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The incidence rate difference (IRD) is a parameter of interest in many medical studies. For example, in vaccine
studies, it is interpreted as the vaccine-attributable reduction in disease incidence. This is an important parameter,
because it shows the public health impact of an intervention. The IRD is difficult to estimate for various reasons,
especially when there are quantitative covariates or the duration of follow-up is variable. In this paper, the authors
propose an approach based on weighted least-squares regression for estimating the IRD. It is very easy to
implement because it boils down to performing ordinary least-squares regression analysis of transformed vari-
ables. Furthermore, if the outcome events are repeatable, the authors propose that data on all events be analyzed
instead of first events only. Four versions of the Huber-White robust standard error are considered for statistical
inference. Simulation studies are used to examine the performance of the proposed method. In a variety of
scenarios simulated, the method provides an unbiased estimate for the IRD, and the empirical coverage proportion
of the 95% confidence interval is very close to the nominal level. The method is illustrated with data from a vaccine

trial carried out in the Gambia in 2001-2004.

incidence rate; least-squares analysis; recurrent events; standard error

Abbreviations: IRD, incidence rate difference; IRR, incidence rate ratio.

The relative merits of the odds ratio, risk ratio, and risk
difference and procedures for estimating them have been dis-
cussed by many epidemiologists and statisticians (1-3). The
usage and relative merits of the incidence rate ratio (IRR) and
the incidence rate difference (IRD) have received much less
attention. Both IRR and IRD are commonly used in reporting
results from vaccine trials. In vaccine trials, vaccine efficacy is
estimated by 1 — (incidence rate in vaccine group/incidence
rate in control group), or 1 — IRR, and vaccine-attributable
reduction in incidence is estimated by (incidence rate in con-
trol group — incidence rate in vaccine group), or IRD (4, 5).
Vaccine-attributable reduction represents the reduction in
disease burden and is a useful measure of the public health
importance of a vaccine. Furthermore, the inverse of vaccine-
attributable reduction (or IRD) has the useful interpretation
of “number needed to treat” in order to prevent 1 episode of
disease per person-year (6). The impact of vaccines may also
be studied in observational (nonrandomized) studies in which
the evaluation can be subject to confounding, thus requiring
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statistical adjustment. The same concepts apply to the evalu-
ation of other interventions or exposures. Hence, in this article,
the generic term incidence rate difference is used instead of
vaccine-attributable reduction, and it refers to the incidence
rate in the control (unexposed) group minus that in the inter-
vention (exposed) group.

There are 3 issues to consider when estimating IRD and
IRR. Firstly, if the outcome events are repeatable, should one
use data on time to first events only or all events? In the
context of vaccine research, this issue has been the topic of
recent debate (7, 8). A meeting convened by the World Health
Organization in 2008 recommended that data on all events
should be included in the evaluation of vaccine efficacy for
malaria vaccines (8). It appears that the bias in estimating
IRD by using first events only has been somewhat neglected
(see Web Appendix 1, available on the Journal’s Web site
(http://aje.oxfordjournals.org/), for an illustration).

Secondly, statistical estimation of IRD is more difficult
than that of IRR. For a simple 2-group comparison without
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adjustment for covariates, there are established methods for
estimating IRD on the basis of the Poisson distribution (first
event) and the negative binomial distribution (all events)
(9, 10). For analysis of a single quantitative exposure variable
or multiple exposure variables, generalized linear models
readily deal with estimation of the IRR by using the log of
follow-up time as an “offset” term in the log(incidence)
equation. However, unless follow-up time is equal for every
participant, which is not true in many studies, it is not clear
how well the generalized linear models estimate the IRD.
Even in the simple case of equal follow-up time, the iterations
for Poisson and negative binomial regression models with
a quantitative exposure variable may not always converge
(3). One possible option for multivariable analysis of IRD is
standardization (11, 12), but this cannot accommodate quan-
titative exposure variables, and it becomes difficult in practice
as the number of (categorical) exposure variables increases.

Thirdly, valid statistical inference for data on repeatable
(or recurrent) events needs to avoid underestimation of var-
iance and inflation of type 1 error rates due to correlated
events within the same person.

In this article, we aim to provide a simple method based
on a weighted least-squares regression approach and a robust
standard error estimator for estimating IRD. The proposed
method easily controls for unequal follow-up time and
quantitative or multiple covariates. The method is general
in that it is applicable to analysis of first events and all
events. When there is only 1 binary exposure variable, the
method will reduce to the one proposed by Stukel et al. (11)
and Glynn and Buring (10) under mild conditions.

