times and each scrambled
version was analyzed using the Freeman–Wimley algorithm. All of the scores
were averaged to obtain the mean randomized score (MRS). The MRS and
SD (σ) were compared to the β-barrel score of the native sequence for
statistical significance. A probability of 5% or less was considered to be
significant thus, the β-barrel score for a protein must be at least 1.96 * σ

greater than the MRS in order to pass the test.

2.6 Programming
All of the prediction and analysis programs used to perform this work
were written in Delphi, which is an object-oriented version of the Pascal
programming language. The programs were written and compiled using the
freely available Turbo Delphi 2006 from Borland/Codegear and are provided
at http://www.tulane.edu/∼biochem/WW/apps.html.

3 RESULTS

3.1 NRPDB construction and testing
An NRPDB with a 50% similarity cutoff was constructed to test the
prediction accuracy of the TMBB prediction algorithm developed in
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this lab (Wimley, 2002). The prediction accuracy was tested because
this algorithm was developed to predict TMBBs in the genomes
of Gram-negative bacteria and it was imperative to validate the
accuracy of such predictions. Protein sequences were obtained from
the PDB website, www.pdb.org, thus each structure was known for
each sequence. The number of sequences in the database totaled
14 238, where there were 48 true TMBBs and 14 190 non-TMBBs
covering the full range of protein fold classes, including all β, all α,
α/β and α+β supersecondary structures. This dataset is a stringent
test case for estimating how well the TMBB prediction algorithm
would perform against a genomic database whose sequences fold
into a wide variety of supersecondary structures.

To test the performance of the original TMBB prediction
algorithm, each sequence in the NRPDB was given a β-barrel
score. The β-barrel score was used to rank predictions (i.e., greater
β-barrel scores indicate stronger positive predictions) where positive
predictions were determined by a prediction threshold of 0.41,
which selected 46 of 48 known TMBBs. The two highest-scoring
TMBBs were OmpX (1orm; β-barrel score = 4.98) and OmpA
(1bxw; β-barrel score = 4.49) (Fernandez et al., 2001; Pautsch and
Schulz, 1998). The selected threshold also positively predicted
1824 non-TMBB sequences (false positives). A closer inspection of
the false positive predictions revealed that the two highest scoring
proteins were endo-β-1,4-glucanase (1h8v; β-barrel score = 5.13)
and xylanase D (1bcx; β-barrel score = 5.08) (Sandgren et al., 2001;
Wakarchuk et al., 1994). Although the original TMBB prediction
algorithm accurately identified known TMBBs, the rate of false
positive predictions was unacceptably high.

3.2 Algorithm modifications
The major reasons for the high rate of false positive predictions
were investigated in order to make the algorithm more accurate,
thus improving the efficacy of the algorithm as a tool for identifying
genomic TMBBs. There were three major modifications to the
algorithm that were prompted by the initial screening of the NRPDB:
(i) the amino acid abundance values were updated to include the
latest structural information; (ii) the β-strand prediction algorithm
was modified to increase specificity for the recognition of TM
β-strands; and (iii) an adjustment was made to the β-barrel score
calculation to eliminate an intrinsic bias for shorter sequences.

3.2.1 Updated abundance values The abundance values used to
identify β-strands, which subsequently lead to the β-barrel scores
used to rank TMBB predictions, were updated with the most
recent structural information. The original abundance values used
in the prediction algorithm were derived from the analysis of
only 15 unique TMBB structures (Wimley, 2002). Over 20 new,
unique structures have been solved since then, thus the amount
of data from which amino acid abundances could be derived was
increased more than 2-fold. Only TMBB structures with sequences
that were <40% identical to any other sequences in the PDB
were analyzed (see Supplementary Table S1) using the structural
analysis method of Wimley (see Fig. 1). This analysis produced
four raw abundance values for each natural amino acid, with the
exception of cysteine, which was absent from all TM regions. The
observed raw abundances were converted to relative abundances,
which is a comparison of observed and expected abundances, and
then were combined with Wimley’s relative abundance values as

Fig. 3. Structural differences between large and small TMBBs. Here is
an example of the additional structural features often found in the larger
known TMBBs, which are absent in their smaller counterparts. The protein
subdomains that are not in contact with the bilayer tend to receive lower
β-hairpin scores, thus lowering the overall β-barrel score when calculated
by the original scoring method. The surfaces that contact the bilayer are
shown in blue; the protein–protein interaction domains are shown in red;
the ‘plug’ domain, which occludes the lumen of the pore is shown in green.
(A) Structure of Protease VII/OmpT (1i78; Vandeputte-Rutten et al., 2001).
(B) Structure of pilin usher protein PapC (2vqi; Remaut et al., 2008).

weighted averages (see Supplementary Table S2). The updated
relative abundances were derived from a total of 4667 amino acids
from 37 protein structures.

