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Abstract

Synthesising the relationships between complexity, connectivity, and the stability of large biological systems has been a
longstanding fundamental quest in theoretical biology and ecology. With the many exciting developments in modern network
theory, interest in these issues has recently come to the forefront in a range of multidisciplinary areas. Here we outline a new
theoretical analysis specifically relevant for the study of ecological metapopulations focusing primarily on marine systems,
where subpopulations are generally connected via larval dispersal. Our work determines the qualitative and quantitative
conditions by which dispersal and network structure control the persistence of a set of age-structured patch populations.
Mathematical modelling combined with a graph theoretic analysis demonstrates that persistence depends crucially on the
topology of cycles in the dispersal network which tend to enhance the effect of larvae ‘‘returning home.’’ Our method clarifies
the impact directly due to network structure, but this almost by definition can only be achieved by examining the simplified
case in which patches are identical; an assumption that we later relax. The methodology identifies critical migration routes,
whose presence are vital to overall stability, and therefore should have high conservation priority. In contrast, ‘‘lonely links,’’ or
links in the network that do not participate in a cyclical component, have no impact on persistence and thus have low
conservation priority. A number of other intriguing criteria for persistence are derived. Our modelling framework reveals new
insights regarding the determinants of persistence, stability, and thresholds in complex metapopulations. In particular, while
theoretical arguments have, in the past, suggested that increasing connectivity is a destabilizing feature in complex systems,
this is not evident in metapopulation networks where connectivity, cycles, coherency, and heterogeneity all tend to enhance
persistence. The results should be of interest for many other scientific contexts that make use of network theory.
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Introduction

Theoretical biologists and ecologists have long sought to

understand the relationships between complexity, connectivity

and the stability of large biological systems [1–10]. This interest

has only grown in recent years particularly with the new

developments in modern network theory and its multidisciplinary

applications [11–15]. Here we outline a new synthesis relevant for

ecological metapopulations, and provide a framework for untan-

gling the role of dispersal and network structure in maintaining the

persistence of a set of patch populations distributed in space. The

metapopulation concept has become the theoretical framework that

stands behind many modern conservation efforts [2–4,16–29]. For

example, the framework was adopted as part of the EU Habitats

Directive Natura 2000 [20], which is the single most important legal

tool for biodiversity conservation that has become binding national

law of all European Member States. The Directive’s goal is the

creation of a coherent Europe-wide network of sites to protect

important habitats and species. Ecological coherence ‘‘is seen in

terms of the capacity for individual protected areas to support each

other and in the interactions with habitat surrounding protected

areas.’’ Species dispersal between sites provides supportive buffering

for impacted habitats (e.g., oil spills) or allows for shifts in species

ranges in the face of climate change, thus enhancing overall

coherence. Similar metapopulation approaches have been made use

of in the development of Marine Protected Areas (MPA’s) – areas of

the ocean protected from human disturbances – and they are

currently strongly advocated as a tactical management tool [20–22].

Given the importance of the metapopulation concept for nature

conservation, theoretical studies have attempted to gain insights

into those factors that make for sustainable populations.

Intriguingly, initial research indicated that spatial structure has

in fact very little effect, with criteria for metapopulation stability

appearing to be identical to the stability conditions for a single

patch [23]. Several important studies have shown that variability

or heterogeneity in patch connectivity may play a role in

enhancing persistence [24,25], but this work has not been

developed further. Interest in these issues has resurfaced in recent

years especially in the study of marine ecosystems where

connectivity and the role of dispersal in maintaining persistent

metapopulations is as controversial as it is enigmatic. Whether

marine populations are retentive and recruit back to their native
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populations, or whether they are open and in the main, disperse

with little self-recruitment, is an issue that remains unresolved

despite decades of work. As yet, there is little understanding of how

the architecture of marine networks control metapopulation

persistence, and even fundamental concepts still remain contro-

versial. Hastings and Botsford [3] concluded that multiple criteria

are necessary to assess persistence, which explains why they were

unable to ‘‘obtain a single number [criterion] like the reproductive

number for a single population.’’ Here we derive simple general

persistence criteria that are couched in terms of the metapopu-

lation’s reproductive potential, network connectivity as well as the

topology of cycles in the dispersal network.

