Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1980 Nov;40(5):901–906. doi: 10.1128/aem.40.5.901-906.1980

In vitro metabolism of T-2 toxin in rats.

T Yoshizawa, S P Swanson, C J Mirocha
PMCID: PMC291687  PMID: 7447443

Abstract

T-2 toxin was rapidly converted in the 9,000 X g supernatant fraction of rat liver homogenate into HT-2 toxin, T-2 tetraol, and two unknown metabolites designated as TMR-1 and TMR-2. TMR-1 was characterized as 4-deacetylneosolaniol (15-acetoxy-3 alpha, 4 beta, 8 alpha-trihydroxy-12,13-epoxytrichothec-9-ene) by spectroscopic analyses. Since the same metabolites were also obtained from HT-2 toxin used as substrate, it was concluded that T-2 toxin was hydrolyzed preferentially at the C-4 position to give HT-2 toxin, which was then metabolized to T-2 tetraol via 4-deacetylneosolaniol. In addition to HT-2 toxin, 4-deacetylneosolaniol and T-2 tetraol, a trace amount of neosolaniol was transformed from T-2 toxin by rat intestinal strips. In vitro metabolic pathways for T-2 toxin in rats are proposed.

Full text

PDF
905

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chi M. S., Robison T. S., Mirocha C. J., Reddy K. R. Acute toxicity of 12,13-epoxytrichothecenes in one-day-old broiler chicks. Appl Environ Microbiol. 1978 Apr;35(4):636–640. doi: 10.1128/aem.35.4.636-640.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ellison R. A., Kotsonis F. N. Carbon-13 nuclear magnetic resonance assignments in the trichothecene mycotoxins. J Org Chem. 1976 Feb 6;41(3):576–578. doi: 10.1021/jo00865a044. [DOI] [PubMed] [Google Scholar]
  3. Ellison R. A., Kotsonis F. N. In vitro metabolism of T-2 toxin. Appl Microbiol. 1974 Feb;27(2):423–424. doi: 10.1128/am.27.2.423-424.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ghosal S., Biswas K., Srivastava R. S., Chakrabarti D. K., Chaudhary K. C. Toxic substances produced by Fusarium V: occurrence of zearalenone, diacetoxyscirpenol, and T-2 toxin in moldy corn infected with Fusarium moniliforme Sheld. J Pharm Sci. 1978 Dec;67(12):1768–1769. doi: 10.1002/jps.2600671238. [DOI] [PubMed] [Google Scholar]
  5. Hsu I. C., Smalley E. B., Strong F. M., Ribelin W. E. Identification of T-2 toxin in moldy corn associated with a lethal toxicosis in dairy cattle. Appl Microbiol. 1972 Nov;24(5):684–690. doi: 10.1128/am.24.5.684-690.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Matsumoto H., Ito T., Ueno Y. Toxicological approaches to the metabolities of fusaria. XII. Fate and distribution of T-2 toxin in mice. Jpn J Exp Med. 1978 Oct;48(5):393–399. [PubMed] [Google Scholar]
  7. Mirocha C. J., Pathre S. V., Schauerhamer B., Christensen C. M. Natural occurrence of Fusarium toxins in feedstuff. Appl Environ Microbiol. 1976 Oct;32(4):553–556. doi: 10.1128/aem.32.4.553-556.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mirocha C. J., Schauerhamer B., Christensen C. M., Kommedahl T. Zearalenone, deoxynivalenol, and T-2 toxin associated with stalk rot in corn. Appl Environ Microbiol. 1979 Sep;38(3):557–558. doi: 10.1128/aem.38.3.557-558.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ohta M., Ishii K., Ueno Y. Metabolism of trichothecene mycotoxins. I. Microsomal deacetylation of T-2 toxin in animal tissues. J Biochem. 1977 Dec;82(6):1591–1598. doi: 10.1093/oxfordjournals.jbchem.a131854. [DOI] [PubMed] [Google Scholar]
  10. Ohta M., Matsumoto H., Ishii K., Ueno Y. Metabolism of trichothecene mycotoxins. II. Substrate specificity of microsomal deacetylation of trichothecenes. J Biochem. 1978 Sep;84(3):697–706. doi: 10.1093/oxfordjournals.jbchem.a132175. [DOI] [PubMed] [Google Scholar]
  11. Puls R., Greenway J. A. Fusariotoxicosis from barley in British Columbia. II. Analysis and toxicity of syspected barley. Can J Comp Med. 1976 Jan;40(1):16–19. [PMC free article] [PubMed] [Google Scholar]
  12. Rukmini C., Bhat R. V. Occurrence of T-2 toxin in Fusarium-infested sorghum from India. J Agric Food Chem. 1978 May-Jun;26(3):647–649. doi: 10.1021/jf60217a013. [DOI] [PubMed] [Google Scholar]
  13. Szathmary C. I., Mirocha C. J., Palyusik M., Pathre S. V. Identification of mycotoxins produced by species of Fusarium and Stachybotrys obtained from Eastern Europe. Appl Environ Microbiol. 1976 Oct;32(4):579–584. doi: 10.1128/aem.32.4.579-584.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ueno Y., Ishii K., Sakai K., Kanaeda S., Tsunoda H. Toxicological approaches to the metabolites of Fusaria. IV. Microbial survey on "bean-hulls poisoning of horses" with the isolation of toxic trichothecenes, neosolaniol and T-2 toxin of Fusarium solani M-1-1. Jpn J Exp Med. 1972 Jun;42(3):187–203. [PubMed] [Google Scholar]
  15. Ueno Y., Sato N., Ishii K., Sakai K., Enomoto M. Toxicological approaches to the metabolites of Fusaria. V. Neosolaniol, T-2 toxin and butenolide, toxic metabolites of Fusarium sporotrichioides NRRL 3510 and Fusarium poae 3287. Jpn J Exp Med. 1972 Oct;42(5):461–472. [PubMed] [Google Scholar]
  16. Wallace E. M., Pathre S. V., Mirocha C. J., Robison T. S., Fenton S. W. Synthesis of radiolabeled T-2 toxin. J Agric Food Chem. 1977 Jul-Aug;25(4):836–838. doi: 10.1021/jf60212a058. [DOI] [PubMed] [Google Scholar]
  17. Wei R., Strong F. M., Smalley E. B., Schnoes H. K. Chemical interconversion of T-2 and HT-2 toxins and related compounds. Biochem Biophys Res Commun. 1971 Oct 15;45(2):396–401. doi: 10.1016/0006-291x(71)90832-1. [DOI] [PubMed] [Google Scholar]
  18. Yoshizawa T., Swanson S. P., Mirocha C. J. T-2 metabolites in the excreta of broiler chickens administered 3H-labeled T-2 toxin. Appl Environ Microbiol. 1980 Jun;39(6):1172–1177. doi: 10.1128/aem.39.6.1172-1177.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES