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Abstract

One fundamental concept in the context of biological systems on which researches have flourished in the past decade is
that of the apparent robustness of these systems, i.e., their ability to resist to perturbations or constraints induced by
external or boundary elements such as electromagnetic fields acting on neural networks, micro-RNAs acting on genetic
networks and even hormone flows acting both on neural and genetic networks. Recent studies have shown the importance
of addressing the question of the environmental robustness of biological networks such as neural and genetic networks. In
some cases, external regulatory elements can be given a relevant formal representation by assimilating them to or modeling
them by boundary conditions. This article presents a generic mathematical approach to understand the influence of
boundary elements on the dynamics of regulation networks, considering their attraction basins as gauges of their
robustness. The application of this method on a real genetic regulation network will point out a mathematical explanation
of a biological phenomenon which has only been observed experimentally until now, namely the necessity of the presence
of gibberellin for the flower of the plant Arabidopsis thaliana to develop normally.
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Introduction

Understanding certain phenomena emerging from the dynam-

ical behaviour of complex dynamical systems, such as properties of

auto-organisation and the ability to adapt to natural constraints

and perturbations, are intimately related to the question of their

structural robustness. This notion seems all the more pertinent in

the field of biological complex networks that are modeled by

discrete dynamical systems. We identify three kinds of robustnesses

which we believe to be amongst the most relevant to study because

of their usefulness in achieving a better understanding of

regulation principles: environmental robustness (i.e., the ability of

a network to resist to external influences) [1–4], dynamical

robustness (i.e., the ability of a network to conserve the same

asymptotic dynamics depending on underlying iteration modes)

[5–8] and topological robustness (i.e., the global dynamical stability

of a network when it is submitted to structural perturbations and

according to the existence of specific structural patterns, such as

positive and negative circuits, which are recurrent in biological

networks) [9–11].

The purpose of this paper is to focus on a kind of robustness that

may be considered as an instance of the first kind of robustness

mentioned above, namely robustness against perturbations

induced by boundary elements that act on the system but are

not modified by it. The motivation for studying boundary

conditions of a network comes from the fact that boundary

elements of a biological regulation network (for instance electric

and magnetic fields in the context of neural networks, micro-

RNAs and hormone flows in the context of genetic networks) may

be seen as boundary elements acting on the intrinsic regulation of

the network.

There is a classical view considering that the boundary between

a cell and its environment is an anatomic boundary like the

cytoplasmic membrane: in the case of a plant, it has been shown

that flows of hormones, such as Auxin, propagate from cell to cell

by crossing the cellular membrane, accelerating cell proliferation

and improving the metabolic pathways that transform the

nutrients necessary for the plant development [12–14]. In the

approach presented in the sequel, the notion of boundary is related

to the topology of the interaction graph associated to the

regulation network. If, for instance, at a certain time of the

biological dynamics, the co-expressed genes belong to a defined

part of the chromatin, the boundary of the corresponding block of

genes is the set of genes whose product of expression belong to the

set of the regulators of the block [15,16] maintaining ‘‘the correct

spatial and temporal epigenetic code within the eukaryotic

genome’’ [17]. Thus, we believe that studying the impact of

stable topological boundaries in biological regulation systems

modeling specific physiological functions is a relevant way to refine

our understanding of real systems. The approach we present here

is set at the frontier between discrete mathematics, theoretical

computer science and biology. It is based on the idea that
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attraction basins of the dynamical behaviour of a network yield

information on how the network operates and evolves. We show

how an analysis of the influence of boundary elements on the

asymptotic dynamical behaviour of a discrete dynamical system

may profit from the observation of the variations of its attraction

basins. To highlight the pertinence of our method, all its different

steps are applied to an illustrative ‘‘toy regulation network’’ that

models the genetic regulation of the floral morphogenesis of plant

Arabidopsis thaliana. The choice of this particular network will yield

a formal explanation of a phenomenon only observed experimen-

tally until now [18,19] (namely, the necessity of gibberellin to the

normal development of the flower of Arabidopsis thaliana). In this

network, the gibberellin will be considered as belonging to the

functional (topological) boundary of the interaction graph (even if

it acts also through the cell anatomic boundary). Our principal

objective, however, is to present a multi-disciplinary method to

analyse the robustness of an arbitrary biological complex network,

and more generally of any kind of discrete dynamical system,

against perturbations induced by its boundary and possibly,

external elements.

The first section gives the main preliminary definitions that are

used in this document. It specifically focuses on two notions:

attractors/attraction basins of discrete dynamical systems, and

centres/boundaries of networks. It also defines the model of

regulation network on which this study is based. The following

section describes our toy network, i.e., the network we chose to

serve as our case study. The different measures used to highlight

relationships between boundary conditions and attraction basins

are explained in the third section. These measures are used to

draw some results on the effect that the boundary element

(gibberellin) of our toy network has on its dynamics. The last

section deals with stochastic state perturbations. An algorithm is

proposed to study the robustness of a system against random state

perturbations using attraction basins features. Again, this algo-

rithm is applied to the floral morphogenesis genetic regulation

network of plant Arabidopsis thaliana. Our paper ends with a

discussion on the main perspectives of this work and some

concluding remarks.

Materials and Methods

Preliminary Definitions
The objective of this section is to deliver some basic definitions

from discrete dynamical systems theory and graphs theory before

detailing the mathematical model used in our work to represent

the dynamical evolution of genetic regulation networks.

Dynamical System, Attractor and Attraction Basin
A discrete dynamical system S is a system composed by

elements that interact with each other over time. More formally, a

discrete dynamical system is defined by a triple (X, T, f), where:

N X is a discrete finite set, called the space of configurations.

N T equals N and is called the time space.

N f is a map f : X|T?X and satisfies f(x, 0)~x and

f(f(x, t1), t2)~f(x, t1zt2).

In the following, we will only consider discrete dynamical

systems where the map f , called the flow or the global transition

function of the system, is a deterministic function. Let us consider a

configuration x of X and apply a flow f to it successively. Since the

space of configurations is a finite set, whatever the deterministic

flow f is, it is trivial that x evolves in a finite time towards either a

configuration which cannot evolve anymore, i.e., a fixed point, or a

sequence of configurations which repeat themselves indefinitely,

i.e., a limit cycle. Fixed points and limit cycles are called the attractors

of the system [20,21]. The number of configurations of an

attractor is called the period of this attractor. Thus, a fixed point

is an attractor of period 1 and a limit cycle containing p
configurations is an attractor of period p. The set of configurations

that evolve towards an attractor A is called the attraction basin

of A and is noted B(A). For any attractor A, A(B(A). Let x [ X
be an arbitrary configuration of a discrete dynamical system

S~(X, T, f). The sequence of configurations (including x)

obtained by successive applications of f is called a trajectory of S.

We can represent the trajectories of all the configurations x of S by

an iteration graph. An illustration of the iteration graph of an

arbitrary discrete dynamical system is pictured in Figure 1. In this

figure, black dots represent configurations and arrows represent

transitions between configurations resulting from the application

of the global transition function of the system.

Directed Graph, Centre and Boundary
In this article, we focus on genetic regulation networks which are

particular discrete dynamical systems. These networks have been

developed to model interactions dynamics occurring over time

between genes. The structure of a regulation network N is

generally represented by a directed graph G~(V, A), called

interaction graph, where V is the set of vertices (genes) and A is the set

of arcs (interactions between genes). Let us recall some useful

definitions of graph theory in our context [22].

Let vi and vj be two distinct vertices of a regulation network N
whose interaction graph is G~(V, A). P~fa1,a2, . . . ,amg(A is

a path from vi to vj if the beginning of the arc a1 is the vertex vi,

the end of the arc am is the vertex vj and the final vertex of each

arc of P is the beginning vertex of the next arc of P. The length of a

path equals the number of arcs that compose it.

The L1-distance between two vertices vi and vj, denoted by

dL1(vi, vj) is the length of the shortest path from vi to vj. The

eccentricity of a vertex vi is the maximum L1-distance between vi

and any other vertex of the graph G. When a vertex vj is not

accessible from vi, we have: dL1(vi, vj)~?. The minimum and

non null eccentricity of the graph is called the graph radius and the

maximum eccentricity of G is called the diameter of the graph. The

centre of a graph G is the set of vertices whose eccentricity equals

the graph radius. We will say that such vertices are central. We also

define the boundary of a graph G as the set of source vertices, that is,

Figure 1. Iteration graph. Iteration graph representing the dynamics
of an arbitrary discrete dynamical system having four attractors : two
fixed points, A1 and A4, and two limit cycles, A2 and A3 . The attraction
basins of these attractors are respectively B(A1), B(A2), B(A3) and
B(A4).
doi:10.1371/journal.pone.0011793.g001
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vertices with no arcs incoming from other vertices than

themselves.

Let us add that the computation of the centre of an arbitrary

graph corresponds to the computation of all the shortest paths for

all the oriented couples of vertices. So, in the general case, it needs

a time complexity of O(DVD3) using the algorithm of Dijkstra [23]

for each vertex. In the case of sparse graphs, i.e., where DAD is

significantly less than DVD2, this time complexity can be reduced to

O(DVD2: log DVDzDVD:DAD) thanks to the algorithm of Johnson [24].

