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ABSTRACT

Motivation: Splice variation plays important roles in evolution and
cancer. Different splice variants of a gene may be characteristic
of particular cellular processes, subcellular locations or organs.
Although several genomic projects have identified splice variants,
there have been no large-scale computational studies of the
relationship between number of splice variants and biological
function. The Gene Ontology (GO) and tools for leveraging GO, such
as GoMiner, now make such a study feasible.
Results: We partitioned genes into two groups: those with numbers
of splice variants ≤b and >b (b=1,...,10). Then we used GoMiner
to determine whether any GO categories are enriched in genes with
particular numbers of splice variants. Since there was no a priori
‘appropriate’ partition boundary, we studied those ‘robust’ categories
whose enrichment did not depend on the selection of a particular
partition boundary. Furthermore, because the distribution of splice
variant number was a snapshot taken at a particular point in time,
we confirmed that those observations were stable across successive
builds of GenBank. A small number of categories were found for
genes in the lower partitions. A larger number of categories were
found for genes in the higher partitions. Those categories were largely
associated with cell death and signal transduction. Apoptotic genes
tended to have a large repertoire of splice variants, and genes with
splice variants exhibited a distinctive ‘apoptotic island’ in clustered
image maps (CIMs).
Availability: Supplementary tables and figures are available
at URL http://discover.nci.nih.gov/OG/supplementaryMaterials.html.
The Safari browser appears to perform better than Firefox for these
particular items.
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1 INTRODUCTION
Alternative splicing generates enhanced diversity in the
transcriptome relative to the genome, and various reports
have suggested that the percentage of genes exhibiting alternative
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splicing may be as high as 94% (Boue et al., 2003; Lee and Roy,
2004; Wang et al., 2008). In the present study, we found alternative
splicing for ∼84% of those human genes that had HGNC symbols
(Ashburner et al., 2000a; Gene Ontology Consortium, 2006; Little,
1998; McKusick, 1989; Wain et al., 2002). Numerous reviews
describe alternative splicing in general (Black, 2000; Breitbart et al.,
1987; Graveley, 2001; Modrek and Lee, 2002), mechanisms of
alternative splicing (Black, 2003; Smith et al., 1989), and the roles
played by alternative splicing in particular biological processes and
diseases (Black, 1998; Black and Grabowski, 2003; Blencowe,
2000; Burgess et al., 1999; Caceres and Kornblihtt, 2002; Cooper
and Mattox, 1997; Garcia-Blanco et al., 2004; Grabowski and
Black, 2001; Jiang and Wu, 1999; Schutt and Nothiger, 2000; Xu
et al., 2002). Splice isoforms can have different degrees of activity
(Zhang et al., 2006) or can perform radically different functions
(Fernandez-Real et al., 2006). Splice variation plays important
roles in cancer and in evolution (Kriventseva et al., 2003).

Although several genomic studies have attempted to identify
splice variants (Carninci et al., 2005; Tress et al., 2007), we are not
aware of any computational studies in which the global relationship
between the number of splice variants and biological function of a
gene has been analyzed. The Gene Ontology (GO; Ashburner et al.,
2000b; Gene Ontology Consortium, 2006) and tools like GoMiner
(Zeeberg et al., 2003) and High-Throughput GoMiner (HTGM;
Zeeberg et al., 2005) now make such studies feasible.

Using those resources, we attempted to determine whether any
GO categories were enriched in classes of genes with particular
ranges of splice variant number. That is, we tested the null hypothesis
that there is no correlation between the number of characterized
splice variants and the GO classification, starting with no a priori
expectation that there would be even one such category. Neither
did we have any expectation as to whether any enriched categories
would be related to one another nor whether they would reflect any
particular biological process(es).

In fact, enriched categories did appear. Many of those categories
were closely related to one another, and categories relevant to
cancer were particularly prominent among them. Specifically, we
found a particularly strong global relationship for genes involved in
apoptosis, in that genes related to apoptosis and signaling tended
to have large repertoires of splice variants. A specialized form
of clustered image map (CIM) highlighted GO categories with
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relatively high numbers of splice variants in the form of distinctive
‘apoptotic islands.’