3.2.2 β-strand prediction modification The TMBB prediction
algorithm was modified to utilize all of the available abundance
information more comprehensively. The whole bilayer abundances,
which are averages of the interfacial and hydrophobic core
abundances for each residue, were used in the original prediction
algorithm. However, some residues are distinctly more abundant
in one subdomain than the other on a given surface. For example,
leucine is nearly twice as abundant in the hydrophobic core as it
is in the interface of the external surface; tyrosine is nearly twice
as abundant in the interface as it is in the core of the external
surface; and tryptophan is nearly five times more abundant in the
interface than in the hydrophobic core of the external surface. Instead
of assigning the average bilayer abundance to each residue in the
window as was done previously, the interfacial abundances (internal
or external) are assigned to the first and last three residues in the
window, and core abundances (internal or external) are assigned
to the four middle residues in the window. The new abundance
value assignment method was termed the core-interfacial specific
abundance assignment (CISA).

3.2.3 Modification of the β-barrel score calculation The β-barrel
score calculation was modified to address an intrinsic bias for
short sequences found in the NRPDB. The structures of TMBBs
were inspected to gain insight as to why shorter sequences had a
tendency to receive greater β-barrel scores than longer sequences
(Fig. 3). The available structures showed that larger TMBBs often
have substantial percentages of the protein structure dedicated to
non-TMBB domains or subdomains, unlike the smaller TMBBs
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Table 1. Algorithm improvements

Algorithma TPb FPc TNd FNe

Original 46 1823 12 367 2
Updated abundance values 46 895 13 295 2
Core/interfacial-specific (CISA) β-strand

prediction
46 1772 12 418 2

Modified β-Barrel Score 46 625 13 565 2
All modifications combined

(Freeman-Wimley algorithm)
46 599 13 591 2

Freeman-Wimley algorithm with MRS
Screen

37 161 14 029 11

aDescribes which version of the algorithm was used to make predictions in the NRPDB
(Non-redundant PDB).
bTrue Positive predictions (correctly identified TMBBs).
cFalse Positive predictions (incorrectly identified non-TMBBs).
dTrue Negative predictions (correctly excluded non-TMBBs).
eFalse Negative predictions (incorrectly excluded TMBBs).

such as OmpX and OmpT (Vandeputte-Rutten et al., 2001; Vogt
and Schulz, 1999). Many of the larger TMBBs, such as the dimeric
PapC and BtuB, have a large N-terminal plug domain that occludes
the lumen of the pore, and/or extensive protein–protein interaction
domains that account for nearly a quarter of the sequence (Chimento
et al., 2003; Remaut et al., 2008). The non-TM domains effectively
dilute the β-hairpin density, which is reflected in the β-barrel score.
It was observed that smaller proteins with only modest β-hairpin
scores received exceedingly high β-barrel scores, leading to false
positive predictions. It is apparent that β-hairpin density is relatively
reduced in longer sequences, thus various modulations of the length
were tested, such as truncating sequences longer than 500 residues
and mathematically modifying the length (e.g. calculating the square
root, cubed root, natural log, etc.). Taking the natural logarithm of
the length outperformed all of the other models (data not shown)
and was, therefore, used in the improved algorithm.

3.2.4 Evaluation of algorithm modifications The sequences
of the NRPDB were analyzed with each of the aforementioned
algorithm modifications and given a new β-barrel score, which
effectively distinguishes TMBBs from non-TMBBs (Supplementary
Fig. S2).

