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Abstract
Gene promoter CpG island hypermethylation is associated with Helicobacter pylori (H. pylori)
infection and may be an important initiator of gastric carcinogenesis. To examine factors influencing
methylation, we utilized bisulfite Pyrosequencing® technology for quantitative analysis of promoter
DNA methylation in RPRM, APC, MGMT and TWIST1 genes using DNA from 86 gastric biopsies
from Colombian residents of areas with high and low incidence of gastric cancer. H. pylori colonies
were cultured from the same subjects, and gastric pathology was evaluated. Virulence factors
cagA (including EPIYA polymorphisms of the 3’ end) and vacA s and m regions were characterized
in the H. pylori strains. Using univariate analysis, we found significantly elevated levels of RPRM
and TWIST1 promoter DNA methylation in biopsies from residents of the high risk region compared
to those from residents of the low risk region. The presence of cagA and vacA s1m1 alleles were
independently associated with elevated levels of promoter DNA methylation of RPRM and
MGMT. Using multivariate analysis, DNA methylation of RPRM was associated with location of
residence, cagA and vacA s1m1 status, and methylation of TWIST1. We conclude that cagA and
vacA virulence determinants are significantly associated with quantitative differences in promoter
DNA methylation in these populations, but that other as yet undefined factors that differ between the
populations may also contribute to variation in methylation status.

Introduction
DNA methylation of promoter CpG islands is an important epigenetic regulatory mechanism
for transcription. Methylated cytosines provide binding sites for various methyl-binding
proteins, which interact with chromatin remodeling enzymes to stably repress transcription. In
normal cells, repetitive elements are inactivated by DNA methylation, while the CpG islands
of many housekeeping genes are protected from methylation. Conversely, in cancer cells,
repetitive elements lose their methylation, and CpG islands in many promoters become

*Corresponding author: Barbara G. Schneider, Ph.D., 2215 Garland Ave., Room 1030C, MRB IV, Nashville, TN 37232-0252; USA,
Phones: (615) 343-3959 (office), Fax: (615) 343-6229, barbara.schneider@vanderbilt.edu.

NIH Public Access
Author Manuscript
Int J Cancer. Author manuscript; available in PMC 2010 December 1.

Published in final edited form as:
Int J Cancer. 2010 December 1; 127(11): 2588–2597. doi:10.1002/ijc.25274.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



aberrantly methylated. Inactivation of tumor suppressor genes by promoter hypermethylation
is considered to be an important contributor to carcinogenesis1.

Gastric cancer is responsible for approximately 800,000 deaths annually worldwide2, and the
majority of these occur in the developing world. Infection with Helicobacter pylori (H.
pylori) is the major environmental risk factor for gastric cancer3. However, identification of
H. pylori infection alone as a risk factor does not simplify the problem of gastric cancer
prevention, because approximately half of the world’s population is infected. Most of these
persons will have only gastritis, and less than 1% will develop cancer. Global eradication of
the infection by antibiotic use is impractical, due to cost and to the problem of generation of
antibiotic-resistant strains of H. pylori and other pathogenic bacteria. Homo sapiens and H.
pylori have co-evolved over millennia, and infection may produce some benefits for the host,
such as reduced rates of asthma and lower risk of esophageal diseases4–6. Therefore
identification of more accurate biomarkers for increased risk of gastric cancer could be
beneficial in reducing the burden of mortality from this disease.

H. pylori strains vary in their ability to induce and promote gastric cancer. Among the well-
established virulence factors is cagA, a marker for a pathogenicity island carried by some
strains7, 8. This gene encodes the CagA protein, which is injected into gastric epithelial cells
by the type IV Cag secretion system of H. pylori. Once within the cell, CagA becomes tyrosine
phosphorylated by Abl and Src family kinases, and then is able to bind to Src Homology 2-
containing tyrosine phosphatase (SHP-2) and disrupt cell signaling9. Numerous studies have
found an association between the presence of CagA in infecting strains and gastric cancer
risk10. Among CagA positive strains, some variants are associated with an even greater risk
for gastric cancer. CagA is polymorphic, containing 3 or more EPIYA (Glu-Pro-Ile-Tyr-Ala)
motifs within its C-terminus. Among Western H. pylori strains, those with more than 3 EPIYA
motifs have greater affinity for SHP-2 and disrupt epithelial cell morphology in vitro11.
Notably, persons infected with strains bearing CagA proteins with more than 3 EPIYA motifs
are at greater risk for gastric cancer than those harboring strains bearing only 3 motifs12. We
previously reported in Colombian populations that persons infected with CagA positive strains
with more than 3 EPIYA motifs have more severe gastric precancerous lesions13.

