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Abstract
Fungi produce an impressive array of secondary metabolites (SMs) including mycotoxins,
antibiotics and pharmaceuticals. The genes responsible for their biosynthesis, export, and
transcriptional regulation are often found in contiguous gene clusters. To facilitate annotation of
these clusters in sequenced fungal genomes, we developed the web-based software SMURF
(www.jcvi.org/smurf/) to systematically predict clustered SM genes based on their genomic
context and domain content. We applied SMURF to catalog putative clusters in 27 publicly
available fungal genomes. Comparison with genetically characterized clusters from six fungal
species showed that SMURF accurately recovered all clusters and detected additional potential
clusters. Subsequent comparative analysis revealed the striking biosynthetic capacity and
variability of the fungal SM pathways and the correlation between unicellularity and the absence
of SMs. Further genetics studies are needed to experimentally confirm these clusters.
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Introduction
Secondary metabolites (SMs) are small bioactive molecules produced by many organisms
including bacteria, plants and fungi. These compounds are particularly abundant in soil-
dwelling filamentous fungi, which exist as multicellular communities competing with each
other for nutrients, minerals and water (Keller et al., 2005). Unlike primary metabolites,
most SMs – as their name suggests – are not essential for fungal growth, development, or
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reproduction under in vitro conditions. They can however provide protection against various
environmental stresses and during antagonistic interactions with other soil inhabitants or a
eukaryotic host. Scientific appreciation of the importance of fungal SMs grew in the 1940s
as the massive impact of penicillin on human health began to be seen. Since then, many
other beneficial SM compounds have been discovered including immunosuppressants,
cholesterol-lowering drugs, antiviral drugs, and anti-tumor drugs (for a recent review see
Hoffmeister and Keller, 2007). At the same time, fungi are also known to produce numerous
mycotoxins such as aflatoxin, fumonisin, trichothecene, and zearalone.

The first committed step in biosynthesis of an SM is catalyzed by one of five proteins, which
we refer to here as “backbone” enzymes. They include nonribosomal peptide synthases
(NRPSs), polyketide synthases (PKSs), hybrid NRPS-PKS enzymes, prenyltransferases
(DMATSs), and terpene cyclases (TCs). These multidomain enzymes are associated,
respectively, with production of the five classes of SM: nonribosomal peptides, polyketides,
NRPS-PKS hybrids, indole alkaloids, and terpenes (Hoffmeister and Keller, 2007).
Terpenes, which are composed of isoprene units, are not considered further in our analysis,
because terpene cyclases are highly variable in sequence and difficult to detect by
bioinformatic methods (Keller et al., 2005; Townsend, 1997). Intermediate products formed
by the backbone enzymes can undergo further modifications catalyzed by “decorating”
enzymes. The final product is then often steered by a transporter outside the fungal cell wall
or sometimes remains within the cell. All these genes tend to be found in contiguous gene
clusters, which are coordinately regulated by a specific Zn2Cys6 transcription factor and/or
by the global regulator of secondary metabolism, putative methyltransferase LaeA (Keller
and Hohn, 1997; Keller et al., 2005).

The availability of data from fungal genome sequencing projects has facilitated the
discovery and characterization of new compounds and their biosynthetic pathways. Thus
within months after completion of the first A. fumigatus genome (Nierman et al., 2005),
several secondary metabolite clusters were characterized at the molecular level including the
gliotoxin (Gardiner and Howlett, 2005), fumigaclavines (Coyle and Panaccione, 2005;
Unsold and Li, 2005; Unsold and Li, 2006), fumitremorgin (Maiya et al., 2006), and
siderophores (Reiber et al., 2005) biosynthesis clusters. Genome sequencing also revealed
that the number of secondary metabolites characterized from a given species falls far behind
the numbers of clusters that can be predicted based on its genomic sequence (Bok et al.,
2006; Chiang et al., 2008). This has been attributed to the fact that not all clusters may be
expressed under normal laboratory conditions.

Despite the medical and agricultural importance of fungal SMs, most putative SM clusters in
fungal genomes have been predicted by ad hoc strategies based on manual reviews of
BLAST searches generated for backbone genes and their neighbors (e.g. (Nierman et al.,
2005)). Manual annotation of SM clusters, however, is time-consuming and may result in
inconsistent annotation.