METHODS
Notations and model

Suppose there are n subjects in a study. For subject i (i =
1, ..., n), for the analysis of recurrent-event data, Y; is the
total number of events recorded and Z; is the total length of
follow-up time, referring to the time from recruitment into the
cohort to either loss to follow-up, which is random, or study
closure, which is determined by the investigators. Moreover,
X; = (Xi0, Xi1, - .-, Xi) is the covariate vector for subject i.
B = (Bo, P1, ---» Pr) is the unknown regression coefficient
vector associated with X;. Let X;y = 1 be the intercept of the
design matrix, X;; be an indicator of the exposure status, and
Xi»—X;; be the other covariates. The estimate of the incidence
rate for subject i is Y;/Z;. The observed incidence rate using
data on all events in the unexposed (X;; = 0) group is

=)/ (22)

whereas the observed IRD between groups is

(=n)/(22)-(20)/(22)

The gist of our proposed method, which will be elaborated
below, is to generate new variables Ynew;=Y:/\/Z,
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Xnew,i0 = VZi> Xnew,it = Xit XV Zis s Xnew,ik =Xik X V/Z;
and to perform ordinary least-squares regression without an
intercept for the regression equation

Ynew,i = B() X Xnew,iO + Bl X Xnew.il + ...+ Bk X Xnew,ik-
(1)

Note that IRD = —f; by definition, and we will show below
that the estimator —f3; is unbiased. If a less conventional
data coding scheme is used—for example, if the exposed
(unexposed) group is indicated by X;; = 0 (X;; = 1)—then
IRD = ;.

To accommodate possible unobserved heterogeneity in
the event rates among subjects, a frailty term v; is intro-
duced. Therefore, the incidence rate for subject i can be
modeled as

Y;
(2| XhZia U,’) = X;B +v; + ¢, (2>

where the ¢;’s are the independent individual residuals, with
E(e;) =0, Var(e;) = 02/2,7, and Cov(e;, ej)) = 0if i # j. v; is
uncorrelated with X;, Z;, and e;, and follows an arbitrary
distribution with E(v;) = v and Var(v;) = @.

Estimation

Following model 2 (equation 2), the conditional mean and
variance for the incidence rate of subject i are

Y;
E(? X,‘,Zi,l)i) = XiB"'Ui (3)
and

Yi 2
Var (—| )(,'7 Zi, l)l') = G— (4)
Z: Z

i

Consequently, for any distribution of Y¥;, the marginal mean
and variance of Y;/Z; are

Y; *
E<Z| Xi,Zi> ZXZ'B—FV :X,‘B (5)
and
Y; o’
Var( = X;,Z | ==+ o, 6
(1 %u2) =5+ o ©

respectively. B~ = (Bo + V, P - - ., B), where the mean of
the possible unobserved heterogeneity becomes part of the
intercept. Since the primary interest is to estimate § from 4
(or equivalently, -IRD) to B; and subsequently make infer-
ence about B,... B, no further attention is paid to [3:;.

Throughout this article, models and expectations are con-
ditional on v; or marginal with respect to v;, while for each
situation they are always conditional on X; and Z;.

Note that equations 2—6 apply to recurrent-events data.
When analysis is limited to the first events, Z; is subject to
being censored by the first event. Moreover, the frailty v; is
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not required, and model 2 reduces to the linear probability
model with a binary response variable. Nonetheless, the
following estimation procedure still applies, but it is unbi-
ased only if there is no heterogeneity (see Web Appendix 1
for an illustration).

We propose to estimate B using the following estimation
equation:

X;B") =0, (7)

1< Y;
= § ZXI' (= —
= Zi

which is a special case of generalized estimating equations
(13). Using the conditional variance in equation 4 instead of
the marginal variance in equation 6 in the estimating equa-
tion gives an explicit solution that allows one to incorporate
some existing estimation methods. A robust variance esti-
mator is used to correct for the misspecification of the work-
ing variance. By the general theory of generalized
estimating equations (13), the resulting estimator of B~ is
consistent and asymptotically normal as long as equation 5
holds true.

For notational simplicity, let Y = (¥, ..., Y,,)T, 7 =
Zps oo Z)' X = (XI,. X0 and W = diag(Z,, ...,
Z,). Following equation 7,

B = (X'WX) 'XTY. (8)

Moreover, it can be shown, in the case of time-varying
regression coefficients, that B is estimating the average of
the covariates’ effects over the total number of person-years
studied using data on all of the events (the mathematical
proof and simulation evidence are part of our ongoing
work).

In the smplest case in which X; = (1, X;;), where X;; =
Oor1and B = (BO, [31) equation 8 yields

B* _ >z (1= Xin)Y, _ D ixy—o Vi
O YL (I =Xi)Zi Y, —0Z
and
B _ Z?:l Y, — BO Z, 1 Zi Zan Y Z,X”
L=

Zlflxllz ZlX,] IZ le,l =0 l.

Therefore, —Bl is the observed IRD in the sample.

In the presence of L strata in the sample defined by 1 or
more categorical confounders, using equation 8, 3; reduces
to

L

i F;/F ()’11 )’10> i FI/F y11 Z F;/F YZo

=1 in 2o =1 =1

where y;; and z;; are the total number of events and the total
follow-up time, respectively, for all subjects in the /th (I =1,

, L) stratum in the unexposed group (j = 0) and the
exposed group G = 1). F; = 1/(l/zg + 1/z;1) and
F= Zl \ F1. This agrees with the estimator proposed by

Stukel et al. (11), which is a weighted average of the IRD
between the exposed (j = 1) and the unexposed (j = 0)
across the L strata.