Threshold Boolean Automata Networks as a Model of
Regulation Networks Dynamics

In [25], McCulloch and Pitts introduced the model of threshold

Boolean automata networks, also known as formal (or artificial)

neural networks. Its purpose was to model the logical properties of

the interactions between neurons from the point of view of discrete

mathematics. A particular case of this model was then studied by

Hopfield in [26,27] in the context of physics. It was shown to present

collective computational abilities which seemed to show a good

correspondence with real neural networks. More precisely, Hopfield

highlighted the notions of memory and learning. At the same time,

in the field of discrete mathematics, researchers studied the

asymptotic dynamical behaviour of threshold Boolean automata

networks. They noticed some interesting properties, such as the

importance of the iteration mode (this notion will be discussed later)

and the nature of the attractors for specific networks [28,29]. On the

other hand, in the context of genetic regulation networks modeling,

two reference models, using different formalisms of two different

levels of abstraction, were introduced a decade before: that of

Kauffman at the end of the 1960’s [30], and that of Thomas at the

beginning of the 1970’s [31]. Since then, many studies have been

performed on the dynamical properties of both these models. To

obtain more details on this subject, the reader can refer to [11,32–

34], assuming that this list is not exhaustive. According to us,

threshold Boolean automata networks constitute a relevant model in

this field of genetic regulation networks. Of course, our claim here is

not to argue that this mathematical model allows a perfect

representation of the biological reality (e.g. there is no consideration

of spatial aspects) but that it allows to represent genes interactions at

a certain level of abstraction which provides an interesting

theoretical framework. Let us notice that this model was first used

at the end of the 1990’s in the context of genetic regulation [35] to

model the floral morphogenesis of the plant Arabidopsis thaliana.

In this work, we have decided to focus on threshold Boolean

automata networks whose evolution is governed by a deterministic

updating rule. In this context, a network N is a set of n nodes

which interact over time. Each node has two possible states,

named activity states. If we call x(t)~(xi(t))i[N [ V~f0, 1gn
the

current configuration of the network N at time t, the states of the

nodes of this configuration are defined by:

Vi [ N, xi(t)~
0 if i is inactivated,

1 otherwise:

�

As mentioned earlier, the structure of a threshold Boolean

automata network N can be represented by a labelled directed

graph called its interaction graph. In this graph, each arc (j, i) is

labelled by an interaction weight, wij [ R. The sign of wij depends on

the activating or inhibiting nature of the interaction that node j has

on node i. If wijw0 (resp. wijv0), then node j is said to be an

activator (resp. a repressor) of node i. If wij~0, then node j does not

act on node i (and the arc (j,i) does not exist in the interaction

graph of the network). Let us write DND the number of nodes of the

network N and N i to refer to the neighbourhood of node i, that is,

the set of nodes which are activators or repressors of node i. Then,

j [ N iuwij=0 (which is also equivalent to the arc (j,i) belonging

to the network interaction graph). We define the interaction matrix

WDND|DND (also called the synaptic weights matrix in the context of

neural networks) of the network. Its coefficient wij is the

interaction weight that node j has on node i. In the interaction

graph of the network, each node is also labelled by a value called

its activation threshold. It represents the necessary quantity of

interaction potential a node needs to become activated. We define

the DND-dimensional vector H as the threshold vector in which the

coefficient hi [ R gives the activation threshold of node i.

Now, we can describe the temporal evolution of a threshold

Boolean automata network. Informally, the new state of an

arbitrary node i at time step tz1 depends on the sum of the

interaction weights coming from its activated neighbours at time

step t. If this sum is greater than the activation threshold hi, then

the new state of node i equals 1. It equals 0 otherwise. Formally,

the local transition function is defined by:

xi(tz1)~H(Hi(x(t)){hi),

where H is the Heaviside step function (H(x)~1 if xw0 and

H(x)~0 if xƒ0) and Hi(x(t))~
P

j[N i
wij
:xj(t) is the interaction

potential of node i.

A question that unavoidably rises when one studies the

dynamical behaviour of a threshold Boolean automata network

is that of the choice of an iteration mode, that is, the order

according to which the local transition functions of the nodes are

executed in order to update their states. Traditionally, studies on

these kinds of networks have chosen either the parallel iteration mode

(at each time step, the states of all nodes are updated

simultaneously as suggested in the definition of local transition

function given above) or a sequential iteration mode (at each time step,

the state of one node is updated, which node that is depends on a

predefined ordering of the nodes). These two particular iteration

modes are also known respectively as the totally synchronous and the

asynchronous iteration modes. A more general iteration mode which

can be used is a block-sequential iteration mode: nodes are grouped into

disjoint blocks; the states of nodes belonging to a same block are

updated in parallel while the blocks themselves are updated

sequentially. This kind of iteration mode is also called partially

synchronous (or even synchronous) in other contexts. Parallel and

sequential iteration modes are particular cases of block-sequential

iteration modes. The number of block-sequential iteration modes

in a network composed of n nodes equals the number of ordered

partitions of a set of cardinal n. Thus, if we denote by Un the

number of block-sequential iteration modes for a network

composed of n nodes, we have (see [36]):

Un~
Xn{1

i~0

n

i

� �
:Ui where U0~1:

Understanding the precise impact of iteration modes on networks

is, however, not the central objective of this work. For more

information on this problematic, the reader can refer to

[5,6,8,28,29].

Model of the Floral Morphogenesis Genetic Regulation
Network

As explained above, our aim is to propose a method to study the

influence of boundary conditions on genetic regulation networks.

Robustness in Complex Systems
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To describe this method here we have chosen to apply it to the

analysis of an illustrative network. All key notions, however, are

described in a generic manner and every step of the analysis we

present can be generalised in order to examine methodically how

boundary elements act on any real genetic regulation network.

The network we chose to serve as our ‘‘toy model’’ is that of the

genetic regulation of the floral morphogenesis of the plant

Arabidopsis thaliana. Working on this network will allow us, in

particular, to explain formally a real biological phenomenon

observed only experimentally until now: the influence of

gibberellin on the development process of the flower of Arabidopsis

thaliana. The influence of this hormone will be explained later by

studying how its presence or absence acts on the asymptotic

dynamical properties of the underlying network. Before that, in

this section, we present the network. More precisely, we first

present the original genetic regulation network of the floral

morphogenesis of Arabidopsis thaliana, as it was introduced by

Mendoza and Alvarez-Buylla [35] in 1998. To highlight some of

its dynamical properties, we show it to be equivalent, in a way that

we explicit later, to a simpler network that we call reduced Mendoza

& Alvarez-Buylla network. Using this reduced network, we will

introduce the notion of general iteration graph. This will allow us

to explain our choice of a particular iteration mode used in the

sequel. Then, we describe the variant, inspired by new biological

data, of the original network that will serve as our ‘‘toy model’’ and

on which we will apply this particular iteration mode.

Original Mendoza & Alvarez-Buylla Network
This section gives a presentation of the original genetic

regulation network of the floral morphogenesis of Arabidopsis

thaliana, also called original (Mendoza & Alvarez-Buylla) network in the

sequel. In particular, we focus on its structural and dynamical

properties and prove formally why its asymptotic dynamical

behaviour can only lead to attractors of period less or equal than 2,

whatever the iteration mode is. Following this, we choose an

arbitrary iteration mode with which the study of the dynamics of

the network will be carried out and justify this choice with an

explanation at the frontier between mathematics and biology.

In [35], the authors isolated twelve genes of the plant Arabidopsis

thaliana involved in its floral morphogenesis: EMBRYONIC FLOWER 1

(EMF1), TERMINAL FLOWER 1 (TFL1), LEAFY (LFY), APETALATA 1 (AP1),

CAULIFLOWER 1 (CAL), LEUNIG (LUG), UNUSUAL FLORAL ORGANS (UFO),

AGAMOUS (AG), APETALATA 3 (AP3), PISTILLATA (PI), SUPERMAN (SUP). A

genetic algorithm was used to obtain the interactions between

these genes as well as their potentials. From this, Mendoza and

Alvarez-Buylla chose to define interaction weights and activation

thresholds as signed integers (Vi, j, wij [ Z and hi [ Z). Thus, they

proposed a genetic regulation network for the floral morphogen-

esis of the plant Arabidopsis thaliana: the original Mendoza & Alvarez-

Buylla network. This network, that we denote by N, is represented in

Figure 2. Its dynamics, revealed by mathematical study, turned out

to be particularly close to the reality of the development of the

flower.

Considering a specific block-sequential iteration mode, Men-

doza and Alvarez-Buylla observed that the configurations of their

original network are separated into six attraction basins, all leading

to fixed points (cf. Table 1). One interesting point of their study is

that, among these six fixed points, four exactly correspond to the

four specific tissues of the flower (sepals, petals, carpels and

stamens), one corresponds to inflorescence meristematic cells and

the last one corresponds to cells that have not yet been seen in

nature but that are said to be potentially experimentally induced

(see [35] for more details). In the following tables and figures, the

names of the six different types of cells are abbreviated: we use Sep

for sepal, Pet for petal, Car for carpel, Sta for stamen, Inf for

inflorescence, and Mut for the unobserved ‘‘cell’’ (the ‘‘mutant’’

one).

As mentioned earlier, there are many iteration modes according

to which the states of the elements of a network can be updated.

When studying the dynamics of deterministic threshold Boolean

automata networks modeling real genetic regulation networks, the

choice of the iteration mode is far from being trivial for

mathematical as well as for biological reasons.

First of all, from the mathematical point of view, studies have

shown that different iteration modes can yield significantly

different dynamical behaviours for certain threshold Boolean

automata networks [5,8]. The set of threshold Boolean automata

networks can be divided into the four following classes according

to their robustness against changes of their iteration mode [6,36],

i.e., changes in their asymptotic behaviour depending on the

iteration mode:

N FP (for ‘‘fixed point’’): whatever the iteration mode, every

initial configuration of the network evolves towards a fixed

point;

N LC (for ‘‘limit cycles’’): whatever the iteration mode, every

initial configuration of the network evolves towards a limit

cycle;

N BO (for ‘‘both’’): whatever the iteration mode, some initial

configurations evolve towards a fixed point, others evolve

towards a limit cycle, so that the asymptotic behaviour of the

network always admits at least one fixed point and one limit

cycle;

N EV (for ‘‘evolution’’): this subset contains the most sensitive

networks; depending on the iteration mode, either every initial

configuration evolves towards a fixed point, or some of them

evolve towards a fixed point and others towards a limit cycle.