Another important H. pylori virulence factor is vacA, which encodes the vacuolating cytotoxin.
This gene is also polymorphic: the sequence encoding the signal peptide is either s1 (with
s1a, s1b and s1c subtypes), or s2; the middle portion of the gene is found as m1 or m2 alleles.
Strains bearing vacA s1m1 alleles produce more toxin and are associated with more severe
pathology than those bearing s2m2 alleles14.

Recent reports indicate that infection with H. pylori is associated with elevated levels of
aberrant DNA methylation. Chan et al. found the presence of aberrant methylation of the
CDH1 promoter to be associated with the presence of H. pylori in gastric mucosae of dyspeptic
patients15. Maekita et al. quantitatively examined methylation levels within promoters of LOX,
HAND1, THBD, HRASLS, FLNC, ARC and CDKN2A (p16), and found increased methylation
in DNAs from H. pylori-infected subjects compared to uninfected individuals16. Additional
affected gene promoters have been identified, including TWIST117–19. Leung et al. found a
lower methylation density at the CDH1 promoter after H. pylori eradication20, and an
independent study examining H. pylori-associated promoter methylation in 5 genes (CDH1,
p16, MLH1, APC, and COX2) similarly reported that aberrant methylation was significantly
reduced or completely eliminated one year after H. pylori eradication21. Elevated methylation
levels of the FLNC and CDKN2A (p16) genes in gastric mucosae of H. pylori-infected subjects
have also been associated with elevated risk for gastric cancer22, 23.
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We aimed to determine whether DNA methylation differences could be detected within the
context of H. pylori infection in two populations in Colombia. Though situated only 143 miles
apart, these two populations differ in gastric cancer incidence by approximately 25-fold (150
vs 6 per 100,000)24. The high risk region is in the rural Andes mountain villages, where the
population is supported by agriculture. This population is of mixed Amerindian and Spanish
extraction. The low risk region is along the Pacific coast, where the economy is based on
fishing. This population is of mixed African and Spanish ancestry. By 5 years of age, 80% of
the children in both populations are infected with H. pylori, and infection is acquired at a rate
that does not differ significantly between the two populations25. The high risk population has
an elevated proportion of subjects infected with more virulent H. pylori strains (CagA positive,
vacA s1m1), but this difference is estimated at 24% or less26, 27. These populations provide a
useful natural laboratory in which to examine risk factors and potential biomarkers for gastric
cancer.

Methods
Human Subjects

The study population consisted of 86 men with dyspeptic symptoms, aged 31 to 60 years old,
who underwent upper endoscopy in gastroenterology clinics in two public hospitals between
June and September, 2006. Ethics committees of the participating hospitals and of the
Universidad del Valle in Cali, Colombia, approved the protocol for this study, and all patients
provided informed consent. The subjects were residents of Tuquerres in the Andes Mountains
and Tumaco on the Pacific Coast, both in the State of Nariño, Colombia. Exclusion criteria for
the study were serious chronic diseases, previous gastrectomy, or ingestion of proton pump
inhibitors, H2-receptor antagonists, or antimicrobials in the month prior to the endoscopy.
Biopsy samples from the antrum (greater curvature, within 5 cm of the pylorus), incisura
angularis (lesser curvature), and corpus (middle anterior wall) were obtained by a single
experienced gastroenterologist. One biopsy from each site was fixed in buffered formalin and
embedded in paraffin for histopathology. One biopsy from the gastric antrum was frozen in
glycerol and thioglycolate for culture of H. pylori organisms. Another biopsy, from the antrum,
was frozen without any added solution, for analysis of DNA methylation. Frozen biopsies were
shipped on dry ice to Vanderbilt University in Nashville, Tennessee, U.S.A., and stored at −80°
C until thawed for culture or methylation analysis.