A set of testing parameters were established in order to compare
the effects of the various algorithm modifications on TMBB
prediction performance (see Table 1). The prediction threshold,
which is the minimum β-barrel score to be considered a positive
prediction, was chosen for each modification so that 46 of 48
true TMBBs were considered positive predictions. The updated
abundances resulted in a 2-fold reduction in the number of false
positive predictions. The CISA β-strand prediction made a modest
3% decrease in the number of false positives. The modified β-barrel
score calculation yielded the most substantial improvement with a
nearly 3-fold reduction in the number of false positives. When all
of these modifications were combined into a single algorithm (the
Freeman–Wimley algorithm) the reduction in false positives was
more than 3-fold. This vast improvement is attributable to improved
statistics for abundance values, which allowed the CISA assignment
to have a greater impact, and the alternate β-barrel score calculation.
A more in-depth comparison between the original algorithm and the
Freeman–Wimley algorithm is shown in Figure 4. The sensitivity,

Fig. 4. Comparison of prediction efficiency. The original algorithm
(triangles) was compared to the Freeman–Wimley algorithm (circles) using
three measures of performance: sensitivity, PPV and MCC.

PPV and MCC are compared between both algorithms over a range
of prediction thresholds. The rate of decrease in sensitivity is similar
in both algorithms as the prediction threshold is increased. However,
the PPV and MCC changes reveal that the Freeman–Wimley
algorithm is superior at eliminating false positives, a capability that
improves greatly as the threshold becomes higher.

3.3 Randomized sequence analysis
The structures of some of the higher-scoring false positives were
examined to better understand why their β-barrel scores were
similar to known TMBBs. A review of the false positive structures
revealed that they were β-sheet-rich with a varied number of anti-
parallel β-strands similar in length to known TMBBs. Besides the
observed structural similarities, some non-TMBBs have amino acid
compositions, which are rich in favorable amino acids such as Tyr,
thus the β-barrel score for such a sequence could be inflated because
of composition. To test whether sequence or composition played a
more prominent role in determining the β-barrel score, a randomized
sequence analysis was performed on each sequence in the NRPDB
as described in Section 2. Example distributions of β-barrel scores
from the random sequence analysis are shown for one TMBB (Tsx)
and one soluble non-TMBB (xylanase) in Figure 5. The β-barrel
score of the native sequence is shown on each distribution for
comparison with the MRS. The two-tailed probability (P) that a
randomized sequence of the same composition would score as high
as the native sequence is also shown. Although the β-barrel scores
of the native sequences are similar among the two examples, the
difference between the β-barrel score of the native sequence and the
MRS is significant for the TMBB but not for the non-TMBB. This
suggests that the sequences that correspond to TMBB structure are
rare arrangements of a particular composition.
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Fig. 5. Randomized sequence scoring analysis. Here are example β-barrel
score distributions for sequences that had been randomized and scored by
the Freeman–Wimley algorithm. Two positively predicted sequences from
the analysis of the NRPDB (one true positive and one false positive) are
shown. The β-barrel score for the native sequence is shown as a circled X.
The β-barrel score of the native sequence was compared to the mean score
of the randomized sequences. (A) Analysis of nucleoside transporter, Tsx
(1tlw; Ye and van den Berg, 2004), a TMBB. (B) Analysis of xylanse (1bcx;
Wakarchuk et al., 1994), a soluble protein.

Fig. 6. Mean-randomized score. Sequences that were positively identified
(β-barrel score >45) were randomized to generate the MRS. The MRS
±1.96σ is shown as solid triangles and the β-barrel score of the native
sequence is shown as open circles. (A) True TMBBs; N =46. (B) Non-
TMBBs; N =599.

Figure 6 shows the randomized sequence analysis results for true
and false positive predictions from the NRPDB where positives were
predicted using a prediction threshold β-barrel score of 46. The plots
for known TMBBs and false positives show the β-barrel scores
of native sequences compared to the MRS ±1.96σ for all of the
sequences tested. The β-barrel scores of the predicted true positives
(N =46) are all greater than their MRS where 80% of which are
significantly greater than their MRS (P≤0.05); this represents 77%
of all known TMBBs in the NRPDB. However, the β-barrel scores
of the false positives from the NRPDB (N =599) were less different
from their MRS where only 27% were significantly greater than
their MRS (P≤0.05). This result suggests that the β-barrel scores
of most TMBBs are more strongly influenced by their sequences

Fig. 7. MRS improves prediction efficiency of Freeman–Wimley algorithm.
Screening the NRPDB using the MRS test (open circles) reduced the number
of false positives while still selecting similar numbers of true positives
compared to the Freeman–Wimley algorithm alone (closed circles). The most
efficient prediction threshold, 135, is indicated by the dashed line.

than their compositions and the opposite is true for the majority of
false positives.