Note that equation 8 can be equivalently estimated via an
ordinary least-squares regression on the transformed vari-
ables Y and X—that is, Y, ew = W2Y and Xpew = wizx,
as introduced above. Therefore, the robust variance estima-

tor (14) for fi* is

n

— —1 -
Var(B ) (Xgewxnew) (Z neszr{eW ,Xnew,i>(Xr{eWXnew) !
i=1

= (x'wx) (Z 228XIX) (X'wX) . (9)
i=1

where énew,i = Ynew,i — Xnew,iB and ¢; = Yi/Zi - X .
For the simplest case in which X; = (1, X;;) and X;; = 0 or
1, the robust variance estimator for B; can be simplified as

b=y S ZE4o, S 2E, (10)
0

{lel*O} 1 {lel 1}

where T, = Z{l Ki=g) 2 Z;and g = O or 1. It can be shown that
the variance estimator in equation 10 is consistent with that
given by Stukel et al. (11), provided that the residuals are
independently and identically distributed within each group
defined by X;; (see Web Appendix 2).

Small-sample adjustment

Equation 9 gives the asymptotic, or large-sample, version
of the robust variance, which we name HC,. Three versions
of adjustment for a small sample size have been proposed
(15), conventionally named HC,, HC,, and HC3. The small-
sample adjustment involves multiplying the ith summand in
the middle term of HC, in equatlon 9 by a correction factor
n/(n — k), 1/(1 — h;), or 1/(1 — h) to obtain HC,, HC,, or
HC;, respectively, where A; is the ith diagonal element in the
matrix H:

H = Xoew (XD, Xoew) X0, = WX (XTWX) ' XTW!/2

new new

The adjustment is smallest for HC; and largest for HC3, and
the 4 variance estimators are asymptotically the same.

SIMULATION STUDIES

The proposed method is general, but this work is moti-
vated by our research in pediatric infectious diseases. The
simulation scenarios will follow realistic situations seen in
the studies of acute otitis media and radiologically con-
firmed pneumonia, representing diseases with relatively
high and low incidence rates in young children (16, 17).

Data on first events and on all events will be used to esti-
mate B, and the differences in the estimates will be examined.
The performance of the proposed estimator and robust vari-
ance estimator will be evaluated in various scenarios, using the
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Table 1. Simulation Results on the Estimates for B4 in the Absence of Confounding (n = 1,000)
First Events All Events
pand B, v; Proposed Method Average Proposed Method Stukel et al. (11)
é verage ESD Average SE» cp,° Estimate® ESD Average SE” CP,S° Average SE CP®
stimate

p=05
B1=-0.5 0 —0.5011  0.0537 0.0539 95.1 —0.4999 0.0348 0.0347 95.0 0.0347 95.0
+0.25 —-0.5151  0.0520 0.0525 94.7 —-0.5001 0.0380 0.0381 95.2 0.0381 95.2
Y —0.5073 0.0605 0.0599 94.6 —0.5001 0.0408 0.0406 94.8 0.0406 94.8
B1=-0.025 O —0.0250 0.0080 0.0080 949 —-0.0250 0.0077 0.0077 95.0 0.0077 95.0
+0.025 —-0.0251 0.0078 0.0079 95.3 —-0.0250 0.0077 0.0078 95.4 0.0078 95.3
Y —0.0250 0.0086 0.0086 95.0 -0.0249 0.0083 0.0084 94.9 0.0084 94.9

p=07
B1=-0.5 0 —0.5030 0.0648 0.0646 949 —-0.5005 0.0399 0.0402 94.9 0.0402 95.0
+0.25 —0.5158 0.0689 0.0698 954 —-0.5004 0.0455 0.0454 95.0 0.0454 94.9
Y —0.5074 0.0702 0.0703 95.0 —-0.4998 0.0459 0.0455 94.9 0.0455 94.9
By =-0.025 0 —0.0250 0.0093 0.0093 94.7 —-0.0249 0.0091 0.0090 94.5 0.0090 94.6
*+0.025 —-0.0251 0.0098 0.0098 949 —-0.0250 0.0096 0.0095 94.7 0.0095 94.7
Y —0.0250 0.0097 0.0098 95.0 —-0.0249 0.0094 0.0095 94.9 0.0095 95.0

Abbreviations: CP, coverage proportion; ESD, empirical standard deviation; SE, standard error.

@ Average of the parameter estimates.
b Average of the robust standard error estimates.

° 95% coverage proportion based on the robust standard error estimates.
9 Average of the standard error estimates using the method proposed by Stukel et al. (11).
¢ 95% coverage proportion based on the standard error estimates using the method proposed by Stukel et al. (11).

average of parameter estimates, the average of the robust
standard error estimates, the empirical standard deviation,
and the 95% coverage proportion based on the robust standard
error estimates. The variance estimate proposed by Stukel
et al. (11) will also be calculated in the scenarios with only
1 binary exposure variable for comparison.