Similar to [3], we consider populations that comprise sedentary

adults with dispersing juvenile stages, making the model

appropriate for marine and terrestrial invertebrates, as well as

many plants and fish. However, unlike most other studies, the

model includes age-structure and may be generalized further to

allow for dispersal across patches between the population’s

different age-classes. The model is particularly suited to marine

systems where questions concerning connectedness, larvae reten-

tion and open versus closed populations have become highly

topical in the last years.

We begin by considering a population that has m age-classes as

described by the vector N tð Þ~ N1 tð Þ,N2 tð Þ,:::,Nm tð Þ½ � where

Nk tð Þ is the number of individuals in the k’th age class in year t.

For such a population in a single isolated patch, growth may be

modelled via the familiar Leslie matrix equations [31]:

N tz1ð Þ~LN tð Þ where : L~

sf1 sf2 ::: ::: sfm

p1 0 ::: ::: 0

0 p2 0 ::: 0

: : : : :

0 ::: ::: pm{1 0

0
BBBBBB@

1
CCCCCCA

,

ð1Þ

and the time-step is one year. Here pk is the probability that an

individual of age (k-1) years survives to age-k. A fraction s of

juveniles from the population successfully ‘‘self-recruit’’ and return

to the population after the dispersal phase, which in marine

settings might represent local larvae retention. The parameter fk

represents the fertility of age-class-k individuals, in terms of the

average number of juveniles produced in the next generation. A

graph theoretic interpretation of more complex stage-structured

Leslie matrix population models may be found in [32].

The population has a single equilibrium, the extinction state

N�~ 0,0,:::,0½ � whose stability is the basis for understanding

population persistence in this model. It is a classical result [2,31]

that the average number of juveniles produced in the lifetime of a

typical individual is given by the reproductive number:

R~
Xm

k~1

fk P
k{1

l~0
pl : ð2Þ

The condition for population persistence (i.e., a growing population)

requires that a typical individual is capable of replacing itself and

give rise to at least a single offspring that successfully recruits back to

the population. As only a proportion s of juveniles successfully self-

recruit, the net reproductive effort is sR. Thus a growing persisting

population requires that the persistence parameter:

x~sRw1, ð3Þ

and the patch is said to be a ‘‘source.’’ Should x~sRv1, all age-

classes approach a stable extinction state and the patch is said to be a

‘‘sink.’’ These definitions of source and sink follow those used in

Armsworth [2] and are based on the original definitions of Pulliam

[30], although it should be noted that other definitions are

sometimes employed. In words, a sink would correspond to a

situation where deaths and emigrations exceed the number of new

juveniles [2]. A mathematical analysis of the model’s single

equilibrium, the extinction state N�~ 0,0,:::,0½ �, corroborates the

above threshold criterion.

Now scaling up, consider a network of n age-structured patch-

populations, where juveniles disperse between patches as por-

trayed in Figure 1. The metapopulation dynamics are given by:

Ni tz1ð Þ~PiNi tð Þz
Xn

j~1

cijF
jNj tð Þ: ð4Þ

In this notation Ni tð Þ is the m-dimensional age-class population

vector at patch-i, and each patch has its own associated survival (P)

and fertility (F ) matrices. More specifically:

Pi~

0 0 ::: ::: 0

pi
1 0 ::: ::: 0

0 pi
2 0 ::: 0

: : : : :

0 ::: ::: pi
m{1 0

0
BBBBBBBB@

1
CCCCCCCCA

and

Fi~

f i
1 f i

2 ::: ::: f i
m

0 0 ::: ::: 0

0 0 0 ::: 0

: : : : :