The sequences in the NRPDB belong to a wide range of structural
classes. The number of positive predictions made by the Freeman–
Wimley algorithm is compared to the additional screening using
the MRS test and categorized by structural class in Supplementary
Table S4. These results show that the most common type of false
positive belongs to the all β-sheet class. The MRS test broadly
reduced the total number of false positives by 73% and most
effectively improved discrimination against all α-helix, coiled-coil
and α/β folds.

The prediction efficiency was compared between the Freeman–
Wimley algorithm with and without the MRS test in Figure 7.
At comparable sensitivity levels, the MRS test decreased the rate
of false positive predictions by as much as 50% and the overall
efficiency increased by as much as 25%. This shows that the MRS
test is a powerful tool that enhances the discriminatory power of the
Freeman–Wimley algorithm.

3.4 Comparison to other prediction methods
Several examples of other prediction methods were collected from
the literature to compare their performances to the performance
of the Freeman–Wimley method (Gromiha and Suwa, 2006; Hu
and Yan, 2008; Liu et al., 2003). The various selected methods
included a variety of machine learning methods. The Freeman–
Wimley algorithm was plotted in a receiver operating characteristic
(ROC) curve and the ROC values of each method were plotted in
Figure 8 (also see Supplementary Table S3 for more detailed data).
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Fig. 8. ROC curve comparing published prediction algorithms. The ROC
values of several previously published prediction algorithms were plotted
for comparison to the Freeman–Wimley analysis of the NRPDB. Three of
the algorithms were used in a direct comparison to the Freeman-Wimley
(F–W) algorithm (Table 2) and are labeled (a) k-NN (Hu and Yan, 2008),
(b) RBF (Ou et al., 2008) and (c) βOMP (Berven et al., 2004). Names, data
and references of all algorithms are listed in Supplementary Table S3.

Table 2. Multi-algorithm comparison of NRPDB prediction resultsa

Evaluation k-NNb / F–Wc TMBD-RBFd / F–Wc BOMPe / F–Wc

Sensitivity 85.4 / 85.4 95.8 / 95.8 81.2 / 81.2
Specificity 97.4 / 99.1 93.6 / 95.8 98.4 / 99.1
Accuracy 97.4 / 99.0 93.7 / 95.8 98.4 / 99.1
MCC 0.289 / 0.450 0.208 / 0.257 0.342 / 0.441

aResults are based on analysis of NRPDB, which included 48 true TMBBs and 14 190
non-TMBBs.
bHu and Yan (2008).
cPrediction parameters of Freeman–Wimley (F–W) algorithm were set to match
sensitivity of the results of each respective algorithm.
dOu et al. (2008).
eBerven et al. (2004).

These data show that the algorithm developed in this work clearly
outperformed almost all other previously published methods.

A more statistically stringent comparison test was performed with
algorithms that were publicly available and able to analyze the
NRPDB. The prediction results from each algorithm are listed in
Table 2. In each case, the Freeman–Wimley algorithm made nearly
half as many false positive predictions as the other algorithms.
The conclusion drawn from this data is that the Freeman–Wimley
algorithm is the most accurate predictor of TMBBs currently
available.

3.5 Genomic analysis
As previously mentioned, the purpose of improving the original
TMBB prediction algorithm was to create a tool that could
effectively identify TMBBs in genomic databases. The genome
of E.coli, which is the most comprehensively annotated genome
available, was analyzed and the results were compared to the
analysis of the NRPDB in Figure 9.

The results for those E.coli genes, which were readily identifiable
as being either TMBBs or non-TMBBs were included in this

Fig. 9. Comparison of prediction efficiency in NRPDB and E. coli genome.
The NRPDB contained 48 true TMBBs and 14 190 non-TMBBs. The
E.coli genome has 36 known confirmed TMBBs and 2385 non-TMBBs;
the remaining 2718 are unknown (114 were eliminated for being either too
short or too long). This analysis only compared the prediction efficiency
results for those E.coli genes, which were readily classifiable to the results
of the NRPDB analysis. The PPV and MCC show that the Freeman–Wimley
algorithm is much more efficient at distinguishing TMBB sequences from
non-TMBB sequences in a genomic database than in the NRPDB.

analysis. There were 36 TMBBs and 2385 non-TMBBs; the
remaining 2718 hypothetical and putative proteins were ignored
as well as 114 that were not analyzed because they were either
shorter than 60 or longer than 4000 residues. The analysis results
show that the algorithm is much more efficient at analyzing the
known genes of E.coli than the NRPDB, which has sequences from
a more phylogenetically diverse population. Furthermore, the results
show that the NRPDB is a very stringent test case and suggests that
genomic prediction results will be better.

