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ABSTRACT

Motivation: Designing mathematical tools that can formally describe
the dynamics of complex intracellular processes remains a challenge.
Live cell imaging reveals changes in the cellular states, but current
simple approaches extract only minimal information of a static
snapshot.
Results: We implemented a novel approach for analyzing organelle
behavior in live cell imaging data based on hidden Markov models
(HMMs) and showed that it can determine the number and evolution
of distinct cellular states involved in a biological process. We
analyzed insulin-mediated exocytosis of single Glut4-vesicles, a
process critical for blood glucose homeostasis and impaired in
type II diabetes, by using total internal reflection fluorescence
microscopy (TIRFM). HMM analyses of movie sequences of living
cells reveal that insulin controls spatial and temporal dynamics of
exocytosis via the exocyst, a putative tethering protein complex.
Our studies have validated the proof-of-principle of HMM for cellular
imaging and provided direct evidence for the existence of complex
spatial-temporal regulation of exocytosis in non-polarized cells. We
independently confirmed insulin-dependent spatial regulation by
using static spatial statistics methods.
Conclusion: We propose that HMM-based approach can be
exploited in a wide avenue of cellular processes, especially those
where the changes of cellular states in space and time may be highly
complex and non-obvious, such as in cell polarization, signaling and
developmental processes.
Contact: kresimir.letinic@yale.edu; derek.toomre@yale.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Both fixed and live cell imaging studies often employ only visual
inspection or very limited statistical analysis (such as comparisons
of means) based on the expected effects of some treatment. In static
imaging, a variable of interest is compared under different conditions
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at a single or few time points. Live fluorescence microscopy has
the potential to reveal dynamic changes in a given variable at
multiple time points and under different treatments. The resulting
temporal sequence of data points extracted from a movie sequence
is the starting point for understanding the dynamics of a cellular
process. With the advantages of lower background disturbance and
higher temporal resolution, total internal reflection fluorescence
microscopy (TIRFM) has been widely used for investigating the
dynamics of membrane trafficking events, such as exocytosis of
secretory vesicles (Deng et al., 2009). During exocytosis, a vesicle
generated inside a cell fuses with the plasma membrane. This process
is essential for the delivery of membrane receptors and secreted
substances to the cell surface and thus critical for normal cellular
function in all eukaryotic cells.

Live cell imaging generates data sequences of such complexity
that a precise and meaningful description of a biological process
necessitates a dynamic quantitative approach (Patterson et al., 2008;
Phair and Misteli, 2001; Ronneberger et al., 2008; Sebastian et al.,
2006; Talaga, 2007; Wang et al., 2006). Characterization of organelle
behavior by visual inspection is hampered by the lack of unique
criteria for (and thus user bias in) defining putative ‘functional
cellular states’ and low sampling. It is common to attempt to
formulate these criteria based on measurements of a variable of
interest. To illustrate, in live cell imaging one may wish to determine
how direction and rate of displacement of an organelle changes over
time. A natural approach is to assume that some arbitrary observed
rates or directionalities represent ‘real’ cellular states; e.g. plus-
end motion of a vesicle along a microtubule corresponding to a
kinesin motor and minus-end motion to a dynein. Due to an inherent
variability in noisy biological systems, a manual assignment of two
states will lack flexibility and precision and may fail to characterize
unclear patterns, e.g. if an organelle pauses due to competing motors.
Applying subjective criteria may also result in overlooking important
aspects of system’s dynamics, which are difficult to observe by
naked eye, precluding complete characterization of the underlying
molecular mechanisms. Robust methods are needed that can deal
with data uncertainty, determine correctly the number of states and
reveal the timing of state transitions; such methods have the potential
to precisely describe spatial and temporal dynamics of biological
processes. In our previous work, we focused on the spatial aspect
of exocytosis (Keller et al., 2001; Letinic et al., 2009; Sebastian
et al., 2006): by using end-point analysis, we were able to obtain a
static description of the distribution of exocytic events on the cell
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membrane. Typically, we mapped all fusion events that we observed
and then applied tests to determine whether they were distributed
randomly or clustered into hotspots. While such static analyses are
useful, we are often interested in how biological processes evolve
over time as a result of dynamic changes in cellular environment.
The ability to quantitate dynamic changes in cells and subcellular
organelles is extremely important in both basic research and clinical
studies.

In this study, we demonstrate that dynamic probabilistic networks
called hidden Markov Models (HMMs) can uncover the dynamics of
cellular states based on the sequence of outcomes of an observable
variable, which conveys information about organelle behavior.
Markov and hidden Markov chains can be used to describe processes
whose state changes over time in a probabilistic manner (Rabiner,
1989). While in a regular Markov chain model, the states are
directly observable, in a hidden Markov chain model, the only
observable variable is the one that has an outcome influenced by
the hidden states. Since hidden states have a probability distribution
over possible outcomes of the observed variable, the sequence of
observations contains information about the sequence of hidden
states; thus, an algorithm can uncover hidden states. HMMs, first
described by Baum and others in the 1960s (Baum et al., 1970), have
been used in speech recognition, robotics and later in the analysis
of DNA sequence and some single molecule fluorescence studies
(Rabiner, 1989; Talaga, 2007).