To facilitate systematic mapping of SM clusters in fungal genomes, we developed a web-
based software tool, Secondary Metabolite Unknown Regions Finder (SMURF;
www.jcvi.org/smurf/). It is based on three hallmarks of fungal SM biosynthetic pathways: (i)
the presence of backbone genes, (ii) clustering, and (iii) characteristic protein domain
content. Subsequent analyses of the predicted clusters present in 27 sequenced fungal
genomes (Supplementary Table 1) shows SM gene enrichment in the genus Aspergillus, the
absence of the clusters in unicellular fungi, and unexpected abundance and variability of the
fungal clusters. Our results are also consistent with the view that SM profiles can be used as
means of differentiating species and strains in filamentous fungi (Frisvad et al., 2008), and
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show that gene duplication plays an essential role in the creation and expansion of the SM
repertoires of fungi.

Methods
Identification of putative backbone enzymes

SMURF relies on hidden Markov model (HMM) searches to detect backbone genes in
sequenced fungal genomes. The HMMER program (http://hmmer.janelia.org) was used to
search for conserved Pfam and TIGRFAM domains of backbone enzymes in the protein set
of each sequenced species. Trusted threshold bit score cutoffs (predefined in HMMER) were
used for each HMM search. NRPS enzymes were identified as enzymes with at least one
module composed of an amino acid adenylation domain (A), a thiolation domain (PCP) and
a condensation domain (C). PKS enzymes were identified as enzymes with at least one acyl
transferase domain (AT), a beta-ketoacyl synthase C-terminal domain (BKS-C), and a beta-
ketoacyl synthase N-terminal domain (BKS-N). Hybrid PKS-NRPS enzymes were identified
as enzymes with at least one instance from each set of three domains listed above.

NRPS-like enzymes were identified with a combination of at least two domains from any of
those in the NRPS enzyme module; or a combination of an A domain and a NAD_binding_4
domain; or a combination of an A domain and short chain dehydrogenase domain. PKS-like
enzymes were identified with a combination of at least two domains from any of those in the
PKS enzyme module. To eliminate false positives among PKS-like enzymes, they were
defined as proteins with AT, BKS-C and BKS-N domains that scored below a trusted HMM
cut-off. In contrast, to eliminate false positives such as alpha-aminoadipate reductase among
NRPSs, we required the score of the C-terminal domain of L-aminoadipate-semialdehyde
dehydrogenase alpha subunit to be above the cut-off.

Prenyltransferase enzymes were identified as enzymes with at least one DMATS-type
prenyltransferase domain (DMATS). The corresponding de novo HMM model for this
domain (TIGR03429) was created in this study from the seed alignment generated using the
A. fumigatus dimethylallyl tryptophan synthase FtmPT2 as a seed sequence as previously
described (Sonnhammer et al., 1998). Characterized or partially characterized seed members
include several dimethylallyltryptophan synthases, a brevianamide F prenyltransferase, the
LtxC enzyme involved in lyngbyatoxin biosynthesis, and a probable dimethylallyl tyrosine
synthase.

Identification of putative decorating enzymes
To define protein domains commonly present in SM decorating enzymes, transporter, and
transcriptional regulators; we examined the domains detected in the 22 A. fumigatus clusters
we used as a training set. The list of clusters included two genetically characterized A.
fumigatus clusters involved in biosynthesis of fumitremorgin (Grundmann et al., 2008; Kato
et al., 2009; Maiya et al., 2006) and melanin (Fujii et al., 2004; Tsai et al., 1999) and 10
clusters predicted based on expression data: A. fumigatus clusters Pes1, siderophore,
fumigaclavine, pseurotin, the gliotoxin-like polyketide (McDonagh et al., 2008; Perrin et al.,
2007), and gliotoxin (Gardiner and Howlett, 2005). The rest of the 22 clusters were
predicted manually based on genes' name and their proximity to the adjacent backbone gene
(Perrin et al., 2007). Some domains were present almost exclusively in clusters, while others
were evenly distributed throughout the entire genome (Supplementary Table 2). The final 27
SM-defining domains were selected as domains most likely to be found in a cluster based on
their distribution.
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Identification of putative SM clusters
Once all putative backbone genes are identified in a genome, the SMURF algorithm then
evaluates their adjacent genes to test whether they are part of an SM gene cluster
(Supplementary Figure 1). A window of ±20 genes on each side of a backbone gene is
scanned for the 27 SM-defining domains using HMMer. The number 20 was established
empirically based on the training set of 22 A. fumigatus clusters. Genes in the window are
tagged as “SM domain positive” if they contain at least one of these domains, or “SM
domain negative” if they do not. Then the boundaries of any putative cluster are defined by
the algorithm that evaluates each gene by walking rightwards from the backbone gene until
it reaches as a stop signal, which is defined below. The last gene on the rightwards walk
before the stop signal is given the label alpha. After that SMURF carries out an identical
walk leftwards from the backbone gene, until a stop signal is encountered defining a left-
limit gene beta. The interval between alpha and beta is the preliminary extent of the cluster.