4 DISCUSSION

4.1 NRPDB
An NRPDB was constructed to measure the prediction accuracy
of the Freeman–Wimley algorithm. Since the structural identity of
each sequence was known, correct and incorrect predictions were
identified with greater certainty than the annotations made in other
databases, such as SwissProt, which rely on presumed structural
classifications for some of their entries. The conclusions drawn from
analyzing the NRPDB are more reliable than using SCOP or Psort
database annotations, which are more reliant on homology, because
the structures of NRPDB sequences have all been manually verified
rather than verified by computer algorithms (Murzin et al., 1995;
Rey et al., 2005). Moreover, the non-TMBB proteins come from
every kingdom of life, offering a diverse sampling of structures
that may not be found in the genomes of Gram-negative bacteria.
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An advantage of such diversity is that it makes the NRPDB a very
stringent test case for assessing the predictive power of an algorithm.

A total of 37 TMBBs were used for calculation of the abundance
values. The 50% NRPDB test set included 35 members of the
abundance value set and 13 unique TMBB sequences that were
not in the abundance set (48 total). Between/among the positive
training and testing sets there was no homology (median BLAST
similarity <30%, median BLAST E-value = 1) except self-identity.
To determine by another means if the presence of homologs
was affecting the results presented above, a 20% NRPDB was
constructed and tested as shown in Supplementary Figure S2. The
results showed there was no difference in the prediction efficiency,
thus the results reported from analyzing the 50% NRPDB were not
influenced by the presence of homologous sequences.

All relevant sequence datasets are available as FASTA files in rich
text format at http://www.tulane.edu/∼biochem/WW/apps.html.
Four sequence files are given each for the 50% NRPDB and for
the 20% NRPDB. The four files are: (i) the whole NRPDB; (ii) the
NRPDB without the known TMBBs; (iii) all of the TMBBs in the
test set that were not part of the training (abundance calculation) set;
and (iv) the TMBBs in each NRPDB that were part of the training
set. A separate file containing the entire abundance calculation set
is also available.

4.2 Cross-validation
Although the NRPDB includes sequences that were used to generate
abundance values, bias is not a concern because this statistical
approach is not readily subject to overfitting. The absence of bias
was verified in the following ways.

First, the abundance values were not determined in the hidden
layer of a machine learning method, where the parameters may be
subject to inadvertent overfitting to the training set, and where cross-
validation is essential to prove the robustness of the fit. Instead,
abundance values were simply measured from structural data and
compiled in overall average values. Traditional cross-validation is
unnecessary as long as individual members, families or groups in the
dataset do not have compositional data that are statistically different
from the overall average. We compared the amino acid abundances
from the new set of proteins (which contains several novel families)
to the expected counts, which were based on previously published
results using pairwise comparisons. It was found that the two sets
of abundance values were not statistically different, indicating that
the various families in the two datasets have the same inherent
abundance values.

Second, we analyzed the entire NRPDB, which contains 48
TMBBs, with composition data generated from only the previously
published abundance values (only 15 proteins), and only the new
abundance values (only 22 different proteins). ROC curves were
generated for each analysis. The area under the curve for each ROC
was 0.975 for each of the two independent sets of abundance values.
This result further illustrates that all abundance values appear to have
been sampled from a single parent population without bias.

Third, 13 of the 48 TMBBs in the non-redundant test database
were not part of the training/abundance set in any way. The
prediction accuracy when the training set contains only the non-
training set TMBBs is nearly the same as when all 48 of the TMBB
proteins are in the training set (see Supplementary Table S5). Using a
β-barrel score threshold of 90, the algorithm predicts 32/37 members

of the training set, and predicts 9/13 of the unique positives in the
test set. This performance is especially good because many of the
13 remaining sequences are non-canonical examples of TMBBs
as discussed below in Section 4.5. This provides an additional
cross-validation.