0 ::: ::: 0 0

0
BBBBBBBB@

1
CCCCCCCCA

ð5Þ

Author Summary

Taking advantage of modern network theory, we present a
model formulation for determining those factors that
control the stability and persistence of complex biological
systems. As a case study, we focus on ecological
metapopulations, which may be viewed as a set of distinct
subpopulations (/sites) that are connected via a dispersal
network of arbitrary complexity. Metapopulation persis-
tence is found to depend critically on the topology of
cycles, and cyclical components in the connectivity
network, because they allow the offspring of the
population to eventually ‘‘return home’’ to the sites from
which they originated. The methodology identifies critical
migration routes, whose presence are vital to overall
stability, and are thus of high conservation priority –
information that may be of value when designing
networks of marine protected areas. In contrast, links that
do not participate in a cyclical component have no impact
on persistence and thus have low conservation priority.
While network theory is highly fashionable in biology, only
few studies go deeper than descriptive statistical applica-
tions as attempted here. Moreover, the key results are
easily extended to other biological contexts (e.g., disease
networks), particularly in situations whereby the network
controls the dynamics of a complex system.

Persistence Thresholds in Metapopulation Networks
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where the Leslie matrix L in Eqn.1 is retrieved taking L~PzsF .

Dispersal processes between the n-patches are defined in the

connectivity matrix C~ cij

� �
whose elements cij correspond to the

proportion of juveniles produced on local population-j that are

transported and successfully recruit to local population-i. We note

that Eqns. 4 may be viewed as a good approximation to a more

complex nonlinear metapopulation model (e.g., possibly with

density-dependence), if the latter model is linearized about its

extinction state. The asymptotic stability criterion for the

extinction state is then the same for both the linearized and full

nonlinear model.

Results

Connectivity thresholds
A key goal is to examine the effects solely of network

architecture on metapopulation persistence. This requires studying

the metapopulation with all processes being equal apart from the

network structure. We thus initially suppose that local patch

populations are identical, and all with the same survival and

fertility rates pi and fi, an assumption that is later relaxed. Based

on the properties of the single patch dynamics noted above, it is

possible to deduce (see Materials and Methods, as well as Text S1)

that metapopulation persistence is controlled by a simple threshold

condition: The metapopulation is growing if the fundamental

persistence parameter

x~lCRw1, ð6Þ

while the extinction state is stable if xv1. Here lC is the spectral

radius, or eigenvalue of largest magnitude, of the connectivity

matrix C. As before, R is the reproductive number of a single

patch as defined in Eqn. 2. The special role played by the matrix

C allows us to view the condition as a connectivity threshold.

Although previous studies of age-structured metapopulations

[2,4,21] attempted to deduce persistence criteria, they overlooked

the role of the spectral radius lC .

The metapopulation’s complex patch dispersal structure may be

visualized in terms of a network or graph, with nodes as patches

and edges as dispersal links between patches. The network

topology is summarised by the adjacency matrix A whose elements

aij~1 if there is a direct dispersal route from patch-j to patch-i,

while aij~0 in the absence of such a route. In the formulation

used here self-loops are excluded from the adjacency matrix, and

we can set aii~0.

Again, in order to specifically elucidate the effects of network

structure, it is necessary to ensure that the various processes

between patches are kept equal. This motivates a relatively simple

but nevertheless useful scheme in which the number of juveniles

that immigrate to a patch population is on average a fixed

proportion, a, of the source population from which they originate

as shown in Figure 1. The average retentivity, or self-recruitment,

of each patch is set at s indicating the proportion of juveniles that

complete their life-cycle in the patch. In this scheme highly

connected patches recruit better, while less connected patches are

disadvantaged with recruits being lost from the metapopulation as

a result. Such losses are to be expected in a consistent model of

heterogeneous dispersal.

The connectivity matrix may now be written in the particularly

simple form: C~sIzaA where I is the identity matrix. This

immediately yields the key relationship whereby the persistence

parameter (Eqn. 6) may be written as:

x~ szalAð ÞR ð7Þ

Figure 1. The topology of the dispersal pathways between a set of patches as defined by the adjacency matrix A. The parameter a
represents the intensity of dispersal between patches while s represents the amount of self-recruitment in each patch. The population dynamics
within a patch follow the Leslie matrix growth equations N tz1ð Þ~LN tð Þ where N tð Þ is a vector defining the numbers of the population in each
age-class at time t while the matrix L defines survival and fertility rates.
doi:10.1371/journal.pcbi.1000876.g001

Persistence Thresholds in Metapopulation Networks
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We see directly that persistence is controlled by lA, the spectral

radius of the adjacency matrix A. We note that it is not always a

simple matter to deduce the value of the spectral radius without

resorting to a numerical study of the n|n adjacency matrix A.