The algorithm requires two key parameters: d, the maximum intergenic distance (in base
pairs) permitted between two adjacent genes in the same cluster; and y, the maximum
number of SM domain negative genes, which is allowed within a cluster. By a trial-and-
error process, we identified the parameters d = 3,814 bp and y = 10 genes as optimal based
on the training set of 22 clusters. A stop signal is defined as either an intergenic distance that
is larger than the limit d, or a cumulative number of negative genes between the backbone
gene and the current position that is larger than y (Supplementary Figure 1).

To take into account the intergenic distances, the SMURF algorithm trims each cluster to
ensure that the interval between alpha and beta is less than y. Then, additional genes are
trimmed at both ends of the cluster until the algorithm reaches the first backbone or SM
domain positive gene on each side. In some instances, SMURF predicts overlapping
clusters, in which case the two clusters are merged into one.

Results
Parameter optimization

SMURF predicts putative secondary metabolism clusters by using an algorithm that takes
into account the domain content of putative “backbone” genes and adjacent “decorating”
genes. One of the key challenges in developing this tool was identification of the adjacent
genes. In choosing parameters for SMURF we were confronted with the dilemma of striking
a balance between levels of under-prediction and over-prediction. We chose to favor the
latter, because over-prediction is easier to address in the future once a more comprehensive
training set becomes available.

Our underlying hypothesis was that some domains may be disproportionately present in SM
clusters. To select these domains, we considered clusters that have been identified either by
standard genetic methods or by transcriptional profiling of the A. fumigatus ΔlaeA strain
(Perrin et al., 2007). We thus identified 27 SM-defining domains over-represented in
clusters (Supplementary Table 2). For most of the domains, one or more corresponding
domain models already existed in the PFAM (Mistry and Finn, 2007) or TIGRFAM
(Selengut et al., 2007) databases; and we built a new model for the N-methyltransferase
domain (TIGR03439). Genes containing at least one of these 27 domains were called SM
domain positive.

Specificity and sensitivity
After parameter optimization with the training set, we compared SMURF output against
eight A. fumigatus Af293 clusters and ten clusters from other species that were all
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experimentally linked to a secondary metabolite product (Supplementary Table 3). The ten
clusters from other species encoded the following metabolites: Aspergillus nidulans
sterigmatocystin (Brown et al., 1996), penicillin (reviewed in (Brakhage et al., 2005)),
asperfuranone (Chiang et al., 2009), asperthecin (Szewczyk et al., 2008), and terrequinone
(Bouhired et al., 2007); Aspergillus flavus aflatoxin (Yu et al., 2007); and aflatrem (Zhang et
al., 2004); Penicillin chrysogenum penicillin (Smith et al., 1990); Fusarium graminearum
zearalenone (Kim et al., 2005), and aurofusarin (Malz et al., 2005); Fusarium verticillioides
fumonisin (Proctor et al., 2003).

The algorithm was able to recover all the backbone genes in the clusters. We further
evaluated the algorithm's performance by counting the number of over-predicted and under-
predicted genes. An over-predicted gene is defined here as a gene detected by SMURF, but
not by the previous annotations, and an under-predicted gene as the opposite. Assuming
previous annotations are correct, over- and under-predictions correspond to false-positive
and false-negative calls, respectively (Supplementary Table 3). Note that it is possible for
SMURF to simultaneously over-predict some genes and under-predict other genes for the
same cluster.