Simulation parameter configurations and data generation
processes are described in detail in Web Appendix 3. For
each scenario, 10,000 replications were simulated.

Table 1 shows the simulation results with n = 1,000 in the
absence of confounding. It can be seen that the average of
parameter estimates using all events was close to the true
parameter value (f; = —0.5 in high-incidence scenarios and
B; = —0.025 in low-incidence scenarios), regardless of
whether the binary exposure variable X;; (X;; ~ Bernoulli
(p)) was evenly (p = 0.5) or unevenly (p = 0.7) distributed
and regardless of heterogeneity (v;). However, the presence
of heterogeneity resulted in biased estimates for B; using
first events for high-incidence scenarios (the averages of
parameter estimates were —0.5151 and —0.5073 under 2
forms of heterogeneity, respectively), though little bias
was observed for low-incidence scenarios (the averages of
parameter estimates were very close to —0.025). Secondly,
the 95% coverage proportions based on the robust standard
error estimates were very close to their nominal level. When
using data on all events, the inferences derived using robust
standard errors were practically identical to those of the
Stukel et al. (11) approach in terms of the average of pa-
rameter estimates and the 95% coverage proportion based
on the robust standard error estimates. Moreover, regardless
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of whether data on first events or all events were used, the
average of the robust standard error estimates and the em-
pirical standard deviation agreed very well. Since this is also
true in other simulation scenarios, we suppressed the display
of empirical standard deviations in subsequent tables in the
interest of space. Similar findings were observed for the
cases with n = 200 (Web Table 1).

Table 2 shows the simulation results when the interven-
tion effect was confounded by a quantitative variable X;,
which was slightly skewed. The analysis simultaneously
included X;; and X, in the regression model. The proposed
method using all events performed very well for high-
incidence scenarios, that is, (B, B,) = (0.5, 0.05). Regardless
of the distribution of X;; (p = 0.5 or 0.7), the degree of
collinearity, or the presence of heterogeneity, the mean es-
timates for ; and B, were always close to the targeted
values. The 95% coverage proportions based on the robust
standard error estimates were also very close to the nominal
level. In the low-incidence scenarios with (B, B,) =
(-0.025, 0.005), the proposed method gave a mean estimate
for B, somewhat different from the true value. Nevertheless,
the 95% coverage proportion based on the robust standard
error estimates was still close to the nominal level. In only 1
case did the 95% coverage proportion based on the robust
standard error estimates deviate from 95% by more than
0.5% (94.3% at p = 0.7, B; = -0.025, v; = 0, and moderate
collinearity). Results were very similar when n = 200
(Web Table 2).

Table 3 shows the simulation results obtained when the
intervention effect was confounded by a quantitative
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Table 2. Simulation Results on the Estimates for (B4, ) With n = 1,000 and X, Slightly Skewed

Moderate Collinearity

Strong Collinearity

pand B v; First Events All Events First Events All Events
és‘:ﬁ:;?:a Average SE CcP,° é:ﬁ;?g: Average SE, CP, é;lt?:gtz Average SE, CP, 2;’5:32 Average SE, CP,
p=05

By =-0.5 0 —0.5000 0.0637 94.7 —0.4994 0.0393 94.9 —0.5019 0.0727 94.8 —0.5004 0.0450 94.7
+0.25 —0.5124 0.0623 95.1 —0.4993 0.0426 95.0 —0.5145 0.0712 94.3 —0.5003 0.0487 94.9

Y —0.5058 0.0699 95.3 —0.4993 0.0451 95.0 —0.5077 0.0804 94.7 —0.5001 0.0515 94.9

B> = 0.05 0 0.0501 0.0404 94.8 0.0499 0.0265 95.1 0.0505 0.0449 94.8 0.0507 0.0288 94.9
+0.25 0.0506 0.0394 94.3 0.0496 0.0287 94.9 0.0519 0.0439 94.7 0.0505 0.0311 94.8

Y 0.0503 0.0449 95.2 0.0499 0.0303 95.0 0.0511 0.0497 94.8 0.0499 0.0328 94.8

By = —0.025 0 —0.0251 0.0084 94.9 —0.0251 0.0081 94.8 —0.0250 0.0095 94.8 —0.0249 0.0093 94.6
+0.025 —0.0251 0.0084 94.8 —0.0251 0.0082 94.9 —0.0251 0.0095 95.0 —0.0251 0.0093 94.8

Y —0.0249 0.0090 95.1 —0.0249 0.0088 95.0 —0.0251 0.0103 95.1 —0.0251 0.0100 95.0

B2 = 0.005 0 0.0057 0.1129 95.3 0.0056 0.1098 95.1 0.0042 0.1231 95.2 0.0039 0.1196 95.0
+0.025 0.0043 0.1126 94.8 0.0044 0.1104 94.8 0.0056 0.1227 95.5 0.0059 0.1200 95.1

