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Abstract
The binding of nuclear proteins to chromatin in live cells has been analyzed by kinetic modeling
procedures applied to experimental data from fluorescence recovery after photobleaching (FRAP).
The kinetic models have yielded a number of important biological predictions about transcription,
but concerns have arisen about the accuracy of these predictions. First, different studies using
different kinetic models have arrived at very different predictions for the same or similar proteins.
Second, some of these divergent predictions have been shown to arise from technical issues rather
than biological differences. For confidence and accuracy, gold standards for the measurement of in
vivo binding must be established by extensive cross validation using both different experimental
methods and different kinetic modeling procedures.

Introduction
Over the past decade, FRAP has become a widely used technique for quantifying the
dynamics of proteins in live cells [1,2]. In FRAP (Fig. 1A) a region of the cell is
photobleached, and then the rate at which fluorescence recovers there is measured. When
examined by FRAP, many nuclear proteins exhibit complete recoveries within seconds [3].
This dynamic behavior suggests that these proteins are transiently bound to chromatin, since
stable binding interactions would be characterized by either incomplete or very slow FRAP
recoveries.

To extract information about this in vivo binding, FRAP curves must be analyzed
quantitatively with kinetic models [4] (Fig. 1B). These models have now been used
extensively to measure the in vivo binding of various proteins involved in gene expression.

Here we review how these quantitative analyses of FRAP are done and summarize their
conclusions. We show that there are discrepancies among the conclusions from different
quantitative FRAP studies and argue that many of these could reflect technical issues. We
suggest strategies for resolving these discrepancies, and recommend a combination of
continued work and ongoing caution in interpreting kinetic modeling from FRAP data in
live cells.
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FRAP of nuclear proteins includes information about chromatin binding
Most nuclear proteins recover much more slowly than would be expected if they just
diffused through the nucleus. Unconjugated GFP, which has a mass of 27 kD, provides a
baseline for purely diffusive behavior. When a 2 µm diameter spot is photobleached, GFP in
the nucleus completely recovers in 1.1 sec [5]. This measurement can be used to predict the
recovery times for larger diffusing proteins, since with a simple approximation the rate of
diffusion goes as the inverted cube root of a protein's mass, presuming a roughly spherical
protein [6]. Thus for a 2 µm diameter bleach spot, a 100 kD protein should require 1.6 sec to
recover and a 1 MD protein complex should require 3.5 sec.

The recoveries of most nuclear proteins are typically much slower than this, requiring
instead at least 15 sec for a 2 µm diameter bleach spot [3]. This retardation compared to pure
diffusion has been interpreted in virtually all FRAP studies of nuclear proteins as binding to
immobile chromatin structures. Extracting information about this predicted in vivo binding
from a FRAP experiment requires a quantitative analysis of the FRAP data using a kinetic
model [4].

In vivo predictions are obtained by comparing experimental FRAPs to
simulated FRAPs generated with a kinetic model

Kinetic models seek to simulate the processes occurring in a FRAP experiment (see Fig. 2
for details and references). All kinetic models have incorporated a photobleach. When
applied to FRAPs of nuclear proteins, all kinetic models have also simulated binding at
immobile chromatin sites. Many models presume just one binding state, but some have
postulated two or three distinct binding states [7–10]. In addition to binding, some kinetic
models have also allowed for diffusion of the fluorescent molecule into the bleach spot
[6,11–13]. However, other models have presumed that diffusion can be neglected [7–9,14].
This is appropriate if the time to diffuse across the bleach spot is much faster than the time
to bind to chromatin [2].

These basic assumptions are then translated into a mathematical / computational model [6–
15] that describes binding by an association and dissociation rate, and diffusion by a
diffusion constant (in those cases where diffusion cannot be neglected). Binding and
diffusion rates can then be varied to generate a simulated FRAP curve that matches the
experimental FRAP data (Fig. 1B), and in this way estimates are obtained for these
parameters.

Kinetic models are used to quantify and interpret in vivo binding
mechanisms

In addition to the quantitative predictions about diffusion and binding rates, kinetic models
also typically lead to biological interpretations about the behavior of the protein that was
photobleached.

A good example of the power of kinetic modeling comes from the analysis of polymerase II
FRAPs (Table IA). This has generated predictions for the number of kinetically distinct
polymerase binding states at a gene, including the fraction sizes of polymerase molecules in
each state and their residence times. Knowledge of these kinetic properties leads to
important biological conclusions about how the polymerase functions in vivo.

For example, in one kinetic modeling study of pol II three distinct binding states were
detected [9]. These were attributed to promoter binding of the polymerase, initiation of the
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polymerase at the promoter and elongation of the polymerase down the gene. These
assignments led to the conclusion that transcription was inefficient, since the fraction of
polymerase molecules in the promoter binding state was much larger than in the initiation
state which in turn was much larger than in the elongation state. As a consequence, only 1 in
90 polymerases that were recruited to the gene proceeded to elongation. Kinetic modeling
also yielded a prediction for the residence time of molecules in the elongation state, which
was used to estimate the in vivo elongation rate by dividing the residence time by the
number of base pairs in the gene being transcribed.