Histopathology
Four-micron sections were stained with hematoxylin and eosin for diagnosis performed
independently by two experienced pathologists (MBP and PC). Discordant diagnoses were
reviewed until a consensus was reached. Diagnosis was performed by established guidelines
as normal, non-atrophic gastritis (NAG), multifocal atrophic gastritis without intestinal
metaplasia (MAG), intestinal metaplasia (IM), or dysplasia (DYS) 28, 29. Pathologists
evaluated diagnoses blinded to residence of subjects.

H. pylori culture and genotyping
One antral and one corpus biopsy per person were homogenized under sterile conditions and
cultured on selective Trypticase soy agar with 5% sheep blood and vancomycin (20 µg/ml),
bacitracin (200 µg/ml), nalidixic acid (10 µg/ml) and amphotericin B (2 µg/ml), (all from
Sigma, St Louis, MO), as previously described13. Small gray translucent colonies characteristic
of H. pylori appeared after 4 to 8 days. Identity of H. pylori was confirmed by morphology,
Gram stains and assays for oxidase and urease. Pellets from three single colonies per biopsy
were frozen for analysis. DNA was isolated with either a Puregene kit (Qiagen) or by proteinase
K digestion overnight followed by phenol / chloroform extraction. In preliminary experiments,
2 to 5 colonies per person were analyzed from 28 subjects by DNA fingerprinting analysis to
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evaluate the frequency of mixed infections in the colonies harvested from the antral and corpus
biopsies30. In all 28 subjects, all colonies from the same person produced identical DNA
amplification patterns, indicating that there were no mixed infections in the strains harvested
from a single individual. Subsequently, all analyses for H. pylori virulence markers were
performed on DNA from a single colony per subject, isolated from the antral biopsy.

DNA from one colony per participant was genotyped for cagA and vacA s and m regions.
Analysis of cagA, including the polymorphic 3’ end, was previously described from H.
pylori strains from this study population13. The vacA s region of each strain was amplified by
primers VA1F14 and Vac785 (R: AATACGCTCCCACGTATTGC), using an annealing
temperature of 52°C. PCR products were treated with ExoSAP-IT (USB, Cleveland, OH) and
sequenced using BigDye 3.1 terminator chemistry with an ABI 3130xl Genetic Analyzer. Two
strains were genotyped for the vacA s region by PCR alone, using primers VA1F and
VA1R14 followed by electrophoresis in a 1.5% agarose gel, discriminating a 259 bp fragment
for s1 or a 286 bp fragment for s2. The vacA m region was defined by multiplex PCR using
primers M1F2, M1R2, M2F1, and M2R131. Primer sequences and details of amplifications are
described in Sicinschi et al27.

Methylation Analysis
We used a Pyrosequencing® technique, which allows independent quantitative determination
of methylation at selected CpG sites in the gene promoter. To obtain material for the analyses,
gastric antral biopsies, one intact biopsy per person, were homogenized using disposable plastic
pestles and digested overnight with proteinase K. DNA was isolated by phenol / chloroform
extraction and quantitated with a Nanodrop instrument (Thermo Scientific, Wilmington, DE);
0.5 to 2 ug of DNA per biopsy was bisulfite modified, using a Zymo EZ Methylation Direct
kit (Zymo Research Corp., Orange, CA). Modified DNA (20 ng per reaction) was amplified
by PCR, using 0.2 uM of each primer, 2 Units of hot start Taq DNA polymerase, and 0.2 mM
of each dNTP per reaction. Primer sequences and their location are listed in Table 1. Cycling
programs were 95°C for 15 min., then 48 cycles of 95°C for 30 sec, 55°C for 30 sec, and 72°
C for 30 sec, followed by a 5 min. incubation at 72°C. PCR products were examined following
gel electrophoresis in 1.5% agarose, in order to confirm that a single band was obtained. In
preparation for Pyrosequencing, the biotinylated strand of each PCR product was isolated from
10 to 20 ul of each PCR product using a Vacuum Prep Tool (Qiagen Inc., Valencia, CA.),
according to the manufacturer’s protocol. Pyrosequencing reactions were performed in a
PyroMark MD Pyrosequencing instrument (Qiagen), in the presence of 500 nM sequencing
primer, following the manufacturer’s recommendations. The positive control for methylation
was methylated HeLa DNA (New England Biolabs, Ipswich, MA); the negative control was
normal human blood DNA (Promega Corp., Madison, WI). Positive and negative controls were
run with each experiment. Pyrosequencing assays contained a control for incomplete bisulfite
modification. Methylation values used for analysis were the mean of the percent methylation
measured for the first 3 potential methylation sites following the sequencing primer.