Y 0.0043 0.1218 95.2 0.0049 0.1188 94.9 0.0048 0.1323 95.3 0.0046 0.1288 95.1

p=07

By =-0.5 0 —0.5041 0.0744 95.0 —0.5001 0.0446 94.9 —0.5023 0.0816 95.2 —0.4995 0.0497 94.8
+0.25 —0.5160 0.0800 94.8 —0.4997 0.0496 94.9 —0.5159 0.0878 94.5 —0.4998 0.0553 94.8

Y —0.5086 0.0807 94.9 —0.5000 0.0497 95.1 —0.5093 0.0885 95.1 —0.5002 0.0555 94.9

B> = 0.05 0 0.0503 0.0374 94.8 0.0505 0.0254 94.8 0.0498 0.0429 95.1 0.0498 0.0287 95.1
+0.25 0.0514 0.0407 94.9 0.0500 0.0289 95.1 0.0506 0.0466 95.1 0.0498 0.0323 94.7

Y 0.0508 0.0411 94.9 0.0502 0.0289 95.2 0.0513 0.0470 94.7 0.0507 0.0324 94.9

B4 = —0.025 0 —0.0250 0.0096 94.3 —0.0249 0.0093 94.3 —0.0253 0.0106 94.8 —0.0251 0.0103 94.6
+0.025 —0.0251 0.0102 94.5 —0.0251 0.0099 94.7 —0.0251 0.0113 95.0 —0.0250 0.0109 94.7

Y —0.0251 0.0103 94.9 —0.0250 0.0099 94.6 —0.0248 0.0113 94.8 —0.0248 0.0109 94.5

B> = 0.005 0 0.0068 0.1070 95.2 0.0071 0.1043 95.0 0.0067 0.1206 95.1 0.0065 0.1174 95.0
+0.025 0.0049 0.1149 95.3 0.0051 0.1124 95.1 0.0046 0.1290 95.3 0.0049 0.1259 95.0

Y 0.0045 0.1151 95.2 0.0041 0.1126 94.9 0.0048 0.1293 95.1 0.0051 0.1263 95.0

Abbreviations: CP, coverage proportion; SE, standard error.
@ Average of the parameter estimates.
b Average of the robust standard error estimates.
© 95% coverage proportion based on the robust standard error estimates.
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Table 3. Simulation Results on the Estimates for (4, f2) With n = 1,000 and X, Highly Skewed

Moderate Collinearity

Strong Collinearity

pand B v; First Events All Events First Events All Events
EAs ‘:ﬁ:‘:?:a Average SE,° CcPS° Q:t?rfgtz Average SE, CP, 2;’3:::‘: Average SE, CP, é\:t?rfgtz Average SE, CP,
p=05

By =-0.5 0 —0.5006 0.0678 95.0 —0.4993 0.0410 94.9 —0.5024 0.0767 95.1 —0.5004 0.0459 95.0
+0.25 —0.5148 0.0665 94.6 —0.5006 0.0443 94.8 —0.5139 0.0754 94.4 —0.5002 0.0494 95.2

Y —0.5078 0.0745 94.6 —0.5006 0.0468 94.7 —0.5069 0.0841 94.4 —0.5003 0.0520 95.0

Bo = 0.05 0 0.0499 0.0308 95.3 0.0500 0.0199 95.2 0.0499 0.0367 94.9 0.0501 0.0227 94.7
+0.25 0.0509 0.0303 94.8 0.0497 0.0210 94.9 0.0504 0.0363 94.2 0.0501 0.0239 94.9

Y 0.0501 0.0341 94.9 0.0497 0.0222 95.0 0.0501 0.0404 95.0 0.0501 0.0251 94.9

B4 = —0.025 0 —0.0250 0.0085 94.7 —0.0250 0.0083 94.8 —0.0251 0.0095 94.5 —0.0250 0.0092 94.6
+0.025 —0.0250 0.0085 94.8 —0.0250 0.0083 94.8 —0.0250 0.0095 94.9 —0.0249 0.0093 94.7

Y —0.0250 0.0092 94.9 —0.0250 0.0090 95.0 —0.0250 0.0102 94.9 —0.0249 0.0100 94.6

B> = 0.005 0 0.0050 0.0836 95.1 0.0055 0.0812 94.7 0.0048 0.0964 94.9 0.0050 0.0931 94.8
+0.025 0.0044 0.0835 94.8 0.0049 0.0815 94.6 0.0037 0.0961 95.0 0.0040 0.0934 94.8

Y 0.0033 0.0898 95.0 0.0035 0.0873 94.9 0.0042 0.1028 95.0 0.0042 0.0997 94.9

p=0.7

By =-0.5 0 —0.5024 0.0785 94.9 —0.5001 0.0464 95.1 —0.5026 0.0880 94.9 —0.4996 0.0521 94.7
+0.25 —0.5155 0.0844 94.7 —0.5003 0.0514 95.2 —0.5154 0.0946 94.8 —0.5003 0.0576 94.9