As said before, in [35], the original Mendoza & Alvarez-Buylla

network was iterated according to a specific block-sequential

iteration mode yielding six fixed points. However, it is important

to mention that the network can be shown to belong to the class

EV which contains networks whose dynamical robustness appears

to be the most complex. Thus, although there are other iteration

modes, such as sequential iteration modes, that yield the same

asymptotic behaviour as the block-sequential iteration mode

chosen by Mendoza and Alvarez-Buylla, there also are other

iteration modes, such as the parallel one, for which the evolution

of the network leads to the same six fixed points but also to seven

limit cycles of period equal to 2 (see Table 1). To understand more

precisely the dynamics of the original network, let us recall some

theoretical results given by Goles in [29,37,38]:

Theorem 1 If the interaction matrix W of a threshold Boolean automata

network is symmetric, then the period of its attractors is no more than 2 for any

iteration mode.

Theorem 2 If the interaction matrix W of a threshold Boolean automata

network is symmetric and such that all coefficients in its diagonal are non-

negative, then the period of its attractors equals 1 for any sequential iteration

mode.

We now use both these theorems to explain the dynamics of the

original network. Further, we will show how the original Mendoza

& Alvarez-Buylla network can be reduced (in terms of arcs) to

another whose asymptotic dynamics is equivalent. Then, using this

reduced network, we will introduce the notion of general iteration

graph which will argue for the choice of an arbitrary sequential

iteration mode to study the dynamical behaviour of these genetic

regulation networks.

Robustness in Complex Systems
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Proposition 1 For all iteration modes, the dynamics of the original

Mendoza & Alvarez-Buylla network converges either towards fixed points or

towards limit cycles of period 2.

Proof We show that there exists a network eNN, called the reduced

Mendoza & Alvarez-Buylla network, which is asymptotically equivalent to

the original network [6,39], that is, both networks, N (the original

Mendoza & Alvarez-Buylla network) and eNN, have the same

attractors. The dynamics of the network eNN being governed by two

non-trivial strongly connected symmetric components (all nodes

not belonging to these components necessarily end up, within a

few steps, having a stable state), theorems 1 and 2 can then be

applied.

To build the network eNN, we first derive immediately from the

interaction graph of N (see Figure 2) that for all block-sequential

iteration modes, the states of several nodes become fixed after a

few time steps. Indeed, there are no nodes acting on nodes LUG,

UFO and SUP (N LUG~NUFO~N SUP~ 6 0) and their activation

thresholds all equal 0 so that as soon as the first update of these

nodes:

xLUG(t)~xUFO(t)~xSUP(t)~H(0{0)~0:

The self-activation of node EMF1 and the absence of any other

interaction on this node (N EMF1~fEMF1g) guarantees its state to

be constant and equal to its initial value:

Figure 2. Original Mendoza & Alvarez-Buylla network. Original genetic regulation network modeling the flower morphogenesis of the plant
Arabidopsis thaliana. Above is pictured the underlying interaction graph. Repressions (resp. activations) are represented by empty arrows (resp. full
arrows). Below, the matrix W of size 12|12 contains the interaction weights between genes and H is the thresholds vector.
doi:10.1371/journal.pone.0011793.g002

Table 1. Attractors of the original Mendoza & Alvarez-Buylla
network.

Attractors Sequential Parallel
Cell
types

Fixed point 1 000100000000 000100000000 Sep

Fixed point 2 000100010110 000100010110 Pet

Fixed point 3 000000001000 000000001000 Car

Fixed point 4 000000011110 000000011110 Sta

Fixed point 5 110000000000 110000000000 Inf

Fixed point 6 110000010110 110000010110 Mut

Limit cycle 1 – 000100010000 000100000110 None

Limit cycle 2 – 000000000000 000100001000 None

Limit cycle 3 – 000000010000 000100001110 None

Limit cycle 4 – 000000000110 000100011000 None

Limit cycle 5 – 000000010110 000100011110 None

Limit cycle 6 – 000000001110 000000011000 None

Limit cycle 7 – 110000000110 110000010000 None

Attractors of the original Mendoza & Alvarez-Buylla network dynamics for the
sequential and parallel iteration modes and the corresponding cell types. In the
descriptions of each configuration, genes are ordered as follows: EMF1, TFL1, LFY,
AP1, CAL, LUG, UFO, BFU, AG, AP3, PI, SUP.
doi:10.1371/journal.pone.0011793.t001

Robustness in Complex Systems
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xEMF1(t)~H(xEMF1(t{1))~xEMF1(t{1)~xEMF1(0):

As for node LFY, its activation potential

HLFY(x(t))~{2:xEMF1(t{1){xTFL1(t{1)z

2:xAP1(t{1)zxCAL(t{1)

is never greater than 3. And since hLFY~3, as soon as its first

update, the state of node LFY also becomes constantly equal to 0:

xLFY(t)~H(HLFY(x(t{1)){3)~0:

Consider now node CAL. The only node acting on its state is node

LFY which we have shown to be inactivated after a certain amount

of time. Thus:

xCAL(t)~H(2:xLFY(t{1){1)~H({1)~0:

Similarly, the state of node TFL1 depends only on states of nodes

that become fixed so that its own state also becomes fixed:

xTFL1(t)~H(xEMF1(t{1){2:xLFY(t{1){0)~

H(xEMF1(0))~xEMF1(0):

Consequently, the seven genes LUG, UFO, SUP, EMF1, LFY, CAL, and

TFL1, do not act directly on the dynamics of the network. They

serve as a kind of release mechanism for the dynamics whose impact

vanishes after some time (at most after 2|12 iterations, i.e., after

two updates of every node, in the case of a sequential iteration

mode). On the contrary, the five other nodes, AG, AP1, PI, AP3, and

BFU, play a significant part in the network dynamics.

Nodes AG and AP1 interact with one another but otherwise

depend only on nodes whose states become fixed so that:

xAG(t)~

H({2:xTFL1(t{1)zxLFY(t{1){2:xAP1(t{1){xLUG(t{1){1)

~H({2:xTFL1(0){2:xAP1(t{1){1)

and:

xAP1(t)~H({xEMF1(t{1)z5:xLFY(t{1){xAG(t{1){1)

~H({xEMF1(0){xAG(t{1){1)

~H({2:xEMF1(0){2:xAG(t{1){2):

In the last expression above, without changing the local interaction

function of AP1, we have doubled all quantities intervening in its

interaction potential. This way, we may redefine the activation

threshold of AP1 as well as the weight of the interaction that AG has

on AP1 so that hAP1~{2 and wAP1,AG~wAG,AP1~{2. Thus, we

may define fAP1,AGg as a strongly connected symmetric

component in eNN. With similar arguments for nodes AP3, PI and

BFU, for a big enough t, we obtain, :

xAP3(t)~H(xBFU(t{1)),

xPI(t)~H(xBFU(t{1))

and:

xBFU(t)~H(xAP3(t{1)zxPI(t{1){1):

We may thus define fAP3,BFU,PIg as another strongly connected

symmetric component of eNN. Respecting all constraints found

above, we finally construct eNN as pictured in Figure 3. Since the

dynamics of eNN only depends on the nodes of the two non-trivial

strongly connected symmetric components fAP1,AGg and

fAP3,BFU,PIg, the necessary and sufficient conditions of theorems

1 and 2 hold for eNN and by its construction, for N as well.

In the proof of Proposition 1, we have build a simpler version of

the original network N (see Figure 3) which, by construction, has

the same asymptotic behaviour as N. This reduced Mendoza &

Alvarez-Buylla network eNN allows an intuitive understanding of the

dynamics of N and of the role played by each node in this

dynamics. In particular, Proposition 1 explains why sequential

dynamics on the Mendoza & Alvarez-Buylla network yield only

fixed points whereas the parallel iteration mode yields, as well as

these fixed points, some limit cycles of period 2. All in all, N and eNN
do not, however, behave identically (their behaviour may differ for

a few time steps). Thus, in order to stay in adequation with the

biological knowledge and keep the same attraction basins (and not

just attractors), the rest of our work, and in particular our ‘‘toy-

model’’, is based on the original Mendoza & Alvarez-Buylla

network.

As mentioned above, different iteration modes of the original

network, may lead to different dynamics. Thus, relying solely on

mathematical considerations, one cannot justify reasonably the use

of one specific iteration mode rather than another. From the

biological point of view, the lack of knowledge concerning the

order of gene regulations does not give either any argument

allowing to choose appropriately one iteration mode. Nevertheless,

biologists’ community tends to agree that the probability that the

genes involved in a same cellular physiological function evolve in

parallel is almost null, particularly in the presence of noise. Thus,

one central question is: under what conditions do genes

trajectories move across an attraction basin separatrix depending

or not on their synchrony [40–43]? It does not seem reasonable to

think that each gene (and, in particular, its expression) is subjected

to a specific genetic biological clock and that all the biological

clocks are synchronised, for instance by the dynamics of the

chromatin which allows or not the synchronous genes transcrip-

tion. This dynamics is partly unknown, but has to be compatible

with the observed asymptotic behaviour of the genetic networks.