Statistical Analysis
Age, histological diagnoses, levels of methylation at the 4 gene promoters, H. pylori virulence
genes, and number of EPIYA motifs were compared in a univariate fashion by risk area using
χ2, Fisher's exact, Wilcoxon/Mann Whitney, Spearman, and Student’s t tests, as appropriate.
Mathematical transformations of the 4 levels of methylation were evaluated to reduce data
skewness. H. pylori status was analyzed several ways combining cagA and vacA genotyping.
In order to assess the degree to which various factors explained levels of methylation,
multivariate generalized linear models were used. For continuous and binary variables, the
coefficients represent the average difference in percentage of methylation for a one unit change
in the predictor (i.e. for every year of age, or low versus high risk area). In the case of H.
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pylori genotypes, the coefficient represents the average difference in percentage of methylation
associated with being a part of the specified category (cagA and vacA s1m1 or other genotypes)
as compared with the reference group (uninfected). Diagnosis was considered as an ordinal
variable (0=Normal/NAG, 1=MAG, and 2=IM/DYS), for purposes of estimating the p-values
in the test of linear trend (p-trend).

Regression analyses were individually applied to original and mathematically transformed
variables. Since the results were similar, only those results based on the original variables are
presented. Data were analyzed using the software package Stata 10.0 (Stata Corporation,
College Station, TX). Prism 5.0b (GraphPad Software, La Jolla, CA) was used to generate
Figure 1.

A kappa coefficient of reliability was run on 64 replicates to assess reproducibility of the
Pyrosequencing results. This analysis produced a kappa statistic of 0.29 (95% CI=0.27 – 0.37,
bias corrected), with complete agreement of 31% of samples, a standard error of 0.023, and a
correlation coefficient of 0.983 (p<0.0001).

Results
Subjects and their Infecting H. pylori Strains

Table 2 shows the description of the subjects from the high and low risk populations and their
infecting H. pylori strains. Age distributions and prevalence of H. pylori infection were similar
in the two groups, but the high risk population had more advanced gastric precancerous lesions
(p=0.021). Among the 64 strains that were analyzed for vacA s region by sequencing, all were
s1b. Among the cagA positive strains, most had EPIYA patterns of ABC (66% of the cagA
positive strains from the low risk region, and 57% of those from the high risk region). This
difference was not significant. Of the remaining cagA positive strains, most were ABCC, but
some variants were found: an AC strain in the low risk region, and one each of ABCCC,
ABBCC, ABBC, ABCBC and BCC in the high risk region32.

Unadjusted Analysis
In univariate analysis, levels of methylation (either medians or means) in the RPRM and
TWIST1 promoters were significantly associated with the area of residence of the subject, with
more methylation being found in the DNA from subjects in the high risk area. No significant
difference was detected for the APC or MGMT promoters.

Considering results from the entire set of DNA samples, generalized unadjusted linear
regression models showed that levels of methylation in the RPRM and MGMT promoters were
positively and significantly associated with histological diagnoses (Coefficient: 2.1; p-trend
=0.018 for RPRM; Coefficient: 3.0; p-trend=0.003 for MGMT). Coefficients indicate that as
lesions progressed, higher levels of methylation were observed. In the small number of
uninfected patients, median per cent methylation was 8% for RPRM (n=4), 38% for APC (n=3),
39% for MGMT (n=4) and 6.5% for TWIST1 (n=4). Regarding H. pylori infection, the presence
of cagA and vacA s1m1 alleles was associated with elevated levels of methylation of RPRM
and MGMT. Interestingly, the association with APC was inverse, such that more virulent H.
pylori strains were associated with less methylation of this gene. Age was not associated with
levels of methylation.