Y —0.5095 0.0848 94.7 —0.5006 0.0516 94.8 —0.5080 0.0950 94.5 —0.4994 0.0577 94.8

B> = 0.05 0 0.0497 0.0303 94.7 0.0498 0.0200 95.1 0.0490 0.0397 94.8 0.0500 0.0249 95.2
+0.25 0.0509 0.0328 94.4 0.0499 0.0225 94.8 0.0494 0.0429 94.7 0.0496 0.0278 95.0

Y 0.0498 0.0331 95.3 0.0501 0.0225 95.0 0.0500 0.0431 94.7 0.0503 0.0278 94.7

B4 = —0.025 0 —0.0252 0.0098 95.1 —0.0251 0.0095 94.9 —0.0252 0.0109 94.9 —0.0251 0.0106 94.7
+0.25 —0.0252 0.0104 94.8 —0.0251 0.0101 94.6 —0.0249 0.0115 95.0 —0.0248 0.0112 94.7

Y —0.0252 0.0104 94.7 —0.0251 0.0101 94.7 —0.0252 0.0116 94.5 —0.0251 0.0112 94.2

B> = 0.005 0 0.0065 0.0842 95.3 0.0066 0.0819 95.0 0.0033 0.1065 95.0 0.0039 0.1030 94.9
+0.025 0.0043 0.0899 95.2 0.0049 0.0877 94.9 0.0026 0.1129 94.8 0.0031 0.1094 94.3

Y 0.0048 0.0902 94.6 0.0051 0.0880 94.5 0.0038 0.1131 95.0 0.0040 0.1096 94.8

Abbreviations: CP, coverage proportion; SE, standard error.

@ Average of the parameter estimates.

P Average of the robust standard error estimates.
¢ 95% coverage proportion based on the robust standard error estimates.
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Figure 1. Average estimates and coverage proportions of 3 variance estimators for 4 using all events data in the scenario of y random effects.
X; ~ Bernoulli(0.7). X5 is highly skewed and highly correlated with X;. Dotted line, estimate; dashed line, 95% coverage proportion using robust
variance estimator HC,; long-dashed-and-dotted line, 95% coverage proportion using HC,; solid line, 95% coverage proportion using HC3. There
were 20,000 replications. Upper panel: $; = —0.025; lower panel: ; = —0.5.

variable X;, which was highly skewed. The results were very
similar to those reported for the slightly skewed data series
in Table 2. Again, results were very similar when n = 200
(Web Table 3).

Furthermore, under all of the simulation scenarios, the
variances were underestimated if the naive variance estima-
tor was used, and consequently the coverage proportions
were smaller than expected (details not shown).

Figure 1 focuses on the performance of the asymptotic
and small-sample versions of the robust variance estimator
for the regression estimates using all events. Data were sim-
ulated under the unfavorable setup of unbalanced group size
(» = 0.7), with a quantitative confounder X;, following
a highly skewed distribution and being strongly correlated
with the intervention status as previously described. The
simulation replications for each scenario were 20,000. Be-
cause of the similarities between the 95% coverage propor-
tions obtained using HC, and those obtained using HC; as
n/(n — k) ~ 1, only the 95% coverage proportions obtained
using HC,, HC,, and HC5 are shown in Figure 1. Mean
estimates for B; are also presented. For the low-incidence
scenario with B; = —0.025, the mean estimate for B; fluctu-
ated within 0.8% of the true value —0.025, and the 95%
coverage proportion obtained using HC, was, at most, 1%
different from the intended 95% coverage proportion when
n was greater than 500. For the high-incidence scenario with
B; = -0.5, the estimate for 3, fluctuated within 0.1% of the
true value —0.5, and the difference between the 95% cover-
age proportion obtained using HC, and the intended 95%
coverage proportion was less than 1% when n was greater
than 200. The 95% coverage proportion obtained using HC3

was always closer to the intended 95% level than the 95%
coverage proportions obtained using HC, and HC,, but the
differences were important only if n was less than or equal
to 500.

CASE STUDY

Data from a randomized, double-blinded, placebo-
controlled trial of a 9-valent pneumococcal conjugate vac-
cine conducted in the Gambia (17) were reanalyzed. Our
purpose was 2-fold: firstly, to illustrate the proposed method
and compare the analysis of first events with the analysis of
all events in estimating the IRD; and secondly, to examine
whether there was any ethnic difference in disease inci-
dence. Details on the trial and the vaccine efficacy estimated
using only first events can be found in the paper by Cutts
etal. (17). Briefly, approximately 17,000 children aged 6-51
weeks were randomly allocated to one of the 2 regimens:
receipt of either 3 doses of the vaccine or 3 doses of the
placebo. Radiologically confirmed pneumonia was the pri-
mary endpoint. A disease episode was considered to be new
only if at least 30 days had elapsed since the child’s previous
episode (18), and the 30 days were not counted in the
person-time exposed. Following the method of Cutts et al.
(17), we performed a per-protocol analysis and used time
from 14 days after the third dose or placebo as the time
scale. Permission to use the data for the present study was
given by the Medical Research Council-Gambian Govern-
ment Joint Ethics Committee.