Thus analysis of polymerase FRAP data has provided information about the different
molecular states of the polymerase at a promoter, its efficiency of progressing to elongation,
and its in vivo rate of elongation, but how robust are these predictions?

Different kinetic models make different predictions for the same or similar
molecules

Table IA summarizes the results of five different kinetic modeling studies of the
polymerase. This comparison reveals multiple discrepancies. For example, the number of
predicted kinetic states of the polymerase varies from one to three (Table IA). Thus, some
studies of the polymerase conclude they detect only elongation, others conclude they detect
initiation and elongation and others conclude they detect promoter binding, initiation and
elongation. Additionally, some studies predict efficient polymerase assembly, while others
predict inefficient assembly (Table IA).

Discrepancies are not limited to the polymerase, but also arise in kinetic modeling of other
molecules. The estimated residence times for transcription factors bound to chromatin vary
by four orders of magnitude from milliseconds to many seconds (Table IB), and the number
of distinct bound states for histone H1 varies from one to two (Table Ic).

The discrepancies in Table I could reflect real biological differences. For example, the
different polymerase II studies have examined transcription either throughout the
nucleoplasm or at different transgenes, while the transcription factor or H1 studies have
looked at either different transcription factors or different H1 variants in different cell lines.

It is also possible, however, that some of the divergent predictions could arise from technical
issues. These differences include how the FRAP experiment was performed and what
assumptions were made to generate the kinetic model. Since the differences between the
kinetic models are much larger than the differences between the FRAP experiments, the
kinetic models emerge as the prime suspects to account for technical errors.

Errors in kinetic modeling could arise from many sources
As noted above, to simulate FRAP of a chromatin binding protein, the processes of
photobleaching, diffusion and binding must be modeled. For each of these processes,
various details remain uncertain. These include whether the 3D bleach is well approximated
by a 2D bleach, whether diffusion is simple or anomalous and whether binding can be
described by simple chemical kinetics (see Fig. 2 for details and references).

Since there is no agreement yet on the best kinetic model, a number of different, plausible
kinetic models have been proposed and applied to FRAP data. Unfortunately, many of these
models are capable of fitting the same FRAP curve, even though they can lead to very
different biological predictions (Fig. 3A,B).
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For example, it is possible to fit the same FRAP curve presuming completely different roles
for diffusion [15]. The different kinetic models derived from these different assumptions
about diffusion yield completely different biological predictions, namely either one binding
state or two distinct binding states with the potential for large discrepancies in the measured
strength of binding.

Cross validation raises questions about the current predictions of kinetic
modeling

Since there is no consensus yet on the best kinetic model, there is as yet no gold standard
measurement of in vivo binding rates. The results in Table I are the first attempts to measure
in vivo binding. We cannot compare them to the in vitro estimates because it is thought that
the in vitro experiments fail to capture the complexity of the live cell [3,16].

Therefore the best approach at present is to evaluate different FRAP kinetic modeling
procedures by cross validation (Fig. 3C). A direct cross validation has only been performed
for a subset of the transcription factor analyses shown in Table IB. The results of this cross
validation indicated that the differences reported among three different transcription factor
studies were due exclusively to inaccuracies in the kinetic modeling procedures [15].

Specifically, when the three different kinetic modeling procedures were applied to the same
transcription factor in the same cell line, three distinctly different sets of predictions were
obtained. These disparate predictions for the same transcription factor paralleled those
obtained in the original studies for different transcription factors.

As a result, two mistakes were identified in the original published kinetic models. The first
was an inaccurate approximation of the photobleach profile and the second was improperly
neglecting the role of diffusion. When the kinetic models were corrected to eliminate these
errors, the modified FRAP procedures now yielded similar binding estimates not only for
the same transcription factor, but also for the three different transcription factors [15]. These
results suggest that the predictions of kinetic modeling, including many of those in Table I,
should be viewed with caution.

One area of caution is the estimated residence times on chromatin, and as a corollary, the
polymerase elongation rate, since this is derived from a residence time estimate.
Determining the residence time is difficult because it is not always proportional to the FRAP
recovery time. Fluorescent molecules entering the bleach spot may undergo a series of
diffusion and binding steps before they reach the center of the bleach spot. If there are ten
such steps, for example, then the binding residence time will be about one-tenth the FRAP
recovery time. Therefore, the FRAP recovery time sets an upper bound on the residence
time, but an accurate kinetic model is required to estimate the actual residence time. An
inaccurate kinetic model can result in residence time estimates that are off by three orders of
magnitude [15].