Factors that control the spectral radius include the number of

nodes (n), the number of edges and the underlying structure of the

matrix in terms of the topology of the dispersal routes. However,

there are special cases that we will examine, where the particular

structure of A makes it possible to solve for the spectral radius

analytically.

The expression (Eqn. 7) for the persistence parameter shows

clearly the importance of supply-side ecology with new recruits

enhancing the possibility of persistence. A metapopulation, in

which all n patch populations are sinks (sRv1) requires sufficient

subsidy recruitment (alAR) for persistence; enough that ensures

x~ szalAð ÞRw1. In such a case, the metapopulation is

effectively ‘‘pulled up by its bootstraps’’ due to the inflow of

larvae circulating through the complex dispersal routes of the

network. The additional recruitment here acts as a rescue effect.

An exciting outcome of Eqn. 7 is that it opens the door for

investigating the effects of network structure, at both fine and

coarse-scale levels. Beginning with coarser-scale features, we focus

on network topology. Figure 2 shows three simple network

topologies: a) a regular network in which each patch has exactly

two connections; b) a random network in which patches have very

close to two connections; c) a random heterogeneous network in

which patches have large variability in connectivity. For all three

networks the average number of connections per patch, or mean

degree, is deliberately held the same.

It is then natural to ask which topology best enhances

persistence and how does the topology’s heterogeneity affect the

threshold x? This is far more than an academic question given that

marine systems can be highly heterogeneous in terms of

recruitment, sometimes with orders of magnitude variation to

patches within the same metapopulation [33].

The three above cases are now treated separately assuming the

networks are undirected; that is assuming a dispersal pathway

from patch-i to patch-j implies a converse flow from patch-j to i.

However, the results obtained are substantially similar with

Figure 2. Persistence as a function of heterogeneity in node degree for three example networks. A) Regular, B) Random, and C)
Heterogeneous networks, all with mean degree of 2. D) The persistence parameter x is calculated as a function of CV2 according to Eqn.9 with

parameters: R~2, N~9, a~s~
1

N
, �kk~2:

doi:10.1371/journal.pcbi.1000876.g002

Persistence Thresholds in Metapopulation Networks
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interpretations that broadly carry over to the case of directed

networks [34].

a) Regular networks. In a regular network every patch is

connected to k other patches (see Figure 2a). Again we suppose

each patch is recruiting equally from every other, but now with

individual migration rates equal to self-recruitment rates a~s.

Since it is well known for regular networks that the adjacency

matrix A has spectral radius lA~k [34], then metapopulation

persistence is ensured if x~ szksð ÞRw1. This is illuminating in

that it shows that the gain of an individual patch derived from

subsidy-recruitment (ks) can be considerably larger than self-

recruitment (s), and that this ‘‘bootstrapping’’ contribution may be

of significance for crossing the persistence threshold.

b) Random networks. The classical Erdős–Rényi (ER)

random network assumes there is a probability p that any two

patches -i and -j have a dispersal pathway between them

(Figure 2b). As the network has N patches, the mean number of

dispersal pathways per patch is �kk~Np. For these random

networks, it is well known that the spectral radius of the

adjacency matrix A is lA~�kk [34] and:

x~ sza�kk
� �

R: ð8Þ

Thus increasing connectivity simply by the random addition of

dispersal routes into a metapopulation increases the mean degree
�kk, and thus x, and should therefore be seen as advantageous. The

more random pathways, the larger is x, and the more likely is the

possibility of increasing beyond the persistence threshold. This

result has important consequences for the ongoing debate as to

whether highly connected ecological and biological systems are

more stable. Unlike May’s [1] prediction where connectivity is

seen to be destabilizing in large complex systems, here increasing

connectivity clearly enhances metapopulation persistence. It

should however be noted that strictly speaking May was

referring to species interactions (although see [29]), while our

study concerns something quite different, namely network

connectivity.