Covariates included in the analyses were district (Bansang,
Basse, or other), age at enrollment, gender, and ethnicity
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Table 4. Incidence Rate of Radiologically Confirmed Pneumonia in the Placebo Group and Incidence Rate
Difference per Child-Year, by Ethnicity and District, the Gambia, 2001-2004

First Events

All Events

Incidence Rate Difference®

Incidence Rate Difference®

Variable Placebo?® Placebo
Estimate 95% CI Estimate 95% ClI
Ethnicity
Mandinka 0.0512 —0.0239 —0.0329, —0.0149 0.0549 —0.0253 —0.0352, —0.0155
Fulla 0.0391 —0.0154 —0.0233, —0.0076 0.0416 —0.0163 —0.0248, —0.0078
Serahule 0.0329 —0.0076 —0.0156, 0.0005 0.0358 —0.0098 —0.0185, —0.0012
Wolof 0.0425 —0.0108 —0.0262, 0.0046 0.0453 —0.0109 —0.0279, 0.0061
Others 0.0216 0.0026 —0.0249, 0.0301 0.0211 0.0105 —0.0220, 0.0430
District
Bansang 0.0951 —0.0410 —0.0663, —0.0156 0.1027 —0.0451 —0.0724, —0.0178
Basse 0.0459 —0.0141 —0.0230, —0.0052 0.0506 —0.0176 —0.0274, —0.0078
Others 0.0324 —0.0125 —0.0176, —0.0074 0.0338 —0.0122 —0.0177, —0.0067

Abbreviation: Cl, confidence interval.
2 Incidence rate in the placebo group.

® Incidence rate in the vaccine group minus incidence rate in the control group.

(Mandinka, Fula, Serahule, Wolof, or others). The placebo
and vaccine groups were well balanced in terms of baseline
covariates. In the study area, each of the 3 major ethnic
groups (Mandinka, Fula, and Serahule) comprised approxi-
mately 30% of the local population. Moreover, across the 5
different ethnic groups, it was noted that: 1) the proportions
of males were comparable; 2) the median ages were also
comparable, but there were some differences at the upper
percentiles (e.g., the 90th percentiles ranged from 0.44 to
0.50); and 3) the geographic distributions of ethnic groups
varied considerably. For example, 27.5% of the Wolof par-
ticipants lived in Bansang, where the disease incidence was
the highest (see Table 4). This percentage was notably higher
than percentages in the other ethnic groups (Mandinka, 5.0%;
Fula, 11.3%; Serahule, 0.1%; and others, 14.1%). On the

other hand, 3.9% of the Wolof participants lived in Basse,
as compared with 36.0%, 26.9%, 31.8%, and 46.1% of the
Mandinka, Fula, Serahule, and others, respectively.

Of the 929 radiologically confirmed pneumonia episodes
detected in the 16,340 children during the trial period, 567
were from the placebo group and 362 were from the vaccine
group. The total numbers of child-years were 12,914 and
13,070 in the placebo and vaccine groups, respectively. Ap-
proximately 95% of the children had no episodes of pneu-
monia detected throughout this period, while 772 children
had 1 episode, 65 children had 2, and 9 children had 3; 846
(91.1%) of the episodes were first episodes.

‘Without consideration of potential confounders, the IRD
B,) attributable to the vaccine was 0.0150 per child-year
(95% confidence interval: 0.0104, 0.0195) using first

Table 5. Multivariable Regression Analysis of the Incidence of Radiologically Confirmed Pneumonia per Child-

Year, by Ethnicity and District, the Gambia, 2001-2004

First Events All Events
Variable
Estimate Robust SE 95% CI Estimate Robust SE 95% CI
Ethnicity
(referent: Mandinka)

Fulla —0.0085 0.0030 —0.0145, —0.0026 —0.0097 0.0033 —0.0161, —0.0032

Serahule —0.0072 0.0031 —0.0132, —0.0011 —0.0083 0.0034 —0.0149, —0.0017

Wolof —0.0078 0.0045 —0.0167,0.0011 —0.0089 0.0049 -0.0186, 0.0007

Others —0.0207 0.0075 —0.0353, —0.0061 —0.0205 0.0089 —0.0378, —0.0031
Vaccine —-0.0151  0.0023 -0.0196, —0.0105 -0.0163 0.0025 -0.0212, —0.0113
District (referent: others)

Bansang 0.0477  0.0066 0.0348, 0.0606 0.0518  0.0071 0.0379, 0.0656
Basse 0.0105 0.0027 0.0052, 0.0158 0.0116  0.0029 0.0059, 0.0174
Age, years —0.0398 0.0072 —0.0540, —0.0257 —0.0442 0.0076 —0.0590, —0.0294
Male gender 0.0037 0.0023 —0.0009, 0.0082 0.0036 0.0025 —0.0013, 0.0085
Intercept 0.0484 0.0036 0.0413, 0.0556 0.0525 0.0039 0.0449, 0.0602