From previous biophysical studies we have identified possible
states of the system, though they are not directly observable, they are
hidden. Two clues will help us uncover the sequence of hidden states:
(i) rules that probabilistically link the outcomes of the observable
variable to a particular state; and (ii) rules that probabilistically
relate the states to one another (e.g. State 2 is more likely to
be directly preceded by State 1). These clues are outcome and
transitional probabilities, respectively, the parameters of HMM.
Outcome probabilities determine the observable outcomes generated
by hidden states, while transitional probabilities determine state
transitions.

Our approach consists of several steps during which we will:
(i) design ‘observable’ data sequences as the input for HMM;
(ii) estimate multiple model’s parameters (assuming 1–10 states)
via HMM algorithms; (iii) get an indication of the optimal HMM
via model selection methods; and (iv) reveal the trends/patterns
in resulting Markov chain state-paths via statistical tools of
logistic and ordinal logit regression. Expectation–maximization
(EM) algorithms are methods for finding maximum likelihood
estimates that are applicable to many statistical problems, including
hidden Markov chains (Baum et al., 1970; Dellaert, 2002; Dempster
et al., 1977; Rabiner, 1989). EM is a description of a class
of related algorithms, not a specific algorithm; the Baum–Welch
algorithm is an EM algorithm applied to HMMs (Baum et al.,
1970). It can compute maximum likelihood estimates and posterior
mode estimates for the transitional and outcome probabilities of an
HMM, when given only observed sequence of points as training.
A dynamic programming algorithm called the Viterbi algorithm is
used for finding the most likely sequence of hidden states, called
the Viterbi path, given the model parameters uncovered via EM
algorithm and given the sequence of observed events (Rabiner, 1989;
Viterbi, 1967).

The object of this study is to find dynamic changes in membrane
trafficking events induced by insulin, the hormone critical for

normal glucose metabolism. Glut4 is an insulin-responsive glucose
transporter, expressed in insulin-responsive tissues such as muscle
and fat; Glut4 is responsible for insulin-regulated glucose uptake
into these tissues (Larance et al., 2008; Muretta et al., 2008; Watson
and Pessin, 2007). In the last decade, the insulin-regulated Glut4
translocation to the plasma membrane has been a major focus
in the diabetes field, as dysregulation can cause type II diabetes,
the most common type. While various modes of insulin signaling
have been implicated in Glut4 translocation, traditional assays
were unable to resolve discrete steps in Glut4 vesicle trafficking,
including membrane tethering and fusion steps of vesicles carrying
Glut4. Several studies proposed that an octameric protein complex,
the exocyst, previously suggested to direct secretory vesicles to
specialized sites at the plasma membrane in various cell types
(Matern et al., 2001; Munson and Novick, 2006; Wang and Hsu,
2006), mediates the effect of insulin by tethering Glut4 vesicles
to the plasma membrane (Chen et al., 2007; Inoue et al., 2003).
Resolving how insulin signaling and the exocyst could control the
spatial–temporal dynamics of where and when Glut4 vesicle fuse
is a critical issue in the diabetes field. In this study, we tested
whether insulin acting through the exocyst complex can dynamically
regulate the spatial sites and/or the rate of Glut4 vesicle exocytosis.
Using TIRF microscopy and the HMM mathematical approach, we
provide direct evidence for such regulation. HMM was critical in
that it allowed us to dissect the number of states involved and
real-time kinetics of the exocytic process before and after insulin
stimulation. Specifically, we modeled dynamic changes in the spatial
distances and time intervals between consecutive fusion events. For
each imaged cell, we obtained a sequence of spatial distances and
another sequence of time intervals from the sequence of movie
frames. We inputed these observed sequences into an HMM and
obtained two sets of parameters, one for the spatial and other
for the temporal model. Based on these parameters, we extracted
spatial and temporal Markov chain, respectively, that represents the
uncovered sequence of ‘hidden’ states, each of which gives rise to
a unique range of outcomes (i.e. spatial distances or time intervals).
Essentially, by using HMMs, we were able to address precisely the
hidden states that regulate trafficking in adipocytes and its regulation
by insulin.