Among the eight A. fumigatus clusters, we found only one predicted cluster (Pes1) that was
under-predicted by SMURF. The cluster was previously annotated as containing only two
genes based on expression studies (Perrin et al., 2007). SMURF omitted one of these genes,
because the intergenic distance between them was unusually long and, simultaneously,
identified six additional genes in the cluster. The siderophore, epipolythiodioxopiperazine
type toxin (ETP), and pseurotin clusters were considerably over-predicted as compared to
the experimentally annotated clusters. The mean for over-prediction (7.0) was largely
appreciably affected by the over-prediction of these three clusters. Optimizing SMURF to
detect the three clusters decreased the accuracy for the remaining A. fumigatus clusters.

Notably, the algorithm performed better for non-A. fumigatus species with the mean for
over-prediction being 3.9. This was unexpected considering that parameter optimization was
done using only A. fumigatus clusters (Supplementary Table 3). Only two clusters,
terrequinone and asperthecin, were notably over-predicted. SMURF under-predicted 4
clusters (again mostly due to unusually large intergenic distances) with a mean of -0.5 per
cluster. For all species, SMURF-predicted clusters are larger than those annotated
experimentally with the median number of over- and under- predicted genes being 5.0 and
0.0 per cluster, respectively.

Uneven taxonomic distribution of backbone enzymes
Having validated SMURF, we then systematically searched the genome sequences of 27
fungal species (24 Ascomycota and three Basidiomycota; Supplementary Table 1) for the
presence of putative backbone genes and clusters. As expected, the search revealed that the
numbers of backbone genes varies greatly (from 0-61) from one fungal taxon to another
(Fig. 1). We found no backbone genes in two of the three unicellular species examined here:
the ascomycete yeast Saccharomyces cerevisiae and the basidiomycete yeast Cryptococcus
neoformans (though the latter species does have one NRPS-like gene). Similarly, there is
only one backbone gene (Schwecke et al., 2006) in the genome of the third unicellular
fungus, the archiascomycete yeast Schizosaccharomyces pombe.

In addition to the canonical NRPS and PKS genes, we also catalogued NRPS-like and PKS-
like enzymes, because some SM clusters such as the fumonisin cluster in Fusarium species
include backbone enzymes with atypical domain composition (Song et al., 2004; Zaleta-
Rivera et al., 2006). In addition, our estimate is that most fungal backbone genes in public
databases have incorrect gene structures including split gene models (Fedorova,
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unpublished), which also may result in atypical domain composition. Our analysis shows
that the numbers of NRPS-like and PKS-like genes fluctuate in correlation with their
counterparts, the canonical NRPS and PKS genes (Fig. 1).

Fig. 1 also shows an expansion of backbone genes in Pezizomycotina, especially in
Eurotiomycetes, as compared to Basidiomycetes and Sordariomycetes. However, within the
Eurotiomycetes, there are notably fewer backbone genes in the genomes of the human
pathogens Coccidioides immitis and Coccidioides posadasii than in the section Aspergillus.
This difference is probably more due to the phylogenetic distance between Coccidioides and
Aspergillus than to lifestyle differences. Among the Pezizomycota, Neurospora crassa has a
significantly reduced number of backbone genes (10), even when compared to Fusarium
oxysporum which has the second lowest number of backbone genes in the Pezizomycota (P
< 10-16, Chi-square test). This difference is presumably attributable to the presence of the
repeat-induced point mutation (RIP) process in N. crassa, which has dramatically reduced
the rate of formation of new gene duplications in that species (Galagan et al., 2003).

PKSs and NRPSs are found in significantly higher numbers than DMATSs and hybrid
enzymes in almost all species. We also observed that the number of backbone genes in
aspergilli is significantly higher than in Sordariomycetes (P = 0.001, Wilcoxon test). This
difference is due to increases in the numbers of NRPS (P = 7 × 10-4), PKS (P = 0.001), and
DMATS (P = 0.002) enzymes in the aspergilli, but not hybrid enzymes (P = 0.9).

Species specificity of SM clusters
The large numbers of putative SM gene clusters identified by SMURF (Fig. 1) emphasizes
the unusual diversity of the SM repertoires in fungal species. To what extent are these
metabolites and their biosynthetic pathways species-specific? To answer this question, we
further analyzed the genomes of the three closely related species A. fumigatus Af293, A.
clavatus, and Neosartorya fischeri (Fedorova et al., 2008;Nierman et al., 2005). For
accessory genes in each of these species, we assumed their reciprocal best BLASTP hits to
be putative orthologs. For backbone genes, we defined orthology based on the sequence
identity, alignment length, and domain content. We then defined two SM clusters as
orthologous if at least 80% of their genes were orthologous. This approach sometimes
yielded hidden paralogs, which were excluded from further analysis based on manual
examination.