c) Heterogeneous networks. The result can be generalized

for heterogeneous random networks having arbitrary degree

distribution (Figure 2c). Suppose patch-i has ki dispersal

connections to other patches. The variability of the different ki

(i.e., the ‘‘degree distribution’’) is a good index of the heterogeneity

in connectivity of the network and is often measured by the

squared coefficient of variation CV 2~Var kið Þ
�

�kk2. Under these

conditions,

x~ sza�kk 1zCV 2
� �� �

R: ð9Þ

Thus increasing the heterogeneity in connectivity (CV 2) will

enhance persistence (even if the mean degree �kk remains

unchanged) since it increases x (see Figure 2d). Analogous results

were found in [24–26] although not presented in the context of

network heterogeneity as here. Curiously, large heterogeneity may

be the norm in many metapopulations. Williams and Sale [33]

found orders of magnitude variation in recruitment to patches of

the same coral species in a single coral lagoon. In some cases

substantial variation existed between patches 1km apart. Since

then it has been shown that wildly fluctuating recruitment success

is not particular to reef fish.

Cycles
Finer-scale network features also play an important role in

determining persistence. The present framework allows exploration

of how various network motifs [8,13] or specific subgraphs of the

network, might be influential. The following analysis of cyclical

motifs indicates the power of this approach. We focus on cycles in

directed networks where a dispersal route from patch-A to B (ARB)

does not necessarily imply the converse. Typically a closed loop for

three patches would have the following structure ARBRCRA,

and is termed a directed cycle.

C1) A metapopulation network without any cycles is

unable to persist. Firstly, it becomes trivial to show that a

metapopulation without any cycles in the dispersal network is

unable to persist, as might be expected (see also [2]). In such a

metapopulation network, all juveniles or any of their eventual

descendants are unable to recruit back to their patch of origin –

they never ‘‘return home’’ [3]. When there are no cycles, the

adjacency matrix A must have spectral radius lA~0 [35] and in

the absence of self-recruitment (s~0), the persistence parameter

x~ szalAð ÞR~0. A stable extinction state is expected.

C2) For metapopulations with self-recruitment but

without any other cycles, there is no advantage to

dispersal. Self-recruitment sw0 implies that some proportion

of juveniles complete their life-cycle in the patch. As there are no

other cycles, all other juveniles fail to return home and the spectral

radius remains lA~0 and x~sR. Thus the criterion for the entire

metapopulation to persist, x~sRw1, is precisely the same as the

criterion for a single self-recruiting patch to persist (Eqn. 3).

Consequently there is no advantage for dispersal if there are no

cycles and larvae fail to ‘‘return home.’’

C3) ‘‘Lonely links,’’ those links in a network that are not

part of a cycle, have no effect whatsoever on the

metapopulation’s persistence characteristics. Figure 3a

illustrates a complex network with a single simple cycle (red), or

cyclic component (see Text S2 as well). Eliminating all lonely links

that are not connected to the cyclic component results in the

network shown in Figure 3b. As proven for the general case (see

Text S2), the persistence parameter x associated with the two

networks is identical and hence both have the same persistence/

stability properties. In short, the removal of ‘‘lonely links’’ has no

effect on metapopulation persistence making them of low

conservation priority.

C4) The persistence parameter x increases with the
complexity and richness of the network’s cycle
structure. Consider first simple cycles, with no sites receiving

recruits directly from two distinct cycles. Directed networks

composed of only simple cycles, have the property that lA~1
and thus x~ szað ÞR, regardless of how many simple cycles are

present. If cycles intersect they are no longer simple and in general

lA, and thus x, increases as the number of overlapping cycles

increases. Intuitively one notes that maximal ‘‘cycle packing’’

might be considered analogous to a regular network with all n-

patches connected to each other giving x~ sza n{1ð Þð ÞR. Thus

metapopulation persistence is greatly enhanced when there is

intense overlapping of dispersal routes between sites in the

network.