For example, in the framework of the floral morphogenesis of

Arabidopsis thaliana, the parallel iteration mode induces limit cycles

(see table 1) that are not actually known to have any biological

meaning. Original studies of theoretical biology [30,31] about

discrete models for genetic regulation networks tend to emphasise

the use of sequential iteration modes. In the sequel, following in

line with Kauffman and Thomas we concentrate on a sequential

updating of the network. Although the choice of the sequential

iteration mode is arbitrary, we may argue that the principal

properties of the network asymptotic dynamics still are captured.
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To see why, let us first recall that fixed points do not depend on

the iteration. As for limit cycles, we claim that not all are

meaningful in a sense that we are about to clarify. Let us define the

general iteration graph associated to a network N whose interaction

graph is G~(V, A). In this general iteration graph, nodes

represent configurations and a configuration x has out-degree

DP(V)D{1 (i.e., the size of the power set of V minus 1 corre-

sponding to the empty set, a power set P(S) of a set S being the set

of all subsets of S). There exists an arc from configuration x to

configuration y if there is a subset U of V such that, updating all

nodes of U synchronously (and leaving the states of all nodes of

V\U unchanged), y is reached from x in one step. Note that

general iteration graphs generalise the iteration graphs of all block-

sequential iteration modes. We have constructed the general

iteration graphs of both strongly connected symmetric components

fAP1,AGg and fAP3,BFU,PIg of the reduced Mendoza & Alvarez-

Buylla network constructed in the proof of Proposition 1. These

graphs are represented in Figures 4 and 5. From them, we derive

that the set C of configurations belonging to the limit cycles

observed with the parallel iteration mode (restricted to genes AG,

AP1, AP3, PI and BFU), are highly improbable to be reached. Indeed,

not only very few arcs of the general iteration graph lead to this set

C but also, almost all of the outgoing arcs of the configurations

x [ C lead to configurations that are not in C. In other words,

starting in one particular configuration, the network has very few

chances to end in a configuration of C and, if ever it does, the

chances are that it will leave it very quickly. Assuming that it is

doubtful that real networks such as the one commanding the floral

morphogenesis of Arabidopsis thaliana may obey infallibly the exact

same updating order of their genes, we believe that general

iteration graphs do indeed provide evidence of some attractors

unlikeliness, as is the case for the limit cycles of the Mendoza &

Alvarez-Buylla network observed with the parallel iteration mode.

Thus, from now on, we will ignore the possible but improbable

limit cycles of the original network and concentrate on its fixed

points. Following this choice, Proposition 1 allows us to select

arbitrarily one sequential updating mode.

Variation around the Original Mendoza & Alvarez-Buylla
Network: the ‘‘Toy Model’’

The purpose of this section is to present the main properties of

the dynamics of a new genetic regulation network, which is a

variation of the original Mendoza & Alvarez-Buylla network that

allows to account for the influence of gibberellin (GA). The study of

the influence of this boundary element on the dynamical

behaviour of the network, the consequences of its absence or

presence, will be carried out in the next sections.

We build the new network N’ from the original network

described in [35]. First, we add to it all the non hypothetical

interactions presented in [44] (without adding any new vertices).

More precisely, we add the three following inhibitions, assuming

that their interaction weight is minimal: LFY{
{1?EMF1, AP1{

{1?TFL1

and TFL1{{1?AP1. In [19], Yu et al. explain that gibberellin reduces

the stability of a specific protein, which is the product of a gene

called REPRESSOR OF GA (RGA). More precisely, they report that ‘‘GA

promotes the expression of floral homeotic genes by antagonizing

the effects of DELLA proteins, thereby allowing continued flower

development.’’ By the terms ‘‘floral homeotic genes’’, the authors

mean AG, AP3 and PI; by ‘‘DELLA proteins’’, they refer in particular

Figure 3. Reduced Mendoza & Alvarez-Buylla network. Genetic regulatory network with two non-trivial strongly connected symmetric
components (in grey). The asymptotic dynamics of this network has the same attractors as the original network.
doi:10.1371/journal.pone.0011793.g003
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to RGA. In the context of threshold Boolean automata networks,

there are two ways of interpreting this result. The first one is to

consider that RGA is a repressor of AG, AP3 and PI and GA is a

repressor of RGA. The second one is to consider that GA is an

activator of AG, AP3 and PI and RGA is a repressor of GA. It is

important to note that the instantiation of these two interpretations

leads to the same results. Moreover, Yu et al. mention that,

according to recent studies, GA overcomes the function of DELLA

repressors by inducing degradation of their proteins. For sake of

coherence with this statement, we have chosen to instantiate the

first interpretation, in which RGA inhibits the expression of AG, AP3

and PI and GA inhibits the expression of RGA. Subsequently, we add

to the network one node representing RGA and the four following

interactions: RGA{{1?AG, RGA{{1?AP3, RGA{{1?PI and RGA{{1?RGA. An

illustration of this new network is given in Figure 6. By definition

of threshold automata networks, what emerges from the structure

of this new network is that: when gibberellin is present, the state of

gene RGA is fixed to 0 and, when it is absent, its state can be either

0 or 1. Note that we add the fourth interaction, the RGA self-

activation, to convey the ability RGA has to maintain itself activated

in the absence of gibberellin. The values we chose to give to the

weights of the new interactions are voluntarily minimal (i.e., their

absolute value is equal to 1) because of our wish to focus more on

the structure of the network than on the specific values which have

little chance to be realistic anyway. Let us eventually point out that

gene RGA is a boundary node of the network according to the

mathematical definition given earlier.

In order to make easier the understanding, in the notation of an

arbitrary configuration x, we will isolate node RGA as follows:

x~

(xRGAjxEMF1xTFL1xLFYxAP1xCALxLUGxUFOxBFUxAGxAP3xPIxSUP):

Now that the major elements have been described and defined,

we are going to focus on the influence that the peripheral gene

RGA has on the dynamics of the regulation network. This study is

going to show why the absence of gibberellin impedes the normal

development of the flower and conversely why its presence

promotes it and thereby guarantees its reproduction. As said

before, this study is performed on a specific example of real

genetic regulation network but the reader has to keep in mind

that the method provided is theoretically applicable to under-

stand or explain the influence of boundary conditions on any

discrete dynamical system, with a particular relevance in the

context of genetic regulation networks whose asymptotic

dynamical behaviour leads to attractors corresponding to cellular

tissues. We will discuss later that, in practice, using this approach

and drawing some significant results from it is, of course, limited

by the inherent exponential computational complexity of any

discrete dynamical system. In the sequel, we are going to

emphasise that attraction basins are relevant gauges to highlight

the influence of boundary conditions on discrete dynamical

systems. More precisely, they give good indications on the

dynamical properties of a system. Thus, as our objective is to

understand and highlight the mathematical properties induced by

the absence/presence of gibberellin on the floral morphogenesis

of Arabidopsis thaliana, we have chosen to show the differences

between the dynamical behaviour of the genetic regulation

network when the state of the boundary gene RGA can change

(absence of gibberellin) and when it is fixed to 0 (presence of

gibberellin).

For reasons given above, the following study will be based on

the sequential iteration mode (whose induced asymptotic dynamics

on the network is compared in Table 7 at page 26 to that of the

block-sequential iteration mode chosen by Mendoza & Alvarez-

Buylla in [35]) defined by the following ordered partition of the set

of nodes of our toy network N’:

Figure 4. General iteration graph of the strongly connected
symmetric component {AP3, BFU, PI}. General iteration graph of the
strongly connected symmetric component fAP3,BFU,PIg of the
reduced Mendoza & Alvarez-Buylla network eNN pictured in Figure 3. In
this graph, for the sake of clarity, we have represented nw1 arcs with
the same beginning and ending as one unique arc labelled by n. The
sub-graph in grey corresponds to a limit cycle of the connected
component with the parallel iteration mode. It induces limit cycles 1, 3,
4, 6 and 7 of Table 1. Note that when the state of nodes LFY, UFO and SUP

is fixed to 0 in eNN (this always becomes true after a few steps according
to the proof of Proposition 1), then the connected component
fAP3,BFU,PIg is free to evolve as pictured by this general iteration
graph.
doi:10.1371/journal.pone.0011793.g004

Figure 5. General iteration graph of the strongly connected
symmetric component {AP1, AG}. General iteration graph of the
strongly connected symmetric component fAP1,AGg of the reduced
Mendoza & Alvarez-Buylla network eNN pictured in Figure 3 (a) when the
states of nodes EMF1 and TFL1 are both fixed to 0 and (b) when they are
both fixed to 1. In this graph, for the sake of clarity, we have
represented nw1 arcs with the same beginning and ending as one
unique arc labelled by n. The sub-graph in grey is a limit cycle of the
connected component with the parallel iteration mode. It induces limit
cycles 2, 3, 4 and 5 of Table 1. Note that when the state of nodes LFY and
LUG is fixed to 0 in eNN (this always becomes true after a few steps
according to the proof of Proposition 1), then the connected
component fAP1,AGg is free to evolve as pictured by one of these
two general iteration graphs since no other nodes than EMF1 and TFL1
whose states are either both 0 or both 1 have an influence on them.
doi:10.1371/journal.pone.0011793.g005
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(fRGAg,fEMF1g,fTFL1g,fLFYg,fAP1g,fCALg,

fLUGg,fUFOg,fBFUg,fAGg,fAP3g,fPIg,fSUPg):

Now, considering this iteration mode, when the state of the peripheral

node RGA is equal to 0, obviously, the network N’ evolves towards the

same six fixed points as the original network N. When, the state of

RGA equals 1, however, we obtain two supplementary fixed points.