The comparative analysis (Fig. 2) shows that only five SM gene clusters are common to all
three genomes, while most other clusters are species-specific and appear relatively young in
evolutionary terms. The core set includes clusters, such as Pes1, siderophores, and melanin
biosynthesis clusters. Their orthologs can be found in all other aspergilli and many distantly
related fungi such as Penicillium marneffei and Talaromyces stipitatus. Interestingly most of
the “core” clusters are involved in protection against oxidative stress (Eisendle et al.,
2003;Reeves et al., 2006;Schrettl et al., 2004), while the species-specific clusters either have
been linked to antifungal or antibacterial compounds.

Interspecies comparison of the clusters present in the genomes of two strains (Af293 and
A1163) of A. fumigatus also confirmed the prominent role of gene loss in the evolution of
SM gene clusters. This search showed that two putative SM clusters present in Af293 are
absent from A1163. One of them (AFUA_1G17710–AFUA1G17740) has an orthologous
cluster in A. clavatus (ACLA_098870–ACLA_098920) as shown in Fig. 1. The other
Af293-specific cluster has no orthologs in any other species.
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Discussion
Validations and Limitations

SMURF is the first web-based tool that can systematically predict putative backbone genes
in fungal genomes with high accuracy. Currently, there are only two publicly available
software programs (Starcevic et al., 2008; Weber et al., 2009) designed to annotate PKS,
NRPS and hybrid genes and both have been tailored to bacterial genomes. In addition to the
backbone genes, SMURF can also generate rule-based sets of clusters, which can be used as
a first approximation in comparative genomics and genetic studies. Notably, the algorithm
predicts clusters that can be overlooked by an expert eye. For example, it identified eight
additional clusters in A. fumigatus Af293 that had not been found in previous annotations
(data not shown). Since none of these new clusters have been characterized experimentally,
more studies are needed to estimate the true accuracy of the algorithm at predicting novel
clusters.

When it comes to predicting boundaries, SMURF tends to inflate the number of decorating
genes within a cluster by 4.0 on average. We chose not to adjust the d and y parameters and
to err on the side of keeping false positives, as these can later be rejected based on
experimental data or manual review. This relatively high false positive rate can be explained
by the low number of clusters available for parameter optimization. Unexpectedly, SMURF
performed better on non-A. fumigatus genomes, although only A. fumigatus clusters were
used for parameter optimization. Again this can be related to the limited set of
experimentally characterized clusters.

Since so few SM clusters have been experimentally characterized, we used previously
described A. fumigatus SM clusters to find SM-defining domains over-represented in
decorating proteins and to optimize parameters d and y used by the SMURF algorithm. This
approach allowed us to validate prediction made by SMURF by comparing them to
experimentally characterized clusters in other fungal genomes. The potential limitation of
this approach is that this training set may be biased towards A. fumigatus type clusters. As
more fungal clusters become characterized, this limitation will be addressed in future
iterations of the algorithm. This can be achieved by including new SM-defining domains,
changing the weights assigned to particular domains, or limiting the searches to specific
pathways or taxonomic groups.

Most likely additional information about clusters boundaries will come from expression
profiling, which appears to be the most expeditious approach to defining the boundaries.
Future expression studies involving putative methyltransferase LaeA (Bok et al., 2006), the
histone deacetylase HdaA (Shwab et al., 2007; Williams et al., 2008), and other chromatin
modifiers and pathway-specific transcriptional regulators (Brakhage et al., 2008) can also
facilitate the discovery of new clusters. Not all clusters, however, can be expressed under in
vitro conditions. Likewise, experimental conditions can affect the number of differentially
expressed genes in a cluster as have been shown for the A. fumigatus gliotoxin cluster
(McDonagh et al., 2008; Perrin et al., 2007). Identification of putative “boundary” DNA
motifs that get recognized by transcription factors and epigenetic regulators could further
improve the algorithm accuracy. Ultimately, however, gene knock-out experiments followed
by biochemical characterization of the enzymes are required to validate a cluster and to
demarcate its ends.