C5) Networks may be broken down into nonoverlapping

cyclic components. Persistence, is completely determined by

the dominant cyclic component. Intriguingly it turns out that

valuable information regarding persistence may be obtained by

breaking down a network into its nonoverlapping cyclic

components. In particular, we are able to show (Text S2) that

persistence is completely determined by the dominant cyclic

component, that is, the component whose associated eigenvalue is

largest in magnitude. The complex network shown in Figure 3c

illustrates this concept. Stripping away all lonely links, reveals that

the network has two cyclic components (encircled). Extracting the

Persistence Thresholds in Metapopulation Networks
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larger eigenvalue associated with the more complex cyclic

component, gives us lA and persistence may be checked using

[Eqn. 4] (see Text S2). Thus the dominant cyclic component gives

complete information concerning the prospects of metapopulation

persistence. Note that while ‘‘lonely links’’ have no effect on

metapopulation persistence, the example in Figure 4 shows that

the existence of a single critical link may in some cases determine

the fate of the entire system. Thus removal of the dispersal route

(see arrow pointing to critical link in Figure 4) in the dominant

cyclic component can reduce x dramatically, and persistence will

be lost. More specifically, removal of the critical link indicated

reduces the spectral radius of A by approximately 33% (from ,1.5

to 1) and thus reduces the persistence parameter x considerably

possibly resulting in extinction. As such this route is of

considerable importance from the perspective of conservation.

C6) Symmetry. It is revealing to return to the earlier

examples of Figure 2a–c that deal exclusively with undirected

symmetric networks. As dispersal is often viewed as a function of

distance rather than direction, symmetric connectivity is a

common assumption in metapopulation models [36]. Yet recent

research has revealed that ecological and metapopulation

networks are often asymmetric, [7,37] and according to

simulation studies in [7,36–38], this should have a negative

effect on persistence. The framework advanced here provides a

simple theoretical explanation, based on the elementary

observation that symmetric networks tend to have a propensity

of cycles. Even a single connection between two patches in a

symmetric network is bidirectional (ARB and BRA) and thus

forms a cycle. Increasing asymmetry, tends to remove cycles, and

by property C4 reduces x, thereby having a negative effect on

persistence. Text S2 delves into these properties further.

Extensions: Nonidentical patches
So far, persistence has been discussed in the context of networks

of identical patch populations. However this work may be

extended to obtain persistence/extinction criteria for metapopu-

lations comprised of nonidentical patch populations thus accom-

modating cases where age structure varies between patches. For

convenience, suppose patch-1 of the metapopulation ‘‘dominates’’

in the sense that it has the highest fertility parameters (f 1
k §f

j
k for

all j,k) and highest survival rates (p1
k§p

j
k for all j,k) (see Text S3),

and thus the highest net reproductive effort (R1). Now construct a

metapopulation comprised of n-identical copies of dominating

patch-1, retaining the original directed or undirected network

structure. Test whether the extinction state of these n-identical

patches is stable. If so, it can be shown that the original

heterogeneous metapopulation of n-nonidentical patches is also

unable to persist (see Text S3).

Along similar lines, suppose patch-1 is the weakest in the sense

that it has the lowest fertility parameters and lowest survival rates.

If the network of n-identical copies of patch-1 is able to persist,

then the original heterogeneous metapopulation must also persist.

Thus, the dominant and subordinate patch population of a

network, may be used as a guide for determining bounds for the

respective extinction or persistence thresholds of the larger

heterogeneous metapopulation. These effects are illustrated in

Figure 5 and discussed in Text S3.

It should be noted that the effects of age-structure become

prominent with more complex migration schemes, for example,

between different age-classes from different patches, and repre-

sentations of ontogenetic shifts in habitat use that are life history

dependent [21; and see Text S3].