Since the six different cell lineages are defined independently of the

state of the RGA gene, we can identify one of these two fixed points

with the sepal lineage and the other with the inflorescence lineage (see

Table 2). Then, merging attractors as well as attraction basins

corresponding to identical cellular types will allow us to simplify our

study by reducing the number of these sets from eight to six. More

precisely, we will assume that the attraction basin of the sepal lineage

is the union of the attraction basins of the fixed points

(0D000100000000) and (1D000100000000) and the attraction basin

of the inflorescence cells is the union of the attraction basins of the

fixed points (0D110000000000) and (1D110000000000). Hence, in

both the cases of the absence and the presence of gibberellin, we

retrieve exactly six attraction basins and attractors. This will ease

comparisons between the results obtained in both cases.

In the following section, we propose to concentrate on the

impact that gibberellin has on the attraction basins of the genetic

regulation network N’. To do this, we focus on three different

attraction basin properties: their absolute and relative sizes, their

Figure 6. Toy model. Variation of the original Mendoza & Alvarez-Buylla network. This version of the network includes a supplementary node
corresponding to gene RGA (in dashed lines) to account for the gibberellin’s influence on the rest of the network. Above is pictured the interaction
graph of this network. Repressions (resp. activations) are represented by empty arrows (resp. full arrows). Nodes and interactions added to the
original network are indicated in dashed grey. The matrix W’ of size 13|13 contains the interaction weights. H’ is the activation thresholds vector.
doi:10.1371/journal.pone.0011793.g006

Table 2. Fixed points of the toy model N’ and the
corresponding floral tissues of Arabidopsis thaliana.

Mathematical fixed point
Biological
tissue

(0D000100000000) Sep

(1D000100000000) Sep

(0D000100010110) Pet

(0D000000001000) Car

(0D000000011110) Sta

(0D110000000000) Inf

(1D110000000000) Inf

(0D110000010110) Mut

doi:10.1371/journal.pone.0011793.t002
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relative distances (this notion will be defined later) and their

robustness against stochastic state perturbations. Before detailing

our scientific generic approach and presenting the major results

obtained concerning the influence of gibberellin on the floral

morphogenesis of Arabidopsis thaliana, let us give some intuition

about the relevance of these three attraction basin properties. First

of all, because we do not want to introduce any bias in favour or in

disfavour of any initial configuration, our study is set on the

hypothesis that any configuration has same chances to be chosen

initially, i.e., the random choice of initial configurations is done

uniformly. Thus, conclusions that are drawn in the sequel may be

considered true even if there are no privileged initial conditions,

that is, in particular, even if configurations of the floral basins are

as likely as any other. Said otherwise, our results give an

information on the tendencies of the system evolution as long as

initial conditions do not present a strong bias in favour of the

mutant/inflorescence basins. Considering that nature does seem to

ease the development of the floral basins, we believe that the

hypothesis of uniformity does convey some reasonable and

meaningful information.

Let us now consider an arbitrary attraction basin B(Ak) of

a discrete dynamical system. The relative size of B(Ak) yields

the probability to choose, randomly and uniformly, an initial

configuration in this attraction basin. Thus, if the discrete

dynamical system studied is a genetic regulation network and

Ak is an attractor corresponding to a real cellular type, then the

relative size of B(Ak) gives an indication on the probability that

the physiological function represented by the network is to create a

cell of the lineage corresponding to Ak. Relative distances between

attraction basins give an insight of the probabilities for an initial

configuration belonging to an attraction basin B(Ak), once

perturbed, to become a configuration of another attraction basin

B(A‘). Let B(Ak), B(A‘) and B(Am) be three different attraction

basins. If the relative distance from B(Ak) to B(A‘) is smaller than

the one from B(Ak) to B(Am), small perturbations on an arbitrary

configuration belonging to B(Ak) have more chances to change it

into a new configuration belonging to B(A‘) than into one

belonging to B(Am). The final step of our approach is to go further

studying rigorously the robustness of the dynamical behaviour

of a discrete dynamical system against stochastic state perturbations

depending on a state perturbation rate denoted by a (using

attraction basins as gauges). In our toy model, this last step allows

us to prove that the presence of gibberellin significantly increases

the probabilities for the flower of Arabidopsis thaliana to develop

normally and, further, that its presence is a necessary condition for

floral morphogenesis.

Results

Sizes and Relative Distances
In this section, we first detail the results on the influence of

gibberellin drawn from the study of the relative sizes of the

attraction basins of the network N’. Then, we focus on what can

be learnt from an analysis of relative distances between all ordered

couples of attraction basins. Let us recall that all the results of this

section, on the attraction basins sizes as well as on their relative

distances, are based on the hypothesis of uniformity discussed

previously.

Absolute and Relative Sizes of Attraction Basins
Let us first define formally the notions of absolute and relative

sizes of an attraction basin.

Definition 1 The absolute size of an attraction basin B(Ak) of a

discrete dynamical system S~(X, T, f) is the cardinal of B(Ak).

Definition 2 The relative size S(B(Ak)) of an attraction basin B(Ak)
of a discrete dynamical system S~(X, T, f) is:

S(B(Ak))~
DB(Ak)D

DXD
:

Our toy network N’ is composed of n~13 nodes. Its total

number of possible configurations is therefore equal to 213~8192
when the state of gene RGA is free (absence of gibberellin) and to

half of that, 212~4096, when the state of RGA is fixed to 0
(presence of gibberellin). Figure 7 presents in two histograms, the

absolute and relative sizes of every biological attraction basin of

the network.

Comparing the absolute sizes of attraction basins, we derive that

the 212 configurations in which the state of RGA is 1 (this can only

be observed when there is no gibberellin flow) are only distributed

into two attraction basins, that corresponding to the sepal lineage

and that corresponding to the inflorescence lineage: three quarters

Figure 7. Attraction basins sizes. Histograms representing the absolute sizes (left panel) and the relative sizes (right panel) of the attraction
basins of the genetic regulation network of the floral morphogenesis of the plant Arabidopsis thaliana, depending on the absence or presence of
gibberellin.
doi:10.1371/journal.pone.0011793.g007
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of the configurations in which the RGA state is 1 are sepal

configurations and one quarter of them are inflorescence

configurations. Computations that compared configurations

contained in each attraction basin according to the absence/

presence of the hormone allowed us to detail the contents of the

Sep and Inf basins when there is no hormone. On one hand, the Sep

basin in absence of gibberellin contains all the 2|1344
configurations (0Dx) (in which xRGA~0) and (1Dx) (in which

xRGA~1) where x is one of the 1344 configurations contained in

the Sep basin when there is some hormone. It also contains all the

192z1344z192 configurations (1Dx) where x is a configuration

belonging to one of the floral basins (Pet, Car, Sta) in presence of

gibberellin. On the other hand the Inf basin in absence of

gibberellin contains all configurations (0Dx) and (1Dx) where x is a

configuration belonging to the Inf basin in presence of the

hormone, as well as all configurations (1Dx) where x is a

configuration belonging to the Mut basin in presence of the

hormone. These observations are confirmed by the sizes of each

attraction basin in the the case where the RGA node is free to take

any state, in the case where its state is fixed to 0, and in the case

where it is fixed to 1. These sizes are given in Table 3.

Attraction basins corresponding to other cell lineages have the

same absolute size whether gibberellin is present or not. This

explains why their relative sizes are twice as big when RGA is fixed to

0 than when it can take any state. Now, as discussed above, in the

field of genetic regulation networks, the relevance of the relative

sizes of attraction basins lies in the fact that they convey how likely

the system is to create a cellular tissue corresponding to a specific

attractor. Thus, the likeliness of configurations corresponding to

petal, stamen, carpel and mutant tissues is doubled when RGA is

fixed to 0. The biological meaning of this is that in presence of

gibberellin, the plant can create twice more petals, stamens and

carpels. In particular, the presence of gibberellin brings 32:82% of

the configurations towards the biological attractor of carpels, while

only 16:41% of the configurations evolve towards this attractor

when gibberellin is absent. This is important because carpels are

the female genital organs of the plant. Thus, they are necessary for

its floral development and their presence guarantees the ability of

the plant to reproduce itself. Furthermore, let us point out that the

absence of gibberellin also creates an important disequilibrium

between the sizes of attraction basins at the expense of most floral

tissues (sepals, petals, carpels and stamens): when the boundary

node RGA can change its state, the differences in the proportions of

the different attraction basins is accentuated. 54:91% (resp.

23:44%) of the initial configurations lead to sepal cells (resp.

inflorescence cells) whereas only almost 21:09% of them lead to

petal, carpel and stamen cells. Forcing the inhibition of the

boundary significantly reduces this disequilibrium. Biologically,

this means that the inhibition of RGA forced by the flow of

gibberellin (ga) significantly improves the chances that the plant

has to develop normally. This was experimentally observed in

[19].

Relative Distances Between Attraction Basins
Another pertinent measure of the influence of gibberellin on the

dynamical behaviour of the floral morphogenesis of Arabidopsis

thaliana is given, we believe, by the differences in the global

distances separating attraction basins. When we choose arbitrarily

a cell in the flower of Arabidopsis thaliana, although it contains the

same genetic material as the other cells, it has specialised itself to

code for a specific physiological function. This function may

correspond to one of the four floral tissues, sepal, petal, carpel or

stamen. However, it is possible that specific biological events or

elements can perturb this cell into making it specialise to code for a

different physiological function. We may reasonably suppose that

when this happens, the cell is more likely to adopt one of the

cellular types that are the closest, from a biological point of view,

to its original cellular type. Hence, in this section, we are going to

study distances between attraction basins in order to analyse on

our toy model the impact that random perturbations have on the

evolution of the system or the fate of a cell.

We use a classical notion of distance between configurations: the

Hamming distance as defined below.