2 METHODS

2.1 Data acquisition
Data for computing the number of splice variants per gene were acquired
from the Evidence Viewer Database (EVDB; Kahn et al., 2006) and http://
www.tigerteamconsulting.com/SpliceCenter/FAQ_Database.jsp. EVDB is
an exhaustive, non-redundant relational database of all known genes
and their splice variants that we have developed, based on the NCBI
Gene Evidence Viewer. EVDB allows high-throughput querying of splice
variant data. The complete description of EVDB and the methods used
to create it are given in Kahn et al. (2006). The technical details of
the construction of EVDB for builds 35 and 36 are given in Kahn
et al. (2006) and http://www.tigerteamconsulting.com/SpliceCenter/FAQ_
Database.jsp, respectively. Supplementary Table S1 shows the versions of
the relevant data sources that were used.

2.2 High-Throughput GoMiner (HTGM)
GoMiner (Zeeberg et al., 2003) is a tool for biological interpretation of
‘omic’data, including data from gene expression microarrays. It leverages the
GO database (http://www.geneontology.org/GO.downloads.database.shtml)
to identify ‘biological processes,’ ‘molecular functions,’ and ‘cellular
components’ represented in a list of genes. HTGM (Zeeberg et al., 2005),
which was used for many of the analyses reported here, is an enhancement
of GoMiner that efficiently performs the computationally challenging task of
automated batch processing of an arbitrary number of such gene lists. A GO
category is considered to be enriched if the number of changed genes that
HTGM assigned to it is statistically significantly greater than the number
expected by chance. A category is considered to be significant if its false
discovery rate (FDR) is less than or equal to a given threshold (typically
0.10). Briefly, GoMiner computes a one-tail Fisher Exact P-value that is
based on a 2×2 contingency table representing ‘in GO category’ and ‘not in
GO category’versus ‘in partition’and ‘not in partition’. The FDR is estimated
by a comparison of the distribution of P-values for the real data and for
multiple determinations of randomized data. See Zeeberg et al. (2003, 2005)
for detailed discussions of GoMiner and HTGM, including calculations of
statistical significance. The parameters used in all HTGM analyses are listed
in Supplementary Table S2. Only genes that had HGNC symbols and GO
annotations were used in our studies.

2.3 Clustering with genesis
CIMs were first introduced in Weinstein et al. (1997) and were produced here
with the Genesis program (Sturn et al., 2002). We selected the Euclidean
distance metric and average linkage for hierarchal clustering. To facilitate
visualization, we implemented a recently added feature of GoMiner that
removes large, generic categories from all CIMs.

2.4 Directed acyclic graph (DAG) representation of the
robust categories

A leaf category is defined as a robust category that is not the parent of another
robust category. A DAG segment is constructed for each leaf category, with
the leaf category as the sole leaf node of that segment. The GO database
is directly queried by SQL to determine the DAG structure for each leaf
category. Although the vertical position of each node in the segment is pre-
determined, the horizontal position is arbitrary. The internal layout for each
segment is optimized by interchanging the horizontal position of the nodes
to generate the shortest overall length of connecting lines.

Table 1. Four classes for genes in common in human genome builds
35 and 36

Classes Definition

ll Genes that fall into the lower partition in both
builds

lh Genes that fall into the higher partition for build
36 and the lower partition for build 35

hl Genes that fall into the lower partition for build 36
and the higher partition for build 35

hh Genes that fall into the higher partition in both
builds

T ll + lh + hl + hh

3 RESULTS AND DISCUSSION

3.1 Partitioning genes according to splice variant
number

GenBank is continually evolving, and there is uncertainty about
the exact number of splice variants for any given gene. Therefore,
cumulative classes may be more robust than individual classes
for investigating the biological meaning of splice variant number.
Cumulative gene classes were formed by taking the union of
individual gene classes: i.e. genes were partitioned into two groups:

• those with a number of splice variants ≤b

• those with a number of splice variants >b

where b is the partition boundary (b=1,...,10). A partitioning was
represented as

{1,...,b},{(b+1),...,M}
where M is the maximum number of variants per gene. For human
genome builds 35 and 36, M is 73 and 66, respectively. For example,
we represent gene sets formed from build 36 using the partitioning
value of 7 splice variants as {1,...,7}, {8,...,66}.

3.2 Stability of representation of splice variants/gene
by GenBank mRNA sequences corresponding to
human genome builds 35 and 36

We searched for partitionings stable across human genome builds 35
and 36 by defining a set of genes G that is the intersection of genes
in builds 35 and 36. Each gene in G fell into one of four classes, as
defined in Table 1. For a given partitioning, (ll+hh)/T =1.0 would
represent perfect stability. In practice, the stability was somewhat
lower than 1.0. For instance, that ratio achieved 0.984 for b=10
(Supplementary Table S4).