Discussion

Our work has shown the importance of the persistence parameter

x in assessing the fate of the metapopulation. As has been

emphasized, a persisting metapopulation is characterized by a state

of growth with xw1, and implies that at least one patch population,

say patch-1 of Figure 5, is increasing in numbers with time. This

raises the question as to which other patches in the metapopulation persist,

and which go extinct? Given that patch-1 increases in time, it must also

continuously export larvae to all other patches it connects to, either

directly or indirectly. Thus every patch that can be reached by

patch-1 via a chain of dispersal pathways will continuously receive

new recruits, and must therefore also persist, irrespective of whether

it is a sink or source. In contrast, patch populations that fail to

receive new recruits because they are disconnected from other

patches in the network, cannot persist if they are sinks. This has the

important implication that the underlying architecture of the

Figure 3. Example of removing lonely links. (A) A complex network with a single simple cycle (red). Eliminating all ‘‘lonely links’’ that do not
belong to any cyclic component results in the network shown in (B).
doi:10.1371/journal.pcbi.1000876.g003

Persistence Thresholds in Metapopulation Networks
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metapopulation network controls the particular set of patch

populations that survive (see Figure 4).

Ideally, we also require conditions that establish metapopulation

coherency, whereby not only subsets of patches persist, but they are

also connected with one another directly or indirectly in a large-

scale manner that connects together the majority of the

metapopulation network. Coherency offers the metapopulation

many advantages. Large scale or global dispersal between sites

buffers population fluctuations [39], allows recolonization after

local isolated environmental impacts (e.g., oil spills), allows species

ranges to shift in the face of climate change [20] and more

generally allows ‘‘spreading of risks’’; properties which are all

verified from stochastic metapopulation simulations. Note that it is

assumed that dispersal is not strong enough to induce large-scale

spatial synchronization, a phenomenon that is prone to enhancing

extinction risk [40].

The random Erdős–Rényi (ER) model which exemplifies a

broad range of complex networks shows the existence of important

Figure 4. Persistence is controlled by the network’s cyclical components of which there are two here (red patches); one simple
component (3 patches, 3 links) and one complex component (6 patches, 9 links) formed by intersecting cycles. The other nine patches
(blue, green) may be completely neglected since they do not belong to any cycle and therefore play no role in determining persistence. The
characteristic equation for the eigenvalues of the adjacency matrix A is (see Text S2 for details):

pA lð Þ~ {lð Þ9
� �
|fflfflfflfflffl{zfflfflfflfflffl}

9 single node comp

: {1ð Þ3 l3{1
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
1 simple cycle comp of size 3

: {1ð Þ6 l6{2l4zl2{l{1
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1 complex cycle comp of size 6

The spectral radius (lA) of the adjacency matrix A is the root of largest magnitude of the polynomial arising from the complex cyclical component:

l6{2l4zl2{l{1~0 (giving lA). Thus the complex component exclusively controls persistence in that it alone determines the spectral radius of
the adjacency matrix A. The new characteristic equation after removal of this link is:

pA lð Þ ~ {lð Þ11
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

11 single node comp

: {1ð Þ3 l3{1
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
1 simple cycle comp of length 3

: {1ð Þ2 l2{1
� �� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2 simple cycle comp of length 2

~0

doi:10.1371/journal.pcbi.1000876.g004
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coherency thresholds that must be taken into account. Recall that

there is a probability p that any two patches-i and j have a dispersal

pathway between them. Moreover, there is a critical value

pc~1=N, such that for pwpc the great majority of the patches

in the network become connected to one another by a pathway of

edges forming the celebrated ‘‘Giant Component’’ in which there

is network-wide connectance [14,15]. Hence pwpc is a necessary

condition for a coherent (ER) metapopulation. Conversely for

pvpc, the majority of patches are disconnected. In the latter case,

metapopulation persistence is impossible in such poorly connected

incoherent network. Although only a simplified system, the ER

model makes clear the importance of coherency thresholds and

serves to further strengthen the philosophy underlying the EU

Habitats Directive for the creation of a coherent Europe-wide

network of sites to protect important habitats and species [20].