Definition 3 Let A be an alphabet and An be the set of words of length

n with letters in A. The Hamming distance dH between any two words

a~(ai)i[½1,n� and b~(bi)i[½1,n� of An is the number of letters that differ in

words a and b, i.e., dH(a, b)~Dfi : ai=bigD.
In order to have a metric between attraction basins, we use the

modified Hausdorff distance between sets that was introduced in [45].

Its basic metric is the Hamming distance:

Definition 4 Let B1 and B2 be two sets of words of same length and

defined on the same alphabet. The relative distance from set B1 to set B2 is

defined by the arithmetic average, over all words w of B1, of the minimal

Hamming distance between w and all words in B2. Formally:

d(B1, B2)~

P
w[B1

(minv[B2
(dH(w, v)))

DB1D
:

Of course, since in particular d(B1, B2)~d(B2, B1) is not

necessarily true, strictly speaking, d is not a distance from the

mathematical point of view (note that the same misuse of language

exists in the graphs theory about the notion of distance between

two vertices in a directed graph). Consequently, we have decided

to use the term relative to qualify this specific notion of distance.

Exhaustively, we computed relative distances between each

ordered couple of attraction basins. The results obtained are

given in Table 4 below.

As we discussed earlier, sepal and inflorescence attraction basins

are the only ones whose absolute sizes are subjected to variations

depending on the presence/absence of gibberellin. Therefore, the

only relative distances that could change according to the

presence/absence of gibberellin are distances from or to one of

these two attraction basins. In reality, distances from petal, carpel

and stamen attraction basins to any other attraction basin do not

undergo any change, neither do any of the distances to the

inflorescence basin (see Table 4). On the contrary, distances from

attraction basins sepal and inflorescence to others do differ

significantly. Let us focus on them.

Table 3. Absolute sizes of the attraction basins in absence/
presence of gibberellin.

xRGA [ f0, 1g xRGA~0 xRGA~1

Sep 4416 1344 3072

Pet 192 192 0

Car 1344 1344 0

Sta 192 192 0

Inf 1920 896 1024

Mut 128 128 0

Absolute sizes of the attraction basins when the state of RGA is free
(xRGA [ f0, 1g), is null (xRGA~0) and is equal to one (xRGA~1).
doi:10.1371/journal.pone.0011793.t003
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Consider first the sepal attraction basin. When the state of

RGA is fixed to 0 (Table 4 (b)), its distances to other basins are

notably smaller than when it is not (Table 4 (a)), especially

d(Sep, Pet), d(Sep, Car) and d(Sep, Mut). Nevertheless, the

order of these relative distances remains the same: carpel basin

stays the closest basin to the sepal basin and mutant basin stays

the furthest. This means, in particular, that in both cases, the

probability that state perturbations acting on initial configura-

tions of the sepal basin will lead to configurations belonging to

the carpel basin remains high (this will be confirmed in the next

section by an analysis on stochastic state perturbations). We can

also observe that the presence of gibberellin tends to bring closer

together the sepal basin and both the petal and carpel basins:

their relative distances fall respectively from 2:61 down to 1:71

and from 1:44 down to 1 when gibberellin appears. This is

meaningful because petals and carpels are cellular types that are

very important to the plant development: petals attract insects

that can transport pollen, and carpels allow reproduction.

Similar results may be derived by focusing on the inflorescence

basin. Indeed, the presence of gibberellin significantly reduces

the distances from inflorescence configurations to carpel and

petal configurations. The distance that is reduced the most is

the distance to the carpel basin, which, again, confirms the

importance of the hormone influence on the floral morphogen-

esis of this plant.

To go further, instead of considering average relative distances,

we are now going to look at the probability distributions of relative

distances, that is, the proportion of configurations c in B(Ai)

Table 4. Relative distances separating attraction basins.

Sep Pet Car Sta Inf Mut

Sep 0:00 2:61 1:44 2:91 1:33 3:59

Pet 1:00 0:00 2:00 1:00 2:33 1:33

Car 1:00 2:71 0:00 1:71 1:33 3:05

Sta 1:00 1:00 1:00 0:00 2:33 1:33

Inf 1:23 3:63 2:10 3:63 0:00 2:13

Mut 2:00 1:50 2:50 1:50 1:00 0:00

(a)

Sep Pet Car Sta Inf Mut

Sep 0:00 1:71 1:00 2:71 1:33 3:05

Pet 1:00 0:00 2:00 1:00 2:33 1:33

Car 1:00 2:71 0:00 1:71 1:33 3:05

Sta 1:00 1:00 1:00 0:00 2:33 1:33

Inf 1:50 3:21 1:50 3:21 0:00 1:71

Mut 2:50 1:50 2:50 1:50 1:00 0:00

(b)

Relative distances separating attraction basins, (a) when the state of the boundary node RGA is free (absence of gibberellin) and (b) when its state is fixed to 0 (presence
of gibberellin). The distance from the inflorescence attraction basin to the stamen attraction basin, for instance, is read at line Inf and column Sta. It is 3:63 or 3:21

depending on the state of RGA being fixed or not.
doi:10.1371/journal.pone.0011793.t004

Table 5. Relative distances from the sepal attraction basin.

xRGA d~1 d~2 d~3 d~4 d~5 d~6

Pet f0, 1g 17:39 30:43 30:43 17:39 4:36 0:00

0 42:86 42:86 14:28 0:00 0:00 0:00

Car f0, 1g 60:87 34:78 4:35 0:00 0:00 0:00

0 100:00 0:00 0:00 0:00 0:00 0:00

Sta f0, 1g 4:35 30:43 39:13 21:74 4:35 0:00

0 0:00 42:86 42:86 14:28 0:00 0:00

Inf f0, 1g 66:66 33:33 0:00 0:00 0:00 0:00

0 66:66 33:33 0:00 0:00 0:00 0:00

Mut f0, 1g 0:00 14:49 33:33 33:33 15:94 2:90

0 0:00 28:57 42:86 23:81 4:76 0:00

Probability distributions (in percentages) of the relative distances separating configurations of the sepal attraction basin from configurations of other attraction basins.
doi:10.1371/journal.pone.0011793.t005
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whose relative distances to another attraction basin B(Aj) is 1, 2,

etc. Tables 5 and 6 illustrate these distributions when the

attraction basin of origin B(Ai) is, respectively, the sepal basin

and the inflorescence basin. More precisely, they present

numerically the proportions of configurations of the sepal and

the inflorescence attraction basins, respectively, that are at a given

distance to other attraction basins, according to whether the state

of gene RGA is fixed to 0 or not.

From Tables 5 and 6, one may note that fixing the state of RGA

to 0 has several effects on these distances. First, we have seen

earlier that configurations in which the state of RGA is 1 do not

belong to the attraction basins petal, carpel, stamen and mutant

(they all belong either to the sepal basin or to the inflorescence

basin). As a result, in absence of gibberellin, every such

configuration is at least at distance 1 to any of these four attraction

basins. Computations have shown that approximately 70% (resp.

53%) of the configurations of sepal (resp. inflorescence) basin when

there is no gibberellin are configurations in which the state of RGA

is 1. Since the sepal and inflorescence basins contain such

significant proportions of these configurations, we ignore one unit

reductions of maximal relative distances caused by the hormone

presence. Now, let us note that while distances of the sepal basin to

the inflorescence basin are not influenced at all by the presence of

gibberellin (rga state is fixed to 0), maximal distances from sepal

configurations to the petal and to the carpel basins both loose two

units when gibberellin appears. Moreover, the proportion of Sep

configurations at distance 1 of the Pet basin (resp. the Car basin)

undergoes a significant increase from 17:39% (resp. 60:87%) to

42:86% (resp. 100%) when the hormone becomes present. These

observations convey the impact that gibberellin has on the sepal

attraction basin: it draws it much closer to the petal and carpel

basins.

Let us now concentrate on Table 6. Gibberellin tends to reduce

distances from the inflorescence basin to the others, with the

exception of the sepal basin. In particular, we may observe that the

only maximal distances that undergo a two unit reduction are the

maximal distances of Inf configurations to the Car basin. As for the

sepal basin, when there is no gibberellin there are 26:67% more

configurations of the Inf basin that are at distance 1 from the sepal

basin than when there is gibberellin. These 26:67% supplementary

configurations are in reality configurations in which the state of

RGA is 1. Thus, when gibberellin appears and the state of RGA

becomes 0 and these configurations disappear. This significant

difference of proportion is echoed on the probability distribution

of relative distance separating Inf configurations from Car

configurations. Indeed, there are 26:67% more Inf configurations

at distance 1 of the Car basin in presence of gibberellin (the

proportion of these configurations rises from 23:33% to 50% when

the hormone appears).

These results constitute another important step that emphasises

the role of gibberellin on the floral morphogenesis of the plant

Arabidopsis thaliana. Indeed, when there is no gibberellin and the

state of gene RGA is free, the sepal and inflorescence attraction

basins are appreciably further away from the floral basins. The

presence of gibberellin, however, eases transfers of configurations

towards floral basins. To go further in these lines, the next section

introduces an algorithm to study the robustness of attraction basins

against stochastic state disturbances.

Influence of Stochastic State Perturbations on Attraction
Basins

In this section, we present a solution that allows to measure the

propensity of a regulation network, and more generally of any

discrete dynamical system, to change its dynamical behaviour

when it is subjected to state perturbations (under the hypothesis of

uniformity discussed on page 10). More precisely, we study here

how perturbations of the states of genes exerted on an initial

configuration of the network can transform it such that the new

configuration belongs to an attraction basin different from that of

the initial configuration. Although the type of perturbation is

different, the general idea is inspired by the work of Fatès and

Morvan on the robustness of cellular automata against asynchro-

nism [7,10].