2 METHODS

2.1 Cell culture and RNAi treatment
3T3-L1 Glut4-GFP cells were cultured, differentiated and stimulated
as previously described. Briefly, 3T3-L1 preadipocytes were grown to
confluence in dulbecco’s modified eagle’s medium (DMEM) containing
10% fetal bovine serum (FBS), L-Glutamine and Pen/Strep (Medium A)
at 37◦C in 5% CO2. Two-day post-confluence (Day 0) differentiation was
induced with methylisobutylxanthine (0.5 mM), dexamethasone (0.25µM)
and insulin (1µg/ml). After 3 days, cells were replated on Mattek dishes,
serum starved overnight and switched to an imaging buffer (NaCl, 2.5 mM;
KCl, 2 mM; CaCl2, 1.3 mM; MgCl2, 10 mM; HEPES, 7.4). We targeted Sec8
using RNAi; three different siRNAs (25mer double-stranded ‘stealth’design,
Invitrogen) were first evaluated by double transfecting 293 cells with rat
Sec8-GFP and siRNAs. siRNAs that decreased the newly synthesized Sec8-
GFP (exogenous) were then screened by western blotting for knockdown
of endogenous Sec8 in adipocytes. Quantification showed around 70%
knockdown. For RNAi experiments, cells were transfected twice (3 and
1 days before differentiation) as preadipocytes, with Sec8 or scrambled RNAi
(100 nM).
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2.2 TIRF imaging
TIRFM images were acquired using an inverted microscope equipped
with a 1.45 NA 60× TIRFM lens (Olympus, Center Valley, PA), back-
illuminated electron-multiplying charge-coupled device camera (512×512,
16-bit; iXon887; Andor Technologies) and controlled by Andor iQ software
(Andor Technology, South Windsor, CT). Excitation was achieved using a
488 nm line of argon laser, under continuous exposure and acquired at 2 Hz.
The calculated evanescent field depth was 100 nm. Cells were imaged before
and after insulin stimulation (0.4µM final concentration) at 37◦C for around
15 min. TIRFM data were uploaded into a customized Matlab-based software
(Natick, MA) for the detection of exocytic vesicles. All vesicle information
(time, position) was stored and used to generate temporal and spatial maps
of vesicle docking and fusion.

2.3 Statistical modeling
2.3.1 Data sequences For every cell, different exocytosis (events)
are manually recorded from the image sequences. In our analysis, each
exocytosis event is defined by its location at the plasma membrane and
its occurrence time. If N fusions are observed during the time interval
[0,T ], our data are represented by the set X ={(xi,yi,ti)}1,...,N . The data
are post-processed to obtain new sequences composed of measured spatial
(Euclidean) distance and time interval (inter-arrival time, t), respectively,
between fusion events. For temporal analysis (first sequence), we measured
inter-arrival times between consecutive fusion events, i.e. Ot = (Xt+1 −
Xt)1,...,N−1. We then averaged in groups of 10 consecutive events to minimize
the impact of outliers, obtaining a new sequence yt =∑t

k=t−9 Ok/10. In the
same way for spatial analysis (second sequence), we averaged the distances
between a designated arbitrary event and 10 events that immediately
preceded it. The resulting sequence contained (N −10) terms for a total of
N events recorded (typically >200–300 events per sequence). Thus, the first
10 events represent a ‘warming interval’ and the observed sequence {y}x

starts with the event 11. Once we obtained the sequence of distances or
inter-arrival times, the range of values was divided into 10 bins, such that
the smallest range of values was in bin 1. In this way, each hidden state can
assign probability to 10 possible outcomes (= bins).

2.3.2 The HMM We considered a hidden Markov chain model for
(X,Y )= (X0,...,Xn,Y0,...,Yn), where positive real numbers Yi represent
either the observed quantized values of spatial distances or inter-arrival times,
respectively, between fusion events, and the random variables Xi are hidden
cellular states. Y-sequences were generated as described in the previous
section. X-sequence of hidden states was uncovered from the Y-sequence
using HMM algorithms.

The model was parameterized by the parameter space θ = (ξ, A, B); ξ is
the distribution of X0, matrix A is the probability transition matrix of the
hidden chain X (with elements A(k,l)=P{Xi+1 = l|Xi =k},k,l∈S, S is the
state space of X); matrix B describes the transitions from Xi to Yi (with
elements B(k,l)=P{Yi = l|Xi =k},k ∈S,l∈Q, Q is the state space of Y ).
The parameters of the model were determined using an EM algorithm that
iteratively searches for θ that maximizes the likelihood function L(θ)=pθ(y),
i.e. the probability of data as a function of the parameters of the model
{ξ,A,B}. The sequence of hidden states was then reconstructed using the
Viterbi algorithm.

2.3.3 EM algorithm The goal of the algorithm is to find θ maximizing
L(θ). An EM algorithm produces a sequence of θ1,θ2,...,θn that increase
in likelihood (L(θ0)≤L(θ1)≤ ...≤L(θn)) (for EM steps, including forward–
backward algorithm, see Rabiner, 1989). The obtained model parameters
represent the expected values of A and B matrix elements conditional on
the data. Starting with θ0, the new parameter was taken to be the θ1 and the
procedure was repeated 200 times. The whole cycle was repeated 50 times to
minimize the danger of converging to a local instead of global maximum of
the likelihood function (the confidence intervals for transitional probabilities
were obtained). We calculated standard errors of the transitional probabilities

by using the values of transitional probabilities for all the cells included in the
analysis. Confidence intervals were obtained from standard errors of these
parameters.

We compared HMMs that assume different numbers of states using AIC
(Akaike information criterion). AIC can be seen as the goodness of fit
minus the complexity of the model and it gives a good indication of the
optimal model. AIC measures the fit of an estimated model and is defined as
log(Lk)−|k|, where log(L) is the log-likelihood of the model evaluated at the
MLE (maximum likelihood estimator) and k is the number of the degrees of
freedom. The value of log(L) is given in the output of the HMM, while the
value of k represents the number of free elements in the matrices ξ, A and B.
Clearly, k increases as the number of hidden states increases. We chose the
model with the maximal AIC (see Supplementary Table 1).