Taken altogether, the above framework has revealed a number of

new insights regarding the determinants of persistence, stability and

ecological thresholds in complex metapopulations. We note that a

number of results derived here are based on several simplifying

assumptions. Thus, at least in the first instance, it was necessary to

assume that all patches are identical in terms of their structure and

dynamics (a condition that was later relaxed). In addition, it was

assumed that the rate of dispersal was the same for all pairs of

connected patches. In other applications these model limitations

may need to be reckoned with. However, for our purposes, only by

fixing patches and metapopulation processes equal, is it possible to

isolate exactly how different dispersal networks and their topologies

govern persistence. This is in fact a major difference between our

work here and that of Armsworth [2]. Although Armsworth also

found condition C1 above for a general age-structured metapop-

ulation, his analysis did not result in a quantitative formulation

connecting the adjacency matrix A, its spectral radius, and its

topological features including especially cycles in the network, and

their relation to the persistence threshold.

Our analysis was couched both in terms of coarse and fine-scale

network features. With regard to the former, at least for random

systems, connectivity and heterogeneity in connectivity were found

to be two key factors that enhance metapopulation persistence. In

terms of more fine-scale features, the existence of critical dispersal

routes have been identified, while cycles have been shown to play a

prominent functional role, allowing metapopulations to bootstrap

themselves into persistence. All of these factors have conservation

applications and would translate most readily into principles that

aid in the management of marine populations and in the design of

networks such as marine protected areas [20–22]. In addition

these outcomes have obvious applications that cross over into

Figure 5. Metapopulation of four nonidentical patch populations in an ‘‘all to all’’ network. The reproductive number of the patches are
such that R1.R2.R3.R4. Bottom left: to test for extinction, construct a hypothetical metapopulation of n-identical copies of dominating patch-1, but
retaining the original ‘‘all to all’’ connectivity structure. If the hypothetical metapopulation has xv1, the original metapopulation on the top will also
have a stable extinction state. Bottom right: to test for persistence, construct n-identical copies of patch-4, retaining the original connectivity
structure. If the hypothetical metapopulation has xw1, the original one on the top will also persist.
doi:10.1371/journal.pcbi.1000876.g005
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many other scientific contexts including the dynamics of disease

epidemics that spread via complex large-scale travel networks,

internet traffic and computer virus dynamics or metabolic network

analyses [10–14].

Materials and Methods

For a metapopulation of n identical patches, the i’th patch

population may be notated as Ni tð Þ~ Ni,1 tð Þ, Ni,2 tð Þ, :::, Ni,m tð Þ½ �
where Ni,k tð Þ is the number of individuals in the k’th age class in

year t. The model of n-identical age-structured patch populations

Ni tð Þ may be written using Kronecker product matrix notation.

Let N tð Þ~ N1 tð Þ,N2 tð Þ, K,Nn tð Þ
� �

, then:

N tz1ð Þ~ I6SzC6Fð ÞN tð Þ ð10Þ

where I is the n|n identity matrix , S is the lower diagonal matrix

with Sjz1,j~pj and otherwise zero. F has entries F1,j~fj and is

otherwise zero. (Note that SzsF~L.) The above model might

also be viewed as a first order approximation to a more general

nonlinear metapopulation about the extinction state. After

appropriate matrix manipulation, Text S1 shows that the stability

of the extinction state depends on the eigenvalues of the stability

matrix

M~SzlCF~

lCf1 lCf2 ::: ::: lCfm

p1 0 ::: ::: 0

0 p2 0 ::: 0

: : : : :

0 ::: ::: pm{1 0

0
BBBBBB@

1
CCCCCCA

~lCL ð11Þ

where lC is the spectral radius of the connectivity matrix C. Due

to the correspondence between the metapopulation stability

matrix M and the Leslie matrix L above, the metapopulation

(Eqn. 11) is persistent and growing if lMw1, or equivalently

x~lCRw1 while the extinction state is stable if x~lCRv1.

While the threshold is reminiscent of results found for unstructured

metapopulations [24,25] however the inclusion of age-structure

and/or network structure makes this is a nontrivial result and a

challenge set in Refs. [2, 4 and 21] (see Text S1.)

For the particular case C~sIzaA, the spectral radius is given

by lC~szalA so that x~ szalAð ÞR.
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structured metapopulation model and its mathematical stability
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