Research application
Our preliminary analysis of the putative SM clusters predicted by SMURF in 27 fungal
genomes showed that the numbers of potential SMs produced by fungi appears to be much
higher than previously anticipated. This apparent discrepancy between the encoded and
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observed secondary metabolite repertoire can be explained by the presence of silent or
“orphan” gene clusters, which do not get expressed under common in vitro conditions.
Based on SMURF predictions, nonribosomal peptides and polyketides are the most
abundant secondary metabolites produced by fungi. Among the taxa studied by genome
sequencing, the aspergilli and sordariomycete genomes encode the largest numbers of these
metabolites. Since over 50% of all SM compounds are estimated to have antibacterial,
antifungal, or antitumor activity as revealed by a recent study (Palaez, 2005), these hidden
clusters may represent a large unexplored reservoir of natural products of medical,
agricultural, or industrial importance.

SM clusters are very unevenly distributed among fungal taxa consistent with the view that
they can be used as species or diagnostic markers at either an inter-species or an inter-strain
level (Frisvad et al., 2008). Cross-species comparison of SM clusters shows that very few of
them are shared even among very closely related fungi (Fig. 2). This suggests that, with the
exception of the small number of conserved “core” clusters, most SM clusters are relatively
young in evolutionary terms and have been subject to rapid gene gain and loss.

What kind of selective pressures could have created this chemical diversity of fungal natural
products? This has been attributed to diversifying selection (also known as positive
Darwinian selection) driven by a chemical arms race between fungi and their predators,
competitors, and hosts (Magan, 2006). Our results show that most conserved core clusters in
the aspergilli have been linked to protection against oxidative stress (Eisendle et al., 2003;
Reeves et al., 2006; Schrettl et al., 2004). In contrast, many lineage specific clusters are
involved in biosynthesis of mycotoxins and antimicrobial compounds (e.g. gliotoxin,
aflatoxin, penicillin). The observed lineage-specific expansions of SM genes in aspergilli
and other soil fungi may be responsible for adaptation to the ever changing soil microbiome.

Our results indicate a correlation between the presence of SM pathways and competence for
filamentous growth form among fungal taxa. The species phylogeny shows that numerous
SM backbone genes were lost, on three separate occasions, on branches leading to species
with primarily unicellular growth habits. Although the number of secondary metabolite
clusters in the ancestor of all fungi is unknown, this ancestor is thought to be a multicellular
organism (Liu and Hall, 2004). This suggests that losses of secondary metabolism genes
may have coincided with transitions to a unicellular lifestyle during the evolution of each of
these lineages (Fig. 1). In contrast to filamentous fungi that live in soil, the unicellular fungi
analyzed here have adapted to highly specialized niches like decaying fruit or a eukaryotic
host, so they may not need SMs as defense mechanisms. Similarly, we found fewer
backbone genes in plant pathogens than in other fungi that have to thrive in a wide range of
conditions. Finally the SM pathways expansions are found in aspergilli and other
filamentous fungi that are characterized by ubiquity, metabolic versatility and opportunism.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Numbers of backbone genes and SM clusters in the 27 sequenced fungal genomes we
analyzed. The central columns show the numbers of backbone genes of each type in a
species. Each column contains two numbers separated by a slash; the first (in bold) is the
number of backbone genes, and the second is the number of putative SM clusters predicted
by SMURF. If both numbers are identical, only one (in bold) is shown. The tree topology is
based on the phylogenetic tree by Fitzpatrick and colleagues (Figure 2 in (Fitzpatrick et al.,
2006)). Species named in red are human pathogens (some are also animals and/or plant
pathogens), blue are plant pathogens, and black are non-pathogenic fungi. Red bullets mark
two internal branches on which enrichment in backbone genes occurred during evolution. In
the histograms on the right, green bars show the total numbers of SM clusters predicted by
SMURF in each genome (excluding SM clusters containing only PKS-like and NRPS-like
genes), and purple bars show the numbers of SM clusters that have been characterized
experimentally. PKS, polyketide synthase; DMATS, prenyltransferase; NRPS, nonribosomal
peptide synthase.
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Figure 2. Core orthologous and species-specific SM clusters in A. fumigatus, A. clavatus and N.
fischeri
This Venn diagram shows relationships between putative SM clusters that were identified by
SMURF in these three species. Non-overlapping areas represent the number of clusters
unique to each species. Overlapping areas represent the number of orthologous clusters
shared by two or three species. The total number of clusters is shown under the species
name. The figure is not drawn to scale.
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