2.3.4 The Viterbi algorithm Once we selected the best HMM, we obtained
the most likely sequence of hidden states that generated the observed
outcomes sequence. Multiple sequences of states (paths) can lead to a given
state, but one is the most likely path to that state, called the ‘survivor
path’. This is a fundamental assumption of the algorithm because the
algorithm will examine all possible paths leading to a state and only keep
the one most likely. The best sequence of hidden states maximizes the joint
probability of hidden states and observations, P(X,y)=Pθ(X0 =x0,X1 =
x1,...,Xn =xn,Y0 =y0,Y1 =y1,...,Yn =yn). For steps of the algorithm, see
Rabiner (1989).

In the current study, the hidden path represents Markov chain that best
describes the spatial and temporal changes of vesicle fusion events in any
particular cell. In particular, Markov chain includes changes in the cellular
states induced by insulin, specifically at 0.4 µM final concentration. The
moment of insulin addition within each Viterbi path is indicated by an arrow.
In the spatial chain, different states give rise to different ranges of distances
between fusion events. In the temporal chain, different states give rise to
different ranges of time intervals between fusion events. Logistic and ordinal
logit regression were used to estimate the odds ratios for Markov chain state
paths (implemented in R).

2.3.5 Spatial statistical methods We previously developed an approach
based on spatial statistics methods for use in live cell imaging (Sebastian
et al., 2006). The central concept is distinguishing between a spatial Poisson
process, in which the probability of an event is the same at all locations, and
a clustered process, in which the location of points depends on the location
of nearby points. The relevant statistic is the Ripley K-function, or K(r)
(Diggle, 2003; Ripley, 1981, 1988). We used L(r), because it is a variance-
stabilized version of K(r). To test how far the observed distribution of fusion
events is from Poissonian, we compared the L-plot of an observed process
to the range (envelopes) of L plots of ∼1000 Poisson processes generated
by Monte Carlo simulations using R statistical program. The Monte Carlo
simulation produced a random pattern of fusion event locations across the
cell area using the observed spatial intensity estimate (number of events per
area). The L-function was then calculated for the observed cell and each
simulated Poisson process. The algorithm positions a circle with radius r
on any given event and counts the neighboring events inside the circle; it
repeats this for different radius sizes and then calculates and plots L(r) as
a function of r. The higher the level of clustering, the higher the value of
L(r) will be. L-plots of cells with spatial clustering will be located above the
L-plots of cells with Poissonian distributions of events. A bootstrap method
was used for estimating standard errors and confidence intervals and for the
comparison of different groups.

3 RESULTS AND DISCUSSION
The methodology described has been applied to the study of a
complex problem in live cell imaging, the study of insulin-regulated
exocytosis (Larance et al., 2008; Watson and Pessin, 2007). The
goal was to use our HMM methodology to characterize precisely
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Fig. 1. Imaging of exocytosis in adipocytes. (a) TIRFM image of an
adipocyte (above). An example of a Glut4 vesicle is framed. A sequence
of images shows a fusion event (below). Numbers are shown in seconds.
When a vesicle enters the evanescent field and tethers to the membrane
(asterisk), it increases in fluorescence intensity and appears as a bright spot.
As it fuses (arrow), the dye increases in intensity and rapidly spreads, yielding
a characteristic flash. (b) A western blot shows an expected decrease of Sec8
by RNAi knockdown on the level of endogenous Sec8 protein (tubulin serves
as a loading control). (c) Spatial maps of fusion events in a control and
a Sec8-depleted (Sec8D) cell. (d) Point processes simulated using Monte
Carlo methods and an example of clusters observed in the control cells after
insulin stimulation (on right). Fusion events appear in different shades of
gray because the time axis (removed because it was not relevant) was color-
coded. The observed clusters resemble simulated spatial clusters. Several
visually apparent clusters are circled.

the spatial temporal dynamics of membrane trafficking events
controlled by insulin. Insulin regulates the number of Glut4 glucose
transporters on the cell surface by stimulating Glut4 vesicles to
exocytose at the plasma membrane (Larance et al., 2008; Watson and
Pessin, 2007), a process facilitated by the exocyst protein complex
(Chen et al., 2007; Inoue et al., 2003; Matern et al., 2001; Munson
and Novick, 2006; Wang et al., 2006).

Rigorous analysis requires monitoring and analyzing exocytosis
at a single vesicle level. We used an adipocyte cell line that
stably expresses myc-Glut4-GFP and TIRFM to visualize single
vesicle fusion (Fig. 1a). A custom-Matlab program was developed to
facilitate the identification of vesicle fusion at the plasma membrane
by an expert. Spatial–temporal maps of vesicle fusion sites were
recorded for control cells and cells in which we knocked down
a major exocyst subunit, Sec8 (Fig. 1b). The observed data Oi
was a tuple Oi =xi,ti of position and fusion time over the imaged
sequence. Visual inspection of cumulative fusion maps suggested
that the distribution of fusion events changes from relatively
dispersed to more clustered upon insulin stimulation (Fig. 1c).
Nonetheless, these observations did not account for time evolution,
which makes it difficult to assess the sample since the total number
of fusions increases over time.