We first introduce the algorithm that we implemented to study

exhaustively the effects of stochastic state perturbations on the

attraction basins of a discrete dynamical system with a small

number of elements. This algorithm gives the characteristic

polynomials of the probabilities that perturbed trajectories remain

in their attraction basins of origin, according to a state

perturbation rate a. Then, in order to show the pertinence of

our algorithm in the field of Systems Biology, we present results

obtained by applying it to our toy model, still considering both

kinds of boundary conditions as it has been done in the previous

section.

Table 6. Relative distances from inflorescence attraction basin.

xRGA d~1 d~2 d~3 d~4 d~5 d~6

Sep f0, 1g 76:67 23:33 0:00 0:00 0:00 0:00

0 50:00 50:00 0:00 0:00 0:00 0:00

Pet f0, 1g 0:00 13:33 33:33 33:33 16:67 3:33

0 0:00 21:43 42:86 28:57 7:14 0:00

Car f0, 1g 23:33 46:67 26:67 3:33 0:00 0:00

0 50:00 50:00 0:00 0:00 0:00 0:00

Sta f0, 1g 0:00 13:33 33:33 33:33 16:67 3:33

0 0:00 21:43 42:86 28:57 7:14 0:00

Mut f0, 1g 26:67 40:00 26:67 6:66 0:00 0:00

0 42:86 42:86 14:28 0:00 0:00 0:00

Probability distributions (in percentages) of the relative distances separating configurations of the inflorescence attraction basin from configurations of other attraction
basins.
doi:10.1371/journal.pone.0011793.t006
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Algorithm
Let S~(X, T, F) be an arbitrary discrete dynamical system and

let G~(V, A) be its interaction graph. Here, we suppose that the

system is Boolean, i.e., the states of elements of the system belong

to f0, 1g and X~f0, 1gDVD
. However, the analysis unfolded in this

section and the algorithm that ensues can, conceptually speaking,

easily and naturally be extended to systems whose elements

can have more than just two states. Let us also assume that

the dynamical behaviour of S is perfectly known, i.e. all the

trajectories, the S attractors and the S attraction basins of the

system have, for instance, already been extracted by a simulation

of the evolution over time of the 2DVD possible initial configurations.

We want to measure the influence of stochastic state perturbations

on the attraction basins of the dynamical system S. We introduce a

stochastic parameter, the stochastic state perturbation rate, denoted by

a [ ½0, 1�. This parameter is the uniform probability of a node of

the system to change its state.

Now, let c and c’ be two configurations of the system. The

probability that c turns into c’, because of a random state

perturbation with rate a, equals the probability that the pertur-

bation changes exactly the states of the dH(c, c’) nodes i [ V such

that ci=cj and leaves all others unchanged. This probability

depends on the rate a:

Pa(c?c’)~adH(c,c’):(1{a)DVD{dH(c,c’)

Given two attraction basins B(Ai) and B(Aj), we can derive from

the expression above the probability for any arbitrary configura-

tion c [ B(Ai) to transform into any configuration c’ [ B(Aj):

Pa(B(Ai)?B(Aj))~
1

DB(Ai)D
:
X

c[B(Ai)

X
c’[B(Aj)

P(c?c’)

~
1

DB(Ai)D
:
X

c[B(Ai)

X
c’[B(Aj)

adH(c,c’):(1{a)DVD{dH(c,c’)

~
1

DB(Ai)D
:
X

c[B(Ai)

X
kƒDVD

ak(c):ak:(1{a)DVD{k,

where ak(c) is the number of configurations c’ [ B(Aj) that are at

distance k of c, i.e., such that dH(c, c’)~k. We call this probability

the probability of passage from one attraction basin to another. As

discussed above, if the discrete dynamical system S is sufficiently

small, thanks to an attractor extraction phase, all quantities

involved in the expression of Pa(B(Ai)?B(Aj)), excepted the

unknown stochastic state perturbation rate a, can be obtained.

Thus, probabilities of passage Pa(B(Ai)?B(Aj)) can be seen as

polynomials whose indeterminates are the rate a. These

polynomials are the characteristic polynomials of the probabilities

of passage. The purpose of the algorithm of Figure 8 is precisely to

compute all of these polynomials (i.e., all the expressions

Pa(B(Ai)?B(Aj)) as a function of a for all i, jƒS, S still being

the total number of attractors and of attraction basins).

In complexity theory, one notes: f(n)~O(g(n)) if

Akw0, An0w0, Vn§n0, f(n)~k:g(n). Of course, the complexity

Figure 8. Algorithm. Algorithm that writes in explicit form the characteristic polynomials (with indeterminate the state perturbation rate a) of the
probabilities of passage from any attraction basin to any other.
doi:10.1371/journal.pone.0011793.g008
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of the algorithm of Figure 8 is very high because, for all ordered

couples of attraction basins (B(Ai), B(Aj)), it has to run through

all configurations belonging to both basins. More precisely, lines 1
and 2 define two for-loops that go through all configurations c of all

attraction basins B(Ai). And nested inside these two for-loops, are

two others starting at lines 3 and 6 that also go through all

configurations c’ of all attraction basins B(Aj). The time

complexity inherent to each of these couples of loops is O(DXD).
Since DVDvDXD~2DVD, the time complexity of lines 4 and 5 and of

lines 9 to 12 is negligible. Thus, we find that the total time

complexity of algorithm of Figure 8 is:

O(DXD : DXD)~O22DVD):

This time complexity, exponential in the size of the input, means

that the algorithm can be used to compute the characteristic

polynomials of probabilities of passage for systems S that contain

only a small number of elements. In other words, DVD must be

sufficiently small (DVDƒ20, for instance) so that O(22DVD) does not

represent too long a running time for the algorithm). Let us insist

on the fact that, from the point of view of theoretical computer

science, the Boolean aspect of our mathematical model is not of

importance with respect to the time complexity of the algorithm.

Indeed, the algorithm is exponential depending on DVD (but

quadratic depending on DXD). Nevertheless, limitations of the

algorithm of Figure 8 due to its time complexity can however be

bypassed by settling for relevant approximations of the character-

istic polynomials. For instance, a Monte-Carlo method could be

included or, as we will discuss later, the number of initial

configurations c [ B(Ai) that are run through by the algorithm

could be reduced. The effect of this would be to cut down

significantly the time complexity without loosing any biological

relevance.

Application to our Toy Model
In this section, we study the robustness of these two basins

against stochastic state perturbations. Figure 9 plots the charac-

teristic polynomials (outputted by the algorithm of Figure 8) of the

probabilities for configurations to go from one attraction basin that

is either sepal or inflorescence, to any other attraction basin.

Let us first concentrate on the sepal case (top two panels of

Figure 9). Consider the probabilities that perturbed configurations

stay in the sepal attraction basin. In the top left panel of Figure 9,

we can see that, for all values of the perturbation rate a, this

probability is very high when the state of RGA is free. Even when

the perturbation causes all nodes to change state (a~1)

approximately 40% of all sepal configurations remain sepal

configurations. This result illustrates those obtained by experi-

mentation in [18,19] highlighting that the floral development

process of Arabidopsis thaliana is hindered in absence of gibberellin.

Figure 9. Characteristic polynomials. Curves of the characteristic polynomials with indeterminate the state perturbation rate a (in percents). The
top panels (resp. the bottom panels) plot the curves of the characteristic polynomials of the probabilities of passage from the sepal (resp.
inflorescence) attraction basin to another attraction basin when the state of RGA is free (left panel) and when it is fixed to 0 by the presence of
gibberellin (right panel). Every panel plots six curves, one for each ordered couple of attraction basins. In the bottom panels, several curves are
superimposed: the curves of the characteristic polynomials corresponding to the probabilities to become either a Pet configuration or a Sta
configuration in the left panel as well as the curves of the characteristic polynomials corresponding to the probabilities to become either a Sep
configuration or a Car configuration in the right panel.
doi:10.1371/journal.pone.0011793.g009
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On the contrary, when the state of RGA is forced to 0 by the

presence of gibberellin and when a~1, all sepal configurations

turn into configurations belonging to different attraction basins.

Moreover, the probability of Sep configurations to become Inf

configurations is high and increases with a. The presence of

gibberellin, however, does not change the corresponding charac-

teristic polynomial Pa(Sep?Inf ). This confirms the observation

made earlier concerning the relative distance from Sep to Inf not

changing according to the presence/absence of gibberellin (see

fourth panel of Figure 5).

On the contrary, gibberellin does impact on the other

characteristic polynomials. Earlier, we saw that gibberellin reduces

relative distances between sepal configurations and floral config-

urations. Figure 9 confirms this. From the biological point of view,

some perturbations are bound to occur and act over time on the

dynamical behaviour of a genetic regulatory network, provided

these perturbations are not too substantial. Therefore, we assume

that a state perturbation is ‘‘reasonable’’ when the stochastic state

perturbation rate is not greater than 0:5. Thus, in presence of

reasonable state perturbations, mean probabilities for a configu-

ration of the Sep basin to turn into a configuration of a floral

attraction basin rise when gibberellin appears. This is particularly

true for the carpel basin. In the same lines, when the state of RGA is

free, the characteristic polynomials of the probabilities of passage

from the Sep basin to the basins Pet and Sta are all almost identical

and very slightly increasing. Their maximal value which is reached

when a~1 is very low (&0:05). This is not in favour of the natural

floral morphogenesis of the plant. In presence of gibberellin,

however, at reasonable values of a, configurations which do not

turn into Car or Inf configurations have significant chances to turn

into Pet configurations (which also are very important since they

represent tissues that attract insects i.e., the most intensive media

for bringing pollen). For all these reasons we may again conclude

that the presence of gibberellin is favourable to the development of

floral tissues.