In selecting a partitioning, we needed to consider both the stability
and suitability as input to GoMiner. If the gene set were too small or
too large, then it would not be suitable.Aset that was too small would
not provide adequate statistical power. Generally, the set should
contain at least 200 genes that map to the GO database. On the other
hand, a set that was too large would result in all categories being
heavily populated with genes, and it would be impossible to detect
meaningful enrichment. All three stability/GoMiner requirements

• (ll + hh)/T ≥0.90

• (hl + hh)/T ≤0.50
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• hl + hh ≥200

were met by partitions 6 through 10 (Supplementary Table S4).

3.3 Summary statistics for build 36
The numbers of genes that survived successive processing steps
are shown in Supplementary Table S5. The total number of genes
represented was 19 215 (the corresponding number for build 35 was
16 893). A total of 7201 were represented by HGNC symbols and
had mappings in the GO database. A total of 1285 genes mapped to
partition {8,...,66}, for example. 835 of the 1285 had mappings in
the GO database.

3.4 Robustness of GO categories
A robust GO category is one that GoMiner deemed to be statistically
significantly enriched through a broad range of partitions. A
combination CIM (Supplementary Fig. S1) provided a convenient
visualization of the comparison of the degree of robustness of
categories in lower partitions across builds 35 and 36. A few of
the significant categories that involved sensory perception appeared
in both, but none of those categories were considered to be robust
within or across builds. It was surprising that sensory perception
categories would be associated with low partitions. For example, it
is well known that olfactory receptors enjoy considerable degree of
alternate splicing (Young et al., 2003). Yet, our search of GenBank
revealed that independent records for the different variants had not
been deposited. We expect that the apparent low number of splice
variants is an artifact resulting from poor annotation of sensory
perception genes in GenBank.

In contrast, there were a substantial number of robust categories
in higher partitions (Fig. 1, Supplementary Figs S2 and S3, and
Table S5). A total of 835 genes mapped to a significant GO category
in partition {8,...,66} (Supplementary Table S5). Of those 835
genes, 799 mapped to a category that was deemed by GoMiner to
be statistically significant. Approximately half (404) of those genes
mapped to a significant category that was robust. There were a total
of 59 robust categories, of which 55 occurred in partition {8,...,66}.

3.5 Categories-versus-genes CIMs
The robust categories-versus-genes CIM for partition {8,...,66}
exhibited a distinct apoptotic island (Fig. 2 and Supplementary
Fig. S4). The identity of the genes associated with that feature
and with other features can be determined from the full-size CIM
(Supplementary Fig. S4). The full-size CIM in Supplementary
Figure S4 can also be used to examine cross-talk between
categories. For example, many genes appear in common between
GO:0006915_apoptosis and GO:0007242_intracellular_signaling_
cascade (Supplementary Table S6).

3.6 DAG representation of the robust categories
The CIM visualizations does not explicitly represent the hierarchical
arrangement of categories that is present in the GO DAG structure.
We have observed that a single complete DAG representation
is useful for conveying the complexity of the arrangement, but
it is too complex to be very informative to the human visual
system. Consequently, we have developed a novel piecewise DAG
representation of the 59 robust categories that are depicted in
Supplementary Figure S5. Each DAG segment was derived from

Fig. 1. Integrative CIM of robust (i.e. significant for at least 12 partition
boundaries in the higher partition) categories versus partition boundaries for
builds 35 and 36. The color scales represent the FDRs for builds 35 (red)
and 36 (green). This CIM is also available as Supplementary Fig. S3.