As a proof-of-principle study of the power and utility of HMM
in live cell imaging of an important topical issue, we applied HMM
to insulin-regulated exocytosis (Larance et al., 2008; Watson and
Pessin, 2007). The goal of the present study was to characterize the
number and evolution of underlying hidden spatial and temporal
states of Glut4 vesicle trafficking events controlled by insulin and
exocyst complex protein, Sec8.

To validate and quantize these changes in real time, we designed
an HMM approach (Fig. 2). In general, our approach consists of the
following steps: (i) calculation of the observed sequence; (ii) EM
algorithm for identifying model parameters, which maximize the
likelihood of the observed sequence; (iii) AIC-based model selection
method to suggest the optimal number of states in the model; and
(iv) the Viterbi algorithm to reveal the most likely sequence of
hidden states.

We first focused on the spatial distribution of Glut4 vesicle
exocytosis and its change upon insulin stimulation. A critical issue
and starting point for this analysis were conceiving an observable
variable that conveys information about the spatial distribution of
vesicle fusion. As more vesicle events occur over time, the distance
between neighboring events decreases. This could significantly
distort the data if we looked at the distance between a new
event and its nearest neighbor. Instead, we considered the distance
between a given event and a small fixed number of preceding
events (Section 2); this metrics does not depend on the overall
density of events. When spatial distribution fluctuates between
less and more clustered, this parameter fluctuates between larger
and smaller values, respectively. We then focused on the rate of
Glut4 vesicle exocytosis and its change upon insulin stimulation.
The parameter of interest was inter-arrival time, or time interval
between consecutive events, which becomes shorter when the rate of
exocytosis increases (Section 2). In the case of both spatial distances
and inter-arrival times, we binned the obtained values of parameters
into 10 bins (bin 1 = shortest subrange of values; bin 10 = longest
subrange of values; this gave 10 possible outcomes of observable
variables distance and time interval). Hidden states will assign
some probability between 0 and 1 to each of these bins/outcomes.
An observed sequence and its associated hidden Markov chain is
shown in Figure 2.

We started our analysis with the spatial data. In many biological
processes, the correct number of hidden states is unknown, even
though one may hypothesize different models based on accumulated
knowledge. We hypothesized that insulin recruits the exocyst at
the cell membrane and thus facilitates tethering of Glut4 vesicles
to specialized hot spots, which are active zones near insulin
receptors. The simplest model would be a two-state model, in
which one state reflects random distribution and another state
reflects more clustered spatial distribution of events (hot spots).
Alternatively, spatial regulation could involve additional molecular
mechanisms and thus more than two states. We ran several models,
assuming 1–10 states (Fig. 3a). For each model (number of states),
we tried dividing the observed values into different number of
bins (2–20 bins; Supplementary Table 1). Smaller numbers of bins
resulted in higher AIC values; however, the choice of binning did
not affect the selection of the optimal number of hidden states.
Model selection criterion (AIC) indicated that the two-state model
is the optimal one (Supplementary Tables 1 and 2), regardless of
the number of bins, so we focused specifically on the parameters of
that model (Fig. 3b). We decided to work with 10 bins because 10
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(a) (b)

Fig. 2. A diagram of the approach to model dynamics of exocytosis via HMM. (a) The algorithm: in the first step, a map of fusion events is obtained by
using a custom-made Matlab program. The ‘observed’ sequence of Euclidean distances is derived from the spatial coordinates of mapped fusion events.
This sequence served as input into the EM algorithm, which revealed the most likely model parameters, outcome and transitional probabilities. Finally, the
Viterbi algorithm revealed the most likely sequence of hidden states, based on the model parameters discovered in the previous step. (b) Two-state HMM of
a control adipocytes: HMM output (the hidden chain and probabilities of being in State 1 and 2 at any time point) is superimposed on the observed sequence
of spatial distances. X-axis shows fusion events ordered in temporal sequence. Bins 1–10 (Y -axis on the left side of the graph) represent subranges of the
observed spatial distances between consecutive fusions. There are 10 bins, with bin 1 representing the shortest distances and bin 10 the longest distances. The
posterior probabilities (probability of chain being in State 1 or 2, given the observed sequence) are shown with the corresponding Y -axis on the right side of
the graph that ranges from 0 to 1. Notice that when the probability that the chain is in State 2 equals zero, the probability that the chain is in State 1 equals
one. This makes sense since the chain cannot be in both states simultaneously. In addition, notice that for the most part, the hidden chain is in State 2 when
the probability that the chain is in State 2 is bigger than the probability that the chain is in State 1.

bins provide sufficient detail about the distribution of outcomes of
hidden states. Even though AIC values are the highest when only
two bins are used, two bins results in only two outcomes, which is a
very crude representation of the observed values of spatial distances.
We calculated the following parameters: (i) transitional probabilities
indicated a relatively small probability of switching between the two
states; (ii) outcome probabilities indicated that ‘State 1’ favors, or
gives more probability to bins with larger spatial distances (we call
it unclustered or ‘UC’ state), while ‘State 2’ favors bins with small
values of distances (we call it clustered or ‘CL’ state, as clusters
become visible after insulin). Thus, at time points when a cell is in
UC state, we will observe longer distances between consecutive
fusion events and when a cell is in CL state, we will observe
shorter distances and clustering of events. We calculated confidence
intervals for the transitional probabilities, especially because of the
small values obtained for the probabilities of switching between the
states and the possibility that the intervals contain zero probability
of switching. Equivalently, we wanted to exclude the possibility that
confidence intervals for the probabilities of staying in the same state,
i.e. not switching, include 1, which is 100%. The mean probability of
not switching from UC state was 96.2% (at α=0.001, the confidence
interval is 94.1–98.4%). The mean probability of not switching
from CL state is 94.2% (at α = 0.001, the confidence interval is
90.8–97.7%). These findings strongly support that the two states of
the Markov chain communicate with each other.