The second area of caution is the predicted number of binding states. An inaccurate kinetic
model may lead to a poor fit of the experimental FRAP data, which can often be overcome
by postulating an additional binding state, since this adds free parameters to the kinetic
model. As described above, this occurred in the kinetic modeling of transcription factor
FRAPs, where a failure to account for diffusion led to the prediction of an additional,
spurious binding state [15]. These artifactual states may then be assigned biologically
relevant functions (such as specific-site binding of a transcription factor).
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The third area of caution is the predicted size of the bound and free fractions. Inaccurate
kinetic models led to significant errors in predicted bound fractions in several different
transcription factor studies [15]. If similar errors afflict some of the polymerase studies, then
conclusions about the efficiency or inefficiency of polymerase assembly and/or progression
may be wrong, since they are often derived from estimates of bound-fraction sizes.

Further cross validations are necessary to improve our confidence in
kinetic modeling

Complete confidence in kinetic modeling will only be achieved over time as gold standards
for the measurement of in vivo binding become established. This will involve extension of
the cross validation approach described above where the same transcription factor in the
same cell was measured by different FRAP experiments and kinetic modeling procedures
[15]. It will be important to apply this cross validation strategy to the polymerase and
histone H1, which also exhibit discrepancies (Table I).

Beyond comparisons of FRAP experimental methods and kinetic modeling procedures, it
will be essential to compare completely alternative experimental methods (Fig. 3C). These
include fluorescence correlation spectroscopy (FCS) [5,12,17–20], single molecule tracking
(SMT) [21,22], competition ChIP [23,24], continuous photobleaching [25,26] and acceptor
photobleaching FRAP [27], since kinetic models exist or can be developed for each of these
to also provide estimates of in vivo binding rates.

The preceding experimental methods are at least partially orthogonal, and so limitations of
one method are not shared by the others. For example, an underlying concern in FRAP is
that the intentional photobleach induces damage [28]. This is not an issue in FCS where low
light intensities are used. Comparisons of some of these different experimental methods are
already underway [15,17,19,20], so rapid progress should be expected.

As these different experimental methods are applied to the same molecule in the same
system, flaws in either the experimental method or the kinetic modeling procedures are
likely to be uncovered and then corrected. Only then will a consensus gold-standard finally
emerge.

Conclusion
While advances in light microscopy and protein tagging have made analysis of live-cell
kinetics possible, much work remains to validate the quantitative and qualitative conclusions
that have been drawn from the kinetic modeling of FRAP data. The early steps in this
validation are already uncovering errors that significantly impact previous conclusions, and
this may continue as the field matures and settles on standard procedures that are deemed
robust and reliable. This goal will be realized by a concerted effort to address unresolved
technical uncertainties that could still confound current analyses. This will be achieved by
comparison of the results obtained for the same molecules in the same system with different
experimental methods and different kinetic modeling procedures. This effort will be
rewarded with the development of accurate tools to probe binding processes in live cells.
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Figure 1.
(A) FRAP (red circle) of the nucleus is performed by photobleaching a sub-region
containing a fluorescently tagged protein (green circles). The bleached molecules (black)
move out of the bleach zone (small arrows) and unbleached molecules move in. The rate of
fluorescence recovery can be measured by calculating the average fluorescent intensity
inside the measurement area (dashed circle) as a function of time, generating a FRAP curve.
(B) Kinetic models are used to simulate FRAP experiments. The models are constructed
from a set of fixed and variable parameters. The fixed parameters are measurable quantities
such as the shape of the nucleus and the shape of the photobleach pattern. The variable
parameters are unknown quantities of interest, such as the rates of diffusion and binding for
the fluorescently tagged protein. For any combination of parameter values, the kinetic model
generates a simulated FRAP curve. The variable parameters can be varied until a good fit to
the experimental FRAP curve is obtained. These best-fitting parameters then yield the
estimates for the diffusion and binding rates, which are then interpreted to reach biological
conclusions.
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Figure 2.
(A) A FRAP kinetic model is constructed from a series of components (red arrows) that
reflect properties of the cell, the photobleach or the fluorescent protein. The images under
each component indicate some of the choices that have been made by different published
kinetic models. Neither the list in each column nor the references cited for each choice are
exhaustive. (B) A complete kinetic model consists of at least one choice from each column
(some choices are not mutually exclusive). The number of possible kinetic models is
therefore very large (36 = 729 different kinetic models could be constructed from just the list
of possibilities shown here).
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Figure 3.
As Fig. 2 shows, many different kinetic models can be constructed. It is now recognized that
some of these models can fit the same experimental FRAP curve equally well (A).
Unfortunately, different fits can lead to very different biological interpretations (B), so it is
critical to decide on the correct kinetic model. This can be done by cross validation (C).
Under "Current Status", we list the assumptions that have been made for each of the
components of a kinetic model (red boxes), and then under "Sample Cross Validation" we
suggest how these assumptions can be verified.
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