Multivariate Analysis
Multivariate regression models incorporated effects of geographic area, diagnosis, age, and
genotypes of the infecting H. pylori strain (classified as uninfected, cagA positive, vacA
s1m1 and all other genotypes; Table 3). Because alternative grouping of variables of H.
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pylori status, including numbers of EPIYA motifs, or analysis by the presence of cagA alone,
did not improve the explanatory capacity of the models, and led to similar results, parsimonious
models with the highest adjusted R2 (coefficient of determination) are presented. In these
models, the observed mean differences between area and RPRM or TWIST1 remained
statistically significant, as did the differences between H. pylori virulence genes and RPRM,
MGMT, or APC. Adjustment for covariates significantly attenuated the differences between
histological diagnoses and levels of methylation of RPRM and MGMT. Age did not have any
significant effect on the levels of methylation.

Because significant correlations exist between TWIST1 (correlation coefficient rho=0.58;
p<0.001) and MGMT (rho=0.39; p=0.001) with RPRM, the combined effect of methylation in
these genes was simultaneously evaluated in a regression model using methylation of RPRM
as outcome and including the covariates from the multivariate model. When TWIST1 and
MGMT were included as covariates, TWIST1 was significantly associated with RPRM
(coefficient, 1.04; p<0.0001) and MGMT showed a trend toward significance (Coefficient,
0.14; p=0.078). All effects were independent, as there was no significant interaction or effect
modification between any of the covariates in the multivariate model.

An Interesting Outlier
One biopsy from a resident of the high risk region was a notable outlier. DNA from this biopsy
showed elevated methylation at all four regions examined, for RPRM (55% methylation,
compared to a median of 21%, 95% CI: 19–23%), for TWIST1 (38% methylation, compared
to a median of 10%, 95% CI: 8–11%), for APC (37%, compared to a median of 23%, 95% CI:
22–27%) and MGMT (73%, compared to a median of 58%, 95% CI: 55–61%; Figure 1).
Histopathological analysis of paraffin-embedded biopsies of the same subject showed
extensive intestinal metaplasia in all three sites examined (antrum, corpus and incisura
angularis) and focal areas of indefinite dysplasia in antrum and corpus.

Discussion
In an attempt to understand mechanisms that regulate progression towards gastric cancer, we
compared two populations that differ greatly in the incidence of this disease, although they
have equally high prevalence of H. pylori infection26, 27. As expected, the two populations
differed in diagnosis, with more severe lesions occurring more frequently in the high risk
region. We detected a trend for the presence of the more virulent cagA positive, vacA s1m1
strains more often in the high risk region, consistent with our findings in prior studies with
different subjects from these populations26, 27. The quantitative method used to measure DNA
methylation allowed us to detect differences in levels of methylation previously missed by
earlier methods, such as methylation-specific PCR, which reveals only that methylation is
present, without quantitating it. In our study, low levels of methylation present in uninfected
patients could be measured; this methylation may occur due to environmental stressors not
examined in our analysis. Univariate analysis comparing methylation levels of tissues
representing the two populations showed differences in methylation of two genes: RPRM and
TWIST1. When we examined several possible covariates of methylation, using multivariate
analysis, geographic area remained as an independent effect, with more methylation in
RPRM and TWIST1 in the high risk region.

Because many epidemiological studies have shown an association of cagA and vacA s1m1 with
gastric cancer risk, we sought to determine if these virulence factors were associated with
promoter methylation in the four genes examined. For RPRM and MGMT, an independent
effect of cagA and vacA s1m1 on methylation levels was detected. In contrast, for APC,
decreased levels of promoter methylation were associated with more virulent H. pylori
genotypes. Unadjusted analyses showed that levels of methylation in the RPRM and MGMT
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promoters were significantly associated with the histological diagnoses, but adjustment for
genotypes of the infecting H. pylori strains significantly attenuated the associations. This
attenuation is likely due to the association between H. pylori infection and diagnosis of more
severe lesions. Our study also demonstrated differential methylation of RPRM and TWIST1
promoters by geographic area, even after adjustment for histological diagnosis and virulence
determinants. These results indicate that other virulence determinants of the infecting strains
are likely to be responsible for those differences, and/or that additional features distinguishing
the two populations, such as diet or genetic features of the host, are important in differentiating
risk.