Finally, we obtained the sequence of hidden states for the two-state
model and compared hidden chains of control and Sec8-depleted
cells. Remarkably, the probability that the hidden chain is in ‘State 2’

dramatically increases, from 5.2% to 72%, after insulin stimulation
(equivalently, the odds of being in State 2 highly significantly
increase, P<0.001; Fig. 3c). This switch occurs rather rapidly,
within a few seconds after the stimulation, and commonly persists
for up to ∼10 min (i.e. until the end of the movie), although in some
cases there is a switch back to ‘State 1’, possibly because the effect
of insulin is transient. Sec8 depletion abolishes this effect, as the
odds that the hidden chain is in ‘State 2’ do not change significantly
after insulin stimulation (P=0.8; Fig. 3c). This indicated that Sec8
and thus the exocyst play a role in the spatial regulation of Glut4
exocytosis by insulin and that the effect of insulin is rapid and
transient.

We next analyzed the temporal data. Insulin plays a role in
the release of vesicles from the intracellular pool, allowing them
to travel toward the cell membrane where they fuse. Insulin also
recruits the exocyst at the cell membrane and presumably facilitates
tethering of Glut4 vesicles to the membrane. The simplest model
would be a two-state model, in which one state reflects a slow rate of
events (mostly before insulin) and another state reflects a faster rate
(mostly after insulin). However, a more realistic model would take
into account several levels of regulation. We hypothesized at least
two insulin-induced states, both favoring relatively fast rate of fusion
events (fast rate = short intervals). The kinetics of the molecular
switch activated by insulin at the cell membrane (presumably the
exocyst) differs from the kinetics of the switch activated deep
inside the cell (Muretta et al., 2008; Watson and Pessin, 2007). The
complex interplay between these two mechanisms should allow us
to dissect several insulin-induced states. We ran several HMMs,
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Fig. 3. HMM of Glut4-exocytosis: spatial regulation. (a) HMMs assuming 1 (dark green), 2 (blue), 3 (light green), 4 (cyan) or 5 (yellow) states, from a control
cell. Plots of hidden Markov chain state paths corresponding to each model are shown. The x-axis contains both the fusion event number (F # ) and time in
seconds; the vertical arrow shows the time of insulin addition. The individual states of the optimal model (red asterisk), i.e. a two-state model, are labeled on
the right of the plot. Arrowheads mark portions of the state-path when the chain is in State 2, the dominant state after insulin stimulation. (b) Parameters of the
two-state model shown in (a). The two states and their transitional probabilities are shown in the upper right corner. The graph on the left shows probabilities
that the two states assigns to different bins (graph bars and states of the model are color-coded). (c) State-paths of representative control and Sec8-depleted
cells. The vertical arrow shows the moment of insulin addition. The graph on the far right shows the odds ratios, i.e. the factor by which the odds of being in
‘State 2’ change when we add insulin to cells. The odds ratio for control cells is around 46 for control (C) cells and ∼1 for Sec8-depleted (S8) cells.

as before (Fig. 4a and b). Model selection methods indicated that
in control cells, a four-state model was optimal (Supplementary
Table 2) so we focused specifically on the parameters of that
model (Fig. 4c). Transitional probabilities indicated relatively small
probabilities of switching between any pair states, but they were
still higher than those observed in the spatial model. Outcome
probabilities indicated that States 1 and 2 favor larger values of
time intervals, i.e. slower fusion rates (State 1 being the slowest),
while States 3 and 4 favor smaller values of time intervals and thus
faster rates (State 4 being the fastest). Upon insulin stimulation,
the odds of any combination of states favoring shorter intervals
(e.g. State 4) versus the remaining states (States 1–3) are ∼2.4
greater (P<0.001; Fig. 4d). This is in agreement with the notion
that insulin stimulates Glut4 vesicle fusion. As in the case of spatial
regulation, this switch occurs rather rapidly, within a few seconds
after the stimulation, and commonly persists for up to ∼10 min.
Interestingly, Sec8 depletion did not completely abolish the effect
of insulin, as it did in the case of spatial regulation. The effect of
Sec8-depletion was two-prong. First, the optimal model had only
three states: State 2 favored the longest time intervals, i.e. the
slowest rates, State 1 favored the medium-range intervals and State 3
favored the shortest intervals and thus the fastest rate (state numbers

are arbitrary). Secondly, the odds of any combination of states
favoring shorter intervals (e.g. States 1 and 3 combined) versus the
remaining states (State 2) were only ∼1.7 greater, suggesting smaller
impact of insulin than in control cells. The two effects strongly
suggest that the exocyst plays an important role in the regulation
of Glut4 vesicle fusion rate. The loss of one state presumably
corresponds with the loss of one site of insulin action, i.e. at the
cell membrane. In conclusion, HMM was able to dissect various
steps of the temporal process, including the loss of one such step
in treated cells, based on a single observable variable, i.e. the time
interval.