Fig. 2. Thumbnail CIM of robust categories versus genes for build 36,
partition {8,...,66}. The apoptotic island is outlined with blue rectangles.
The full-size CIM can be viewed as Supplementary Figure S4.
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Fig. 3. Cumulative probability distributions (CPDs) for the frequency
of splice variant numbers in the reference category (biological process;
7201 genes), apoptosis (477 genes) and cell–cell signaling (440 genes).
The CPD was taken in the ‘reverse’ direction, from high to low number of
splice variants, to illustrate more effectively the enrichment in high numbers
of splice variants for apoptosis. The CPD for apoptosis was significantly
different from the reference category (K-S, P<0.0001, computed for the
normal direction for the CPD), whereas that for cell–cell signaling was not
(K-S, P=0.92). The expanded inset emphasizes the dramatic enrichment
for apoptosis in the high-splice variant-number tail of the distribution, in
contrast to the behavior of the control category, cell–cell signaling.

a single robust category, which was the sole leaf node in that
segment. If a robust category appeared as the parent of another
robust category, that robust parent category was not used as a leaf
node elsewhere. The robust and non-robust categories that appeared
in a DAG segment are rendered in red and blue, respectively. The
DAG segment representation contain a modest degree of redundancy
because some segments displays the same nodes. We feel that the
slight redundancy is justified because of the enhanced clarity of the
representation.

3.7 An alternative complementary perspective of
category enrichment

An alternate approach that complements traditional GoMiner
category enrichment is analysis of the distribution of splice variant
number for genes mapping to a category. The probability distribution
(Fig. 3 and Supplementary Fig. S6) indicate a shift to higher
splice variant number for genes in the apoptosis category (i.e.
significant in GoMiner) compared with the reference distribution
(i.e. the biological_process category). The control category cell–
cell signaling (i.e. non-significant in GoMiner) does not exhibit any
such shift.

The shift in the probability distribution visually reflects the
underlying dramatic quantitative enrichment of the apoptosis
category. The reference distribution contains a total of 7201 genes of
which 835 have 8 or more splice variants (Supplementary Table S5).
Thus the reference distribution exhibits a ratio of 835/7201=0.116.
The apoptosis category contains a total of 477 genes (data not
shown), so the expected number of genes with 8 or more splice
variants was 477∗0.116≈55. But the apoptosis category actually

includes 101 genes (data not shown) with 8 or more splice variants,
an excess of 101−55=46, corresponding to a ratio of 101/477=
0.212 or a 1.826-fold enrichment relative to the reference (GoMiner
P-value ≈10−9.42 and FDR ≤ 10−6). Thus, apoptosis includes
almost twice the expected number of genes with 8 or more splice
variants, and that excess is reflected visually in Figure 3.

4 CONCLUSIONS
The current analysis was originally intended purely as a genomics
study to correlate functional categories with number of splice
isoforms. The observations unexpectedly turned out to have strong
relevance for cancer-interesting processes, especially apoptosis. We
will summarize the major findings and then examine the implications
for apoptosis in more detail.

When displayed in a CIM, genes with a high number of splice
variants, class {8,...,66}, form a distinctive ‘apoptotic island’ (Fig. 2
and Supplementary Fig. S4).

Forty-one genes fall into both apoptosis and intracellular signaling
(Fig. 2, Supplementary Fig. S4 and Table S6). Those genes provide
a mechanism for ‘cross-talk’. Apoptotic and intracellular signaling
categories are well studied and it is not a surprise that a number of
genes are shared (see for example, Wu et al., 2006). The potential
for the CIM to uncover such relationships will be of particular value
in less well-studied disease states.

In fact, several of the shared genes are central to both apoptosis
and signaling. Their modes of alternate splicing have consequently
been studied in some detail. For example, Benedict et al. (2000)
studied alternate splicing of Apaf-1. Alternative splicing can
create an NH2-terminal 11-amino acid insert between the caspase
recruitment domain and ATPase domains or an additional COOH-
terminal WD-40 repeat. Apaf-1XL contains both the NH2-terminal
and COOH-terminal inserts and is the major RNA form expressed in
all tissues tested. Apaf-1LN contains the NH2-terminal insert, but
lacks the additional WD-40 repeat. Only those isoforms with the
additional WD-40 repeat activated procaspase-9 in vitro in response
to cytochrome c and dATP, whereas the NH-terminal insert was not
required for that activity.

Merdzhanova et al. (2008) studied the upregulation of SC35 by
E2F1. They found that DNA-damaging agents stabilize E2F1 and
induce its transcriptional activity. Overexpression of SC35 alters
the splicing of caspase-2 mRNA, favoring expression of the pro-
apoptotic isoform accumulation. E2F1 requires SC35 to switch the
alternative splicing profile of various apoptotic genes such as c-
flip, caspases-8, caspases-9 and Bcl-x towards the expression of
pro-apoptotic splice variants.