As for the inflorescence case (bottom two panels of Figure 9), we

may first observe that the presence of gibberellin has little impact

on the probabilities of configurations subjected to stochastic state

perturbations to stay in the Inf basin. These probabilities remain

high for reasonable values of the rate a. On the contrary, the

probabilities of configurations to leave the Inf basin do change

according to whether gibberellin is present or not. From the

bottom left panel we derive that a great part of the Inf

configurations tends to be transformed into Sep configurations

when there is no hormone but when there is, the probability of

passage from Inf to Sep falls down noticeably. And, this seems to

happen for the benefit of the other floral attraction basins Pet, Car

and Sta whose corresponding characteristic polynomials increase.

So again, deriving information from the characteristic polynomials

leads to the conclusion that gibberellin tends to re-equilibrate the

likeliness of attraction basins for the benefit of basins correspond-

ing to floral tissues.

Another biologically meaningful way to take into account the

influence of stochastic state perturbations is to consider the

evolutionary process inherent to the plant morphogenesis [46,47].

Indeed, assuming that the evolutionary process can be modeled by

layered graph, where layers correspond to specific dynamical sub-

systems at different stages of the morphogenesis, it is relevant to

restrict perturbation only to states belonging to attractors. We

implemented another algorithm that induces a significant cut

down of the time complexity of the algorithm presented above

(although it remains exponential since all configurations c’ of all

destination attraction basins B(Aj) are still run through). This new

algorithm has the advantage to decrease the transient time along

the trajectories until the attractors, i.e. to accelerate their reaching

without changing neither their nature nor their number nor their

localisation. On this basis, we performed other simulations

whose results lead to the same conclusion, that is: the robustness

of the floral development process springs only in presence of

gibberellin.

Discussion

Concerning our toy network, the objective aiming at showing

that the presence of gibberellin is necessary for the flower of the

plant Arabidopsis thaliana to develop normally has been reached. By

using attraction basins as gauges of the robustness of the system

against influences of its periphery, we have highlighted, under the

hypothesis of uniform random choice of initial configurations, the

influence of gibberellin on the dynamical behaviour of the genetic

regulatory network modeling the floral morphogenesis of this

plant. The presence of this hormone harmonises the relative sizes

of the floral attraction basins and allows the reduction of the

relative distances between attraction basins. Moreover, it empha-

sises the significant increase of the robustness of the floral

morphogenesis mechanisms and of the reproductive function of

the plant. This approach, based on the idea that attraction basins

are pertinent gauges for analysing in a theoretical framework

robustness of a complex systems, can be generalised to draw a

better understanding of the dynamical behaviour and the

robustness of, for instance, formal neural networks and epidemi-

ological systems an perhaps even many more discrete dynamical

systems, provided they are not too big in practice. Indeed, as we

have already mentioned, the time complexity of the algorithms

underlying our method grows exponentially with the number of

vertices in the interaction graphs of systems studied since they

generally involve running through the exponential number of

configurations of the system. This is of course a strong limitation

(which cannot be bypassed unfortunately) since it disallows

applying the method to large systems. Some techniques of data

structures, such as the use of binary decision diagrams [48,49] to

encode configurations, could be of great interest to optimise our

algorithms. Moreover, although it would mean loosing the

exhaustivity property of the results, the implementation of the

two different algorithms analysing robustness of a system against

stochastic state perturbations as Monte-Carlo algorithms could

certainly be of great interest to understand the impact of external

or boundary constraints on the dynamical behaviour of large

dynamical systems.

Let us come back to the biological framework of the floral

morphogenesis of the plant Arabidopsis thaliana and open the

discussion on the model of genetic regulation network proposed

here.

First, let us note that the results we obtained depend of course

entirely on the model of genetic regulation network from which

they ensue. Thus, it is important to rule on the relevance of this

model. We believe that it does propose a relevant approximation

of the reality of the floral morphogenesis of the plant Arabidopsis

thaliana. One argument in favour of this is precisely that from our

analysis, we have derived that the model does indeed capture the

importance of the presence of gibberellin. Nevertheless, this model

remains an approximation that could certainly be improved.

In [35], the authors suggested to let the original network evolve

with a particular block-sequential iteration mode characterised by

the following ordered partition PBS~({EMF1, TFL1},{LFY, AP1,

CAL}, {LUG, UFO, BFU}, {AG, AP3, PI}, {SUP}) by arguing that it is

justified by the biological nature of the genetic regulation.

However, as discussed earlier, with the current state of biological
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knowledge on this question, it is impossible to prove that this is

indeed the iteration mode ‘‘selected’’ by nature. Besides, if the

attraction basins are appropriate gauges to measure the robustness

of a dynamical system, as we claim, comparing the relative sizes of

attraction basins for different iteration modes gives an interesting

argument in disfavour of this precise block-sequential iteration

mode. Indeed, we find that when the sequential iteration mode

defined by the following ordered partition PS~({EMF1}, {TFL1},

{LFY}, {AP1}, {CAL}, {LUG}, {UFO}, {BFU}, {AG}, {AP3}, {PI},

{SUP}) is used (as it has been done in this work), the proportions of

the attraction basins corresponding to floral tissues are significantly

greater than when the block-sequential iteration mode of [35] is

used (see Table 7). In particular, let us note that the relative sizes of

the carpel and the stamens attraction basins are three times larger

with the sequential iteration mode. This agrees with a reinforced

breeding tissues essential to the survival of the species.

As we explained earlier, using a sequential iteration mode

ensures that all attractors are fixed points. The specific sequential

iteration mode PS however, was chosen arbitrarily among the

12! existing sequential iteration modes. And although we have

theoretical arguments to explain why we think PS is more

pertinent than PBS, we do not claim that sequential iteration

modes are the most pertinent iteration modes. There might

indeed exist other iteration modes that also yield only fixed points

and that are more realistic biologically. This leads us to the

following question: amongst the 2:81:1010 existing iteration

modes of the original Mendoza & Alvarez-Buylla network, which

are the ones that yield dynamics with only the six known fixed

points while inducing non-floral attraction basins of minimal sizes

and floral attraction basins whose sizes are ideally equilibrated?

Assuming that over time, nature has ‘‘chosen’’ to maximise the

probabilities for the plant Arabidopsis thaliana to develop as well as

possible, we can consider that the iteration modes described in

this question are amongst the realistic. Finding these iteration

modes would solve the problem of choosing rightly the iteration

mode.

Another way of avoiding this problem would be to show that

precisely, iteration modes do not matter so much in the sense that

the dynamical behaviour of networks are robust against changes of

there iteration mode. Let us clarify this idea. We have argued that

the limit cycles of the Mendoza & Alvarez-Buylla network

observed with the parallel iteration mode are highly unlikely

because if errors are allowed to be made in the updating order,

then the network has little chance to land in a configuration

corresponding to one of these cycles and, in addition, if ever it

does, it has little chance to remain in the cycle. Thus, the limit

cycles of the network observed with the parallel iteration mode

display a kind of instability. On the contrary, some attractors such

as fixed points are known to be maximally stable because there is no

way of updating the states of all or of a part of the network

elements to cause to leave the attractor. Generalising this

argument to all iterations modes of a network, one may find that

in some cases, the stable attractors of a network do not depend on

the choice of the iteration mode.

From the more general point of view of the theory of biological

regulation networks, we have shown the influence that boundary

conditions may have on a regulation network modeled by a

threshold Boolean automata network. However, other formalisms,

such as those of Kauffman [30,50] and Thomas [31], exist and we

think that it would be of interest to dive our work on the robustness

of regulation networks in the frameworks of Kauffman and

Thomas. As they are defined, the frameworks of Kauffman and

Thomas allow no easy way to modify voluntarily external or

boundary variables. Nevertheless, one relevant idea is to represent

these modifications by input data flows and to formally link these

flows to output observation variables. This kind of study may call

for a more general definition of the boundary and perhaps even of

the environment of genetic regulation networks, such as those

whose updating is ruled by the chromatin dynamics [51] or also

neural networks with synchronising or desynchronising inputs

[52]. Hopefully, it would also uncover new properties of

theoretical and real biological networks.

In conclusion, let us evoke one last perspective that concerns

explanation of biological phenomena and help in experimental

choices. Traditionally, techniques coming from the theories of

automata networks [36,39,53,54], temporal logic and model

checking [55–57], Petri nets [58,59] and constraint logic

programming [60,61] have been applied to build an increased

understanding of the behaviours of biological systems. As this

article has endeavoured to show, these systems can also be

formally studied by highlighting how a whole network can strongly

depend on a singular element. Both approaches, however

different, aim at deepening our understanding of some observed

biological phenomena and we believe that both could be adapted

into a useful tool for biologists helping them to choose what

relevant experiments to perform.
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Table 7. Iteration modes and relative sizes.

Attractor Mendoza & Alvarez-Buylla block-sequential iteration mode PBS Sequential iteration mode chosen in the study PS

Sepal 32,81% 32,81%

Petal 4,69% 4,69%

Carpel 10,94% 32,81%

Stamen 1,56% 4,69%

Inflorescence 43,75% 21,88%

Mutant 6,25% 3,12%

Relative sizes (in percents) of the attraction basins of the original Mendoza & Alvarez-Buylla network in the case where the block-sequential iteration mode PBS is used
and in the case where the sequential iteration mode PS is used.
doi:10.1371/journal.pone.0011793.t007
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1. Ben Amor H, Demongeot J, Sené S (2008) Structural sensitivity in neural and

genetic networks. In: MICAI. Atizapán de Zaragoza, Mexico: Springer, volume
5317 of Lecture Notes in Computer Science. pp 973–986.
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