To corroborate our findings obtained using HMM, we used
spatial statistical methods based on L-function (Diggle, 2003;
Ripley, 1988) that we applied to the problem of exocytosis in
previous work (Sebastian et al., 2006). We analyzed cumulative
spatial maps of fusion events obtained by plotting separately all
events before and after insulin stimulation, respectively. In this
case, we disregarded the temporal information and only considered
spatial coordinates of fusion events. Using Monte Carlo methods,
we compared the obtained maps with simulated maps having
completely random distribution of points. We established that the
exocytic spatial point process before insulin stimulation is similar
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Fig. 4. HMM of Glut4-exocytosis: temporal regulation. (a and b) HMMs assuming 2 (blue), 3 (green), 4 (cyan) or 5 (yellow) states, from a control cell
(a) and a Sec8-depleted cell (b). Plots of state-paths corresponding to various models are shown (axes/labels are as in previous figure). The individual states
of the optimal model (red asterisk) are labeled on the right of the plot (a four-state model for the control cell and a three-state model for the Sec8-depleted
cell). In both cases, arrowheads point to states which favor short intervals between events and which are dominant after insulin. (c and d) Parameters of
the four-state model (c) and the three-state model (d), shown in (a) and (b), respectively. In both cases, Markov model with the states involved and their
transitional probabilities is shown on the right and the graph with the outcome probabilities is on the left (graph bars and model states are color-coded). The
graph on the far right shows the odds ratios, i.e. the factor by which the odds of being in states that favor shorter intervals increase when we add insulin to
cells (see main text).

to random/Poisson process (Fig. 5), in which the probability of
an event is the same at all locations and there is no spatial
dependence among events. However, insulin causes prominent
spatial clustering (L-function plots become significantly different
from random/Poisson; bootstrap P-value = 0.01). Sec8-depletion
prevents insulin-induced spatial clustering (most L-plots after
insulin stimulation have a random/Poisson distribution, and are not
significantly different; bootstrap P-value is 0.96) (Fig. 5). Static
end-point analysis of spatial maps thus supports the notion of
spatial clustering induced by insulin. Such regulation of fusion
sites presumably links insulin-receptor signaling at the membrane
to membrane trafficking events. The physiological significance of
spatial regulation remains to be established, but it may promote the
fidelity of insulin response since exocyst disturbance impairs glucose
uptake.

Since the goal of this work was to validate a new approach based
on HMMs, we chose a system in which we could make expectations
about the behavior of the hidden process (hidden chain), as the
moment of insulin addition served as an external reference point.

We summarize the benefits of using HMMs for analyzing
‘subcellular’ dynamics:

(1) We replace subjective arbitrary criteria with a precise
statistical model for identifying functional cellular states.

(2) We replace noisy sequence of observations, in which it may be
hard to discern any obvious pattern, with a model with defined
number of states, thus making rigorous analysis possible.

(3) We can quantitatively interpret real-time dynamics of cellular
processes, while common statistical approaches analyze only
end-points of an experiment.

(4) We can link distinct molecules to different aspects of the same
process. For example, we showed that manipulating Sec8
affects the behavior of the spatial and temporal Markov chains
in different ways.

(5) We can correlate hidden Markov chains of more than one
process (e.g. in multi-color imaging) and uncover previously
unknown links between various processes.
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Fig. 5. A comparison of L-curves of control and Sec8-depleted cells.
(a) The scheme illustrates the principle of L-function estimation. The
numbers are counts of events within distance r from an arbitrary event
(marked by the arrow). The number increases as the radius increases. This
counting is repeated for every fusion event. L-function values are estimated
for each radius size. (b) L-curves obtained from the control and Sec8-
depleted cells shown in Figure 1 (plotted as a function of radius r). The
lined area delimits the range of L-function values obtained from a set of
simulated random/Poisson point processes (labeled randomness). There are
two curves for each cell, one obtained before and one obtained after insulin
stimulation. Insulin promotes an upward shift of the L-curve above the
envelopes of randomness only in the control cells (arrow). (c) The range
of L-function values for control and Sec8-depleted cells before and after
insulin stimulation. Notice that ‘before’ and ‘after’ areas do not overlap in
the control, but they mostly overlap in the Sec8-depleted group [the overlaps
are labeled with dark blue (control) and dark red (sec8-depleted) solid colors,
respectively].

4 CONCLUSIONS
We presented here a methodology based on HMMs and applied it to
the problem of insulin-regulated exocytosis. The method provided
new insight into the spatial and temporal regulation of Glut4 vesicle
exocytosis and exocyst role in determining vesicle fusion sites at
the plasma membrane. While the rainbow of fluorescent proteins has
revolutionized the exploration of biology, the extraction and analysis
of rich live cell datasets remains a new expanding area. Our results
show that HMMs are beneficial in relatively simple cellular systems
and their usefulness in other, more complex processes remains to be
validated. We suggest that HMM can be exploited in a wide avenue
of cellular processes, especially those where the changes of a state in
space, time or both may be ill-defined by conventional criteria, such
as those that occur in cell polarization, signaling and developmental
processes.