Fourth, we compared abundance values from a subset of
individual proteins in the training set to the overall abundance and
found no significant statistical differences suggesting, again, that the
abundance values are derived from a single parent population which
we sample by our statistical methods. In this statistical method, bias
can only arise if the composition of a family of proteins in the
training set is different enough from the average to influence the
results. This is not the case.

Fifth, it should be noted that we did not use the 14 238 protein
NRPDB dataset as a training set. Instead we used only 37 known
β-barrel membrane proteins. The NRPDB contains 35 of those
37 proteins as well as 13 additional TMBBs not included in the
abundance dataset. All together, the test database includes 14 203
proteins (out of 14 238 in the database, i.e. 99.75%) that were not
used in any way to calculate statistical data used by the algorithm.
Thus, the fractional overlap between the training set and the test
database is only 0.0025. The NRPDB is, therefore, already an
almost entirely independent test set for assessing and comparing
the performance of the algorithm.

4.3 A novel way to use the TMBB prediction algorithm
The MRS test was shown to be a powerful new way to reject false
positives that received high scores because their compositions may
have included unusually high numbers of favorable residues such
as tyrosine. However, a major technical impediment to using the
MRS test is that it increases the processing time for a dataset by
three orders of magnitude, which can be cumbersome for very
large genomic datasets. Thus, performing the MRS test is less
practical on such large datasets. Nevertheless, the MRS test adds
great strength to the discriminatory power of the β-barrel score while
having a minimal impact on the sensitivity. This test also further
supports the well-known hypothesis that a structure is encoded by the
specific sequence, and depends less on the composition (Anfinsen
and Scheraga, 1975).

4.4 High-scoring false positives
In spite of making the best efforts to eliminate all false positive
predictions, certain proteins always received β-barrel scores
comparable to the highest scoring TMBBs. A number of non-
TMBB sequences are still predicted to be positive after the various
improvements made to the algorithm. The supersecondary structures
of most of these proteins were mostly β, α/β or α+β. The
structures reveal the presence of amphipathic β-sheets with similar
compositions to TMBB β-sheets, which explains the prediction
results. It appears that the various amphipathic helices, turns and
side-chain interactions between β-strands are structural factors that
allow the same type of β-sheets found in TMBBs to exist in a
soluble form. Most of the false positives designated the all α

classification belong to the six-[α-]hairpin glycosidase superfamily
such as 1f9d (Parsiegla et al., 2000). Interestingly, nearly one-
third of the structure of 1f9d contains β-sheet, which was identified
as the high-scoring section of the sequence (data not shown),
thus 1f9d should be classified as having α+β supersecondary
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structure. Another protein classified as all α, 1sp3 (a putative
cytochrome C), also has a significant portion of the sequence folded
into β-sheets (Mowat et al., 2004). This protein is also the only
‘all α’ false positive that passed the MRS test, which was not
particularly surprising given that there is a well-ordered β-sheet in
the structure and the residues in many of the short helices have
an alternating pattern of hydrophobicity. Although it is difficult
for the current TMBB prediction algorithm to distinguish these
types of soluble proteins from TMBBs, their overall occurrence
in a proteobacterial genome is presumably less frequent than in
the more stringent NRPDB. This explains the much higher PPVs
observed in the analysis of the E.coli genome compared to the
NRPDB.

4.5 Low-scoring true positives
There were three porin-like TMBBs that scored poorly and did not
pass the MRS test. The structures of sucrose porin (1a0s), NalP
(1uyn) and the lipopolysaccharide (LPS)-O-deacylase, PagL (2erv),
were examined to understand why they did not fit the prediction
model used by the algorithm (Oomen et al., 2004; Rutten et al.,
2006; Wang et al., 1997). The reason these protein sequences scored
worse than the other porins is that the sequences in some of the
β-strands deviate from the dyad repeat pattern expected by the
prediction model. In each case, there were multiple β-strands with
hydrophobic side chains facing the interior surface of the pore. The
significance of this is that two to three consecutive hydrophobic
residues in a β-strand is inconsistent with the dyad repeat pattern of
alternating hydrophobicity seen more commonly in TM β-strands. In
the prediction model of the Freeman–Wimley algorithm, β-strands
with deviations from the canonical pattern receive lower β-strand
scores, which subsequently result in reduced local β-hairpin scores
and consequently, lower β-barrel scores. The impact this has on a
β-barrel score is significant because any regions of the sequence
that receive β-hairpin scores less than six do not count toward the
β-barrel score; so if one or two β-strands each have one deviation
from the dyad repeat pattern, then the β-barrel score could be reduced
substantially.