Jiang and Wu (1999) aptly summarized the state of the field as it
stood in 1999:

Expression and function of a large number of genes involved
in PCD [programmed cell death] are regulated by alternative
splicing, including death receptors and intracellular components
of the death machinery. Alternative splicing affects not only
intracellular distribution but also functional activity of these death
regulators, providing a fine-tuning mechanism in modulating a
presumably tightly controlled process of cell death.

Our current results, which are based on the much larger number
of GenBank records that are available now as compared with the
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number available to Jiang and Wu (1999), are consistent with that
summary statement.

We speculate that the relationship, uncovered in our studies,
between the structure of the human genome and the life and death
of a cell, is a fundamental property of the cell. That is, the locations
of nucleotide sequences dictating the regulation of the number
of alternate splice forms in the human genome (‘structure’) are
intimately related to apoptosis (‘function’). With regard to splice
variants, there are two competing ‘drives’: robustness, which will
be enhanced as a component becomes simpler, and diversity to allow
fine-tuning in different tissues, stages of development or states of
health and disease.

The concrete manifestation of robustness is one transcript per
gene, whereas the concrete manifestation of diversity is multiple
or a high number of transcripts per gene. The negative aspects of
those two attributes are inflexibility for the former and an increase
in errors due to complexity [e.g. susceptibility to lethal mutation in
splice site signal sequences (Rogan et al., 1998; Schneider, 2005)] in
the latter. We speculate that all genes would have multiple transcripts
to achieve greater flexibility if susceptibility to mutation were not of
over-riding importance. Therefore, only those genes that must have
multiple transcripts do so. In such cases, the need for flexibility
apparently over-rides the ‘prudence’ of avoiding susceptibility to
mutation.

Supplementary Table S5 shows that the majority of genes do, in
fact, exhibit at least two known splice forms: 16117/19215=0.84
overall, and 6793/7201=0.94 for those genes in human genome
build 36 that have HGNC symbols and that are represented in the
GO database. In the context of our speculation, that observation
would imply that the flexibility afforded by fine-tuning is essential.

Funding: Intramural Research Program of the NIH, National Cancer
Institute, Center for Cancer Research.

Conflict of Interest: none declared.

REFERENCES
Ashburner,M. et al. (2000a) Gene Ontology: tool for the unification of biology.

Nat. Genet., 25, 25–29.
Ashburner,M. et al. (2000b) Gene ontology: tool for the unification of biology. The

Gene Ontology Consortium. Nat. Genet., 25, 25–29.
Benedict,M.A. et al. (2000) Expression and functional analysis of Apaf-1 isoforms.

J. Biol. Chem., 275, 8461–8468.
Black,D.L. (1998) Splicing in the inner ear: a familiar tune, but what are the instruments?

Neuron, 20, 165–168.
Black,D.L. (2000) Protein diversity from alternative splicing: a challenge for

bioinformatics and post-genome biology. Cell, 103, 367–370.
Black,D.L. (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev.

Biochem., 72, 291–336.
Black,D.L. and Grabowski,P.J. (2003) Alternative pre-mRNA splicing and neuronal

function. Prog. Mol. Subcell. Biol., 31, 187–216.
Blencowe,B.J. (2000) Exonic splicing enhancers: mechanism of action, diversity and

role in human genetic diseases. Trends Biochem. Sci., 25, 106–110.
Boue,S. et al. (2003) Alternative splicing and evolution. Bioessays, 25, 1031–1034.
Breitbart,R.E. et al. (1987) Alternative splicing: a ubiquitous mechanism for the

generation of multiple protein isoforms from single genes. Annu. Rev. Biochem.,
56, 467–495.

Burgess,R.W. et al. (1999) Alternatively spliced isoforms of nerve- and muscle-derived
agrin: their roles at the neuromuscular junction. Neuron, 23, 33–44.

Caceres,J.F. and Kornblihtt,A.R. (2002) Alternative splicing: multiple control
mechanisms and involvement in human disease. Trends Genet., 18, 186–193.

Carninci,P. et al. (2005) The transcriptional landscape of the mammalian genome.
Science, 309, 1555–1563.

Cooper,T.A. and Mattox,W. (1997) The regulation of splice-site selection, and its role
in human disease. Am. J. Hum. Genet., 61, 259–266.

Fernandez-Real,J.M. et al. (2006) An alternative spliced variant of circulating soluble
tumor necrosis factor-{alpha} receptor-2 is paradoxically associated with insulin
action. Eur. J. Endocrinol., 154, 723–730.