AUTHOR CONTRIBUTIONS
K.L. and D.T. designed research, K.L. and A.B. designed and
implemented the HMM, K.L. and R.S. did statistical data analysis,
K.L. wrote the article with input from A.B. and D.T.

ACKNOWLEDGEMENTS
We thank A. Barron, P. Rakic, T. Koleske and Inhee Chung for
helpful discussions, J. Bogan for suggestions on the paper and
experimental work and for providing the cell line, members of
J. Bogan’s lab for their help with adipocyte protocols, all members
of D. Toomre’s lab for suggestions, S.C Hsu for providing antibodies
against exocyst proteins and R.H. Scheller for providing Sec8-
GFP. In addition to the papers in the reference list, the authors
also referred Prof. J. Cheng’s manuscript in preparation, ‘Stochastic
Processes’. K.L. is a predoctoral fellow of the Howard Hughes
Medical Institute.

Funding: National Institute of Health Award (1DP2OD002980-01
and YALE DERC pilot grant to D.T.).

Conflict of Interest: Patents are being filed on these method.

REFERENCES
Baum,L. et al. (1970) A maximization technique occurring in the statistical analysis of

probabilistic functions of Markov chains. Ann. Math. Stat., 41, 164–171.
Chen,X.-W. et al. (2007) Activation of rala is required for insulin-stimulated glut4

trafficking to the plasma membrane via the exocyst and the motor protein myo1c.
Dev. Cell, 13, 391–404.

Dellaert,F. (2002) The expectation maximization algorithm, git-gvu-02-20. Technical
report, College of Computing, Georgia Institute of Technology.

Dempster,A.P. et al. (1977) Maximum likelihood from incomplete data via the em
algorithm. J. R. Stat. Soc. Ser. B (Methodol.), 39, 1–38.

Deng,N. et al. (2009) Image processing for fusion identification between the glut4
storage vesicles and the plasma membrane. J. Signal Process. Syst., 54, 115–125.

Diggle,P. (2003) Statistical Analysis of Spatial Point Patterns, 2nd edn. Arnold, London.
Inoue,M. et al. (2003) The exocyst complex is required for targeting of glut4 to the

plasma membrane by insulin. Nature, 422, 629–633.
Keller,P. et al. (2001) Multicolour imaging of post-Golgi sorting and trafficking in live

cells. Nat. Cell. Biol., 3, 140–149.
Larance,M. et al. (2008) The glut4 code. Mol. Endocrinol., 22, 226–233.
Letinic,K. et al. (2009) Exocyst is involved in polarized cell migration and cerebral

cortical development. Proc. Natl Acad. Sci. USA, 106, 11342–11347.
Matern,H.T. et al. (2001) The sec6/8 complex in mammalian cells: characterization of

mammalian sec3, subunit interactions, and expression of subunits in polarized cells.
Proc. Natl Acad. Sci. USA, 98, 9648–9653.

Munson,M. and Novick,P. (2006) The exocyst defrocked, a framework of rods revealed.
Nat. Struct. Mol. Biol., 13, 577–581.

Muretta,J.M. et al. (2008) Insulin releases glut4 from static storage compartments into
cycling endosomes and increases the rate constant for glut4 exocytosis. J. Biol.
Chem., 283, 311–323.

Patterson,G.H. et al. (2008) Transport through the golgi apparatus by rapid partitioning
within a two-phase membrane system. Cell, 133, 1055–1067.

Phair,R.D. and Misteli,T. (2001) Kinetic modelling approaches to in vivo imaging.
Nat. Rev. Mol. Cell Biol., 2, 898–907.

Rabiner,L.R. (1989) A tutorial on hidden Markov models and selected applications in
speech recognition. IEEE J. Proc., 77, 257–286.

Ripley,B. (1981) Spatial Statistics. Wiley, Chichester.
Ripley,B. (1988) Statistical Inference for Spatial Processes. Cambridge University

Press, Cambridge.
Ronneberger,O. et al. (2008) Spatial quantitative analysis of fluorescently labeled

nuclear structures: problems, methods, pitfalls. Chromosome Res., 16, 523–562.
Sebastian,R. et al. (2006) Spatio-temporal analysis of constitutive exocytosis in

epithelial cells. IEEE/ACM Trans. Comput. Biol. Bioinform., 3, 17–32.
Talaga,D.S. (2007) Cocis: Markov processes in single molecule fluorescence.

Curr. Opin. Colloid Interface Sci., 12, 285–296.
Viterbi,A. (1967) Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE J. IT , 13, 260–269.
Wang,S. and Hsu,S. (2006) The molecular mechanisms of the mammalian exocyst

complex in exocytosis. Biochem. Soc. Trans., 34, 687–690.
Wang,Y. et al. (2006) From imaging to understanding: frontiers in live cell imaging,

Bethesda, MD, April 19–21, 2006. J. Cell. Biol., 174, 481–484.
Watson,R.T. and Pessin,J.E. (2007) Glut4 translocation: the last 200 nanometers. Cell

Signal, 19, 2209–2217.

2036