In a prior examination of promoter methylation status and H. pylori virulence determinants,
Watanabe et al. examined methylation of MINT25, RORA, GDNF, ADAM23, PRDM5, and
MLF1 in gastric washings from Korean subjects with and without gastric cancer33. These
investigators tested for the presence of cagA in infecting strains and found no association with
methylation. A difference from our study, besides the ethnicity of the subjects, is that Watanabe
et al. assayed cagA by PCR on DNA from gastric washings, in contrast to our method of PCR
using DNA from cultured bacteria. Culture is likely to be a more sensitive method for detection
of H. pylori and its virulence determinants. In addition, as gastric lesions become more
advanced, H. pylori infection is often lost, so that evaluation of H. pylori and its virulence
determinants in gastric cancers may underrepresent the infection originally present34. Thus our
study on premalignant lesions may have been more likely to detect infections originally present.

Park et al. examined methylation levels in a set of genes by quantitative methods, comparing
premalignant gastric tissues and gastric cancers, with and without H. pylori infection35, and
found significant differences between infected and uninfected subjects, in the DNA samples
from gastritis, but not from intestinal metaplasia, adenomas, or gastric cancers. While some
studies have found H. pylori-related methylation to be associated with age19, 36, others15, 37,
including the current study, have found no significant associations. However, the age range of
our subjects was 29 years, and it is possible that with a broader age range, a significant
association might be detected.

The genes we chose to study have been previously noted to be associated with development
of gastric cancer. One such gene was RPRM, a TP53-dependent mediator of the G2/M cell
cycle checkpoint38. RPRM is a tumor suppressor, which is inactivated by promoter methylation
in a variety of human tumors, including gastric adenocarcinoma39. Notably, RPRM promoter
methylation has been reported in premalignant conditions such as Barrett’s esophagus40 and
non-malignant gastric epithelia39. Aberrant methylation of RPRM may be detected by
methylation-specific PCR (MSP) in plasma of gastric cancer patients, in contrast to plasma of
control subjects, suggesting the potential of RPRM as a biomarker for early gastric cancer41.
Our results also support the identification of this gene as one that may be altered early in the
progression towards gastric cancer.

Another gene we examined was the APC (adenomatous polyposis coli) gene, which encodes
a component of a multiprotein complex that inactivates β-catenin in the Wnt signaling pathway.
A critical tumor suppressor in the gastrointestinal tract, APC is expressed in the stomach as
two isoforms originating from promoters 1A and 1B42. Methylation in gastric tissue occurs
predominantly in promoter 1A, and for this reason, this promoter is frequently examined in
studies of hypermethylation in gastric cancer43, 44. However, in contrast to the colon,
methylation at promoter 1A in gastric mucosae is not predominantly tumor related, but is
frequently found in non-malignant gastric mucosae45, as we also observed. Promoter 1B is not
methylated, and gene expression studies have shown that transcription of APC in the stomach
is regulated primarily from this promoter45, 46. Consequently methylation at promoter 1A in
gastric mucosae is likely to be a passenger, rather than a driver of carcinogenesis. Among the
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four genes we examined, after adjustment for diagnosis, it is notable that only the APC promoter
showed a decrease in methylation in DNAs from subjects from the high risk region.

MGMT encodes O-6-methylguanine-DNA methyltransferase (also called O6-alkylguanine-
DNA alkyltransferase), a DNA repair enzyme that removes alkylation adducts from guanine.
MGMT must be constantly renewed, as part of defense against mutagens. MGMT promoter
hypermethylation is associated with a wide variety of tumors, including gastric cancers47. Our
assays detected a relatively high level of MGMT promoter methylation in most of the gastric
biopsies. Additional studies will be necessary to determine how these elevated levels are related
to MGMT gene expression.