Garcia-Blanco,M.A. et al. (2004) Alternative splicing in disease and therapy.
Nat. Biotechnol., 22, 535–546.

Gene Ontology Consortium (2006) The Gene Ontology (GO) project in 2006. Nucleic
Acids Res., 34, D322–326.

Grabowski,P.J. and Black,D.L. (2001) Alternative RNA splicing in the nervous system.
Prog. Neurobiol., 65, 289–308.

Graveley,B.R. (2001) Alternative splicing: increasing diversity in the proteomic world.
Trends Genet., 17, 100–107.

Jiang,Z.H. and Wu,J.Y. (1999) Alternative splicing and programmed cell death. Proc.
Soc. Exp. Biol. Med., 220, 64–72.

Kahn,A.B. et al. (2006) SpliceMiner: a high-throughput database implementation of
the NCBI Evidence Viewer for microarray splice variant analysis. BMC Bioinform.,
1, 1.

Kriventseva,E.V. et al. (2003) Increase of functional diversity by alternative splicing.
Trends Genet., 19, 124–128.

Lee,C. and Roy,M. (2004) Analysis of alternative splicing with microarrays: successes
and challenges. Genome Biol., 5, 231.

Little,P. (1998) Human genome annotation—a possible role for HUGO? Human
Genome Organisation. Nat. Genet., 19, 222.

McKusick,V.A. (1989) HUGO news. The Human Genome Organisation: history,
purposes, and membership. Genomics, 5, 385–387.

Merdzhanova,G. et al. (2008) E2F1 controls alternative splicing pattern of genes
involved in apoptosis through upregulation of the splicing factor SC35. Cell Death
Diff., 15, 1815–1823.

Modrek,B. and Lee,C. (2002) A genomic view of alternative splicing. Nat. Genet., 30,
13–19.

Rogan,P.K. et al. (1998) Information analysis of human splice site mutations.
Hum. Mutat., 12, 153–171.

Schneider,T. (2005) Medical Applications of Sequence Walkers: ABCR Mutation
G863A. Available at: http://www.ccrnp.ncifcrf.gov/~toms/g863a.html.

Schutt,C. and Nothiger,R. (2000) Structure, function and evolution of sex-determining
systems in Dipteran insects. Development, 127, 667–677.

Smith,C.W. et al. (1989) Alternative splicing in the control of gene expression.
Annu. Rev. Genet., 23, 527–577.

Sturn,A. et al. (2002) Genesis: cluster analysis of microarray data. Bioinformatics, 18,
207–208.

Tress,M.L. et al. (2007) The implications of alternative splicing in the ENCODE protein
complement. Proc. Natl Acad. Sci. USA, 104, 5495–5500.

Wain,H.M. et al. (2002) Guidelines for human gene nomenclature. Genomics, 79,
464–470.

Wang,E.T. et al. (2008) Alternative isoform regulation in human tissue transcriptomes.
Nature, 456, 470–476.

Weinstein,J.N. et al. (1997) An information-intensive approach to the molecular
pharmacology of cancer. Science, 275, 343–349.

Wu,Y. et al. (2006) The vascular endothelial growth factor receptor (VEGFR-1) supports
growth and survival of human breast carcinoma. Int. J. Cancer, 119, 1519–1529.

Xu,Q. et al. (2002) Genome-wide detection of tissue-specific alternative splicing in the
human transcriptome. Nucleic Acids Res., 30, 3754–3766.

Young,J.M. et al. (2003) Odorant receptor expressed sequence tags demonstrate
olfactory expression of over 400 genes, extensive alternate splicing and unequal
expression levels. Genome Biol., 4, R71.

Zeeberg,B.R. et al. (2003) GoMiner: a resource for biological interpretation of genomic
and proteomic data. Genome Biol., 4, R28.

Zeeberg,B.R. et al. (2005) High-Throughput GoMiner, an ‘industrial-strength’
integrative gene ontology tool for interpretation of multiple-microarray
experiments, with application to studies of Common Variable Immune Deficiency
(CVID). BMC Bioinform., 6, 168.

Zhang,P. et al. (2006) Alternatively spliced FGFR-1 isoforms differentially modulate
endothelial cell activation of c-YES. Arch. Biochem. Biophys., 450, 50–62.

1949

http://www.ccrnp.ncifcrf.gov/~toms/g863a.html