Another group of TMBBs that includes low-scoring members is
the multimeric single-pore-formers (i.e. the sequences of individual
protomers that assemble to form a single TM pore such as OprM,
TolC and α-hemolysin; Akama et al., 2004; Koronakis et al.,
2000; Song et al., 1996). There are three classes of proteins that
form multimeric single pores in the NRPDB: the multi-drug efflux
pumps, the cytolysins, and a trimeric autotransporter. The multi-
drug efflux pumps received low scores, ranging from 46 to 69
and they all failed the MRS test. The proteins in this class have
very little β-sheet content, have extensive helical content, which
dilutes the β-hairpin density, and were, therefore, expected to receive
low β-barrel scores. The cytolysins have more β-sheet content
than the multi-drug efflux pumps and received β-barrel scores
ranging from 64 to 183. Interestingly, the only part of proteins
in this class that actually contribute to membrane insertion is a
single β-hairpin, which contributes 15–40 points to the β-barrel
score. Lastly, a monomer of the homotrimeric autotransporter,
Hia (2gr7; Meng et al., 2006), was the only TMBB to receive a
β-barrel score of 0. The short sequence (129 residues) is dominated
by an α-helix that constitutes a third of the sequence. Although
the two β-hairpins are not readily discerned by the prediction

algorithm, concatenating the sequence (i.e. consecutively pasting
more than one copy of the sequence) allows for the detection of
both β-hairpins in the penultimate copy of the monomeric sequence.
This illustrates the need to address the loss of information content
at the termini of sequences caused by the algorithm. Together,
these observations imply that this algorithm is not as useful for
the prediction of multimeric single barrels as it is for the single-
molecule TMBBs. This, however, is not especially problematic
since multimeric single barrels represent a small proportion of
TMBBs.

4.6 Comparison to other prediction methods
Machine learning methods are a reasonable choice for decoding the
enigmatic sequences of TMBBs and can produce high prediction
accuracies. However, this work shows that a good statistical
approach with solid hypothesis testing can surpass the accuracy
of machine learning methods and carries the added advantage of
advancing the understanding of the underlying physical principles
that govern TMBB structure. Furthermore, most machine-learning
methods do not reveal the specific properties of TMBBs used to
make their predictions. Indeed, there is little attention given to
elucidating the quintessential features of a sequence that lead to
a certain fold and much less attention given to exploring the details
that lead to false results.

4.7 Toward genomic prediction
In this study, an algorithm developed to predict TMBBs from
genomic sequences, first developed in this lab, was modified to
improve the accuracy of the algorithm. The lab’s original algorithm
works well at identifying known TMBBs, but has a limited
capacity to discriminate against non-TMBBs in the NRPDB. Various
weaknesses were improved, which led to a dramatic enhancement
in overall prediction efficiency. The Freeman–Wimley algorithm
distinguishes TMBBs from other proteins with very high accuracy in
the NRPDB, which was a very stringent test case, and outperformed
any previously published algorithm. The most important aspect
of this prediction algorithm is that it is based on an explicit
understanding of the physicochemical properties involved in the
structure of known TMBBs. With regard to identifying the optimal
user-selected threshold, it was observed that protein sequences that
score less than 45 can be accurately classified as non-TMBBs,
while a threshold between 90 and 135 is optimal for achieving the
greatest sensitivity and highest confidence that positive predictions
are true TMBBs. Additionally, a positive result from the MRS test
combined with a high β-barrel score makes a prediction substantially
stronger. All of the evidence presented in this work validates the
basic principles established in the development of the original
algorithm and has culminated in a highly refined algorithm which is
the most accurate TMBB prediction method to date. Furthermore,
the analysis of the E.coli genome showed that this algorithm can
satisfactorily perform the task of identifying TMBB-encoding genes
in genomic databases. The work presented here showcases the
development of a powerful tool that will be used to identify TMBBs
from the genomes of Gram-negative bacteria. The predictions
will be stored in a database, which may facilitate a much more
rapid expansion in the study of this fascinating structural class of
membrane proteins.
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