TWIST1 encodes a basic-helix-loop-helix transcription factor called Twist1 that regulates
metastasis48 and epithelial-to-mesenchymal transition49. TWIST1 represses transcription of E-
cadherin and TIMP1 (an inhibitor of matrix metalloproteinases)50 and promotes migration in
neoplastic cells51, 52. Although the Twist1 protein may have tumor- or metastasis-promoting
effects, paradoxically, hypermethylated TWIST1 is reported in cancers of the stomach and other
tumor types49, 53. All of our Colombian subjects, with the exception of one outlier, had
relatively low levels of TWIST1 hypermethylation.

Limitations of our study include the fact that we examined DNA from biopsies containing
premalignant lesions, instead of DNA from gastric cancers. Our goal was to investigate early
events in gastric carcinogenesis, and these events may not all lead to cancer. Another limitation
is the use of entire biopsies for our DNA preparation, so that mixed cell types are included.
Although most of the cells contributing DNA were gastric epithelial cells, other cells including
stromal and inflammatory cells may have contributed to the differences in methylation levels
that we measured. Additional studies employing microdissection will be useful to confirm
identity of the cell type demonstrating alterations in methylation levels.

A topic of intense investigation is the mechanism(s) by which promoter methylation becomes
dysregulated during the development of cancer, and how inflammation may promote this
process. In our study, we found that two of the four genes we examined (RPRM and
TWIST1) increased together in levels of methylation, and a third (MGMT) trended toward such
an increase, consistent with a common or related mechanism affecting most of the genes we
studied. Results from an outlier subject, whose biopsy showed high or remarkably elevated
promoter methylation in all four genes examined, are consistent with the existence of a global
methylation defect that can occur early in the stages of carcinogenesis. Although this
widespread hypermethylation was observed in only one subject, we expect progression of H.
pylori-related disease to occur in only a small minority of infected persons, and therefore events
occurring within the gastric mucosae of these rare individuals provoke great interest. Analysis
of DNA methylation of additional genes and the effect of that methylation on gene transcription
will be necessary to clarify early events in H. pylori-related gastric cancer development.

The mechanisms by which virulent H. pylori infection may influence promoter
hypermethylation remain obscure, but several hypotheses which involve enhancement of DNA
methyltransferase activity have been proposed. H. pylori infection promotes gastric epithelial
cell proliferation and increased production of epidermal growth factor (EGF) and its
receptor54; the EGF receptor has greater activity with the more virulent cagA positive
strains55. EGF administered to gastric epithelial cells in culture increases DNA
methyltransferase activity56.

Another possible mechanism by which H. pylori can promote hypermethylation involves the
effect of nitric oxide on DNA methyltransferase. Katayama et al. noted that the RUNX3 gene
promoter in the human gastric cancer cell line MKN45 can become methylated by co-culture
with H. pylori and macrophages, and this effect can be replicated by substituting nitric oxide
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(NO) for the bacteria and macrophages57. Inhibition of NO synthesis in the co-culture reversed
the methylation. Hmadcha et al reported that treatment of an insulinoma cell line by IL-1β or
NO could inactivate the FMR1 and HPRT genes by hypermethylation58. This effect was
apparently mediated by enhancement of DNA methyltransferase activity, without an increase
in transcription of the methyltransferase gene.

In conclusion, RPRM and TWIST1 promoter DNA methylation were found to be elevated in
gastric biopsies from residents of the high risk region compared to those from residents of the
low risk region in Colombia. Virulence genes cagA and vacA s1m1 in the infecting H. pylori
strains were independently associated with elevated levels of methylation of RPRM and
MGMT. Alterations in DNA methylation are early changes in the progression of premalignant
lesions and have the potential to serve as biomarkers for gastric cancer risk.
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Figure 1.
Scatter plots indicate the percent methylation of each gene, measured from DNA from residents
of low risk (LR) and high risk (HR) areas. Arrows indicate the points representing the outlier
subject, whose gastric histology showed widespread intestinal metaplasia and focal areas of
indefinite dysplasia.
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Table 1

Primer sequences for Pyrosequencing

APC
Promoter
1A

F: GGGGTTAGGGTTAGGTAGGTT
R: biotin-ACTACACCAATACAACCACATATC
Seq: GAGAGAAGTAGTTGTGTAAT

*chr 5: 112,101,273-112,101,293
antisense 112,101,444-112,101,472
112,101,348-112,101,367

** Industry
source

MGMT F: TGGTTTGGGGGTTTTTGA chr 10, 131,154,890-131,154,907 This study

R: biotin-CCTTTTCCTATCACAAAAATAATC antisense 131,155,065-131,155,088

Seq: ATTAGGAGGGGAGAGAT 131,154,921-131,154,937

RPRM F: GGTTATTAAGGAAGTTTGGGTGTA chr2:154,043,215-154,043,238 This study

R: biotin-AACCCCACACCTATTCCTCC antisense 154,043,387-154,043,406

Seq: TTGTTTAGGGTAGGATTTAT 154,043,306-154,043,325

TWIST1 F: GTTAAGTGAGGTGGGAAGGTTGA chr7:19,122,688-19,122,710 This study

R: biotin-CCCACCCCCTCAACAAAAC antisense 19,122,830-19,122,848

Seq: GGAGAGGGGAGGAAA 19,122,721- 19,122,735

*
Position indicates equivalent location of primer (in unmodified sequence) in the March 2006 human reference sequence (NCBI Build 36).

**
assay designed by QIAGEN AB, formerly Biotage AB, as published in PyroMark™ Assay Database at www.pyrosequencing.com
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Table 2

Study population and Characteristics of Infecting H. pylori Strains

Variables Low risk for
Gastric Cancer

n=45

High risk for
Gastric Cancer

n=41

Two-tailed
p-value *

Age in years, mean (SD) 47.5(6.0) 48.9(5.3) 0.257

cagA assessment by PCR, n(%)

   Uninfected 7(15.6) 2(4.9) 0.209

   Negative 6(13.3) 4(9.7)

   Positive 32(71.1) 35(85.4)

H. pylori genotypes, n(%)

   Uninfected 7(15.6) 2(4.9) 0.079

   cagA positive, vacA s1m1** 29(64.4) 35(85.4)

   Other genotypes 9 (20.0) 4 (9.7)

H. pylori genotypes, n(%)

   Uninfected 7(15.6) 2(4.9) 0.128

   cagA negative 6(13.3) 4(9.7)

   cagA positive, 3 EPIYAs 25(55.6) 21(51.2)

   cagA positive, >3 EPIYAs 7(15.5) 14(34.2)

H. pylori genotypes, n(%)

   uninfected 7(15.6) 2(4.9) 0.076

   cagA positive, (3 EPIYAs), vacA s1m1* 7(15.6) 14(34.2)

   cagA positive (>3 EPIYAs) vacA s1m1* 22(48.8) 21(51.2)

   other genotypes 9(20.0) 4(9.7)

Histopathological diagnosis§ , n(%)

   Normal/NAG 27(61.4) 13(31.7) 0.021

   MAG 6(13.6) 8(19.5)

   IM/Dysplasia 11(25.0) 20(48.8)

% methylation, median (interquartile range)

   RPRM 14(7) 21(7.5) <0.001

   APC 25(8) 23(9) 0.9158

   MGMT 54(12) 58(11) 0.3788

   TWIST1 8 (2) 10(4) <0.001

Mathematically transformed values of %
methylation, mean (SD)

   RPRM (logarithm) 2.6(0.4) 3.0(0.3) <0.001

   APC (logarithm) 3.2(0.3) 3.2(0.2) 0.9460

   MGMT(square-root) 3160(848.4) 3369(906.6) 0.2869
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Variables Low risk for
Gastric Cancer

n=45

High risk for
Gastric Cancer

n=41

Two-tailed
p-value *

   TWIST1(inverse) 0.10 (0.03) 0.13 (0.03) <0.001

Abbreviations: SD= standard deviation; NAG: non-atrophic gastritis; MAG: multifocal atrophic gastritis; IM: intestinal metaplasia.

*
p-value from χ2, Fisher's exact, t test or Wilcoxon/Mann-Whitney test as appropriate.

**
This category includes a subject with a strain of H. pylori that was cagA positive and vacA s1, but which repeatedly failed PCR for vacA m.

§
A subject with gastritis in which we could not assess atrophy was excluded from this analysis.
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