Abbreviations: Cl, confidence interval; SE, standard error.
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episodes only and 0.0162 per child-year (95% confidence
interval: 0.0113, 0.0211) using all episodes. Analysis of first
events and all events did not make a big difference, as was
seen in the simulation studies for low-incidence scenarios.
The estimates for the incidence rate in the placebo group
and the IRD in different ethnic groups and districts are
shown in Table 4. Results suggested that regardless of
whether first episodes only or all episodes were used, among
the 5 ethnic groups, 1) persons of Mandinka ethnicity had
the highest placebo-group incidence rate and Wolof the
second-highest, and 2) the IRDs between the vaccine and
placebo groups were higher in Mandinka and Fula than in
the other ethnic groups, but their 95% confidence intervals
mostly overlapped. When the analysis was based on first
episodes only, the vaccine was found to have a significant
protective effect only in Mandinka and Fula. When all of the
episodes were used, the protective effect was also found to
be significant among persons of Serahule ethnicity.

Table 5 shows the results of the multivariable analyses
(STATA codes (Stata Corporation, College Station, Texas)
are available in Web Appendix 4). In correspondence with
the results in Table 4, this multivariable analysis suggested
that Mandinka had a higher incidence rate than all of the other
ethnic groups, although the difference with Wolof was not
statistically significant. The covariate-adjusted difference be-
tween Wolof and Mandinka was similar to the unadjusted
difference, showing that there was no major confounding by
district. Moreover, a joint test of the 4 ethnic contrasts showed
no difference among Fula, Serahule, Wolof, and others.

DISCUSSION

Statistical methods and software for estimation of the IRR
are widely available. Much less attention has been given to
the estimation of IRD. The IRD is an important parameter in
medical research. It shows the public health impact of an
intervention. We demonstrated here, using a hypothetical
example (Web Appendix 1) and by simulation, that in the
presence of unobserved heterogeneity, limiting the analysis
of incidence rates for repeatable disease episodes to the first
events results in bias. The severity of this bias depends on the
disease incidence rate and on the degree and distribution of
heterogeneity, which is usually unknown. The analysis of
multiple events per person is more difficult than analysis of
single events. The negative binomial regression model is an
intuitive alternative for consideration. However, even in the
simplest case in which the negative binomial model is fitted
with an intercept only for a single group together with an
“offset” term of log(follow-up time) in the log(incidence)
equation, the point estimate does not necessarily agree with
the observed disease incidence rate, such as when adopting the
commonly used mean-variance relation that variance = mean
+ mean” X dispersion parameter, which is usually called the
“NB2” parameterization (19). This is counterintuitive. For
example, applying the NB2 approach to all of the radiologi-
cally confirmed pneumonia episodes as described above in the
Case Study section, the parameter estimates on the logarith-
mic scale for the intercepts are —3.1020 and —3.5636 for the
placebo and vaccine groups, respectively. The corresponding
estimates for the incidence rates in the placebo and vaccine

groups were 0.0450 and 0.0283, respectively, for an IRD es-
timate of 0.0167. However, the observed incidence rates in the
placebo and vaccine groups were 0.0439 and 0.0277, respec-
tively, and the observed IRD was 0.0162. It is not clear how
anegative binomial model can be parameterized to produce an
IRD estimate that agrees with the observed IRD.

Furthermore, similar to the regression analysis of risk
difference, the iterations for the Poisson and negative bi-
nomial regression models with an identity link function do
not always converge (3) because of their implicit positive-
ness constraints on the value of the link function. In contrast,
the proposed least-squares method has an analytic solution,
but it may predict negative incidence rates for some persons.
We agree with Spiegelman and Hertzmark (20) that in epi-
demiology and public health, it is usually more important to
estimate a parameter of interest than to fit the data. In our
case, the parameters of interest are at the group level instead
of at the individual level, so we do not see a problem in the
application. If the research purpose were to develop a prog-
nostic model for application to individuals, then the present
method would be undesirable, because it can give implau-
sible individual-level parameter values.

We have proposed a simple yet flexible approach to esti-
mating the IRD for analysis of first events or all events. The
proposed method has several merits. Firstly, it boils down to
ordinary least-squares regression of transformed variables,
together with a robust variance estimator for inference. It
can easily handle quantitative covariates and has an explicit
solution for the parameter estimates. Many popular statistical
software packages, such as STATA (21), can perform the
proposed analysis without additional programming.
Secondly, the proposed estimator is unbiased. Thirdly, the
proposed method includes other existing methods as special
cases, such as that of Stukel et al. (11) and Glynn and Buring
(10). As with these methods, when comparing 2 groups with-
out covariate adjustment, our estimate for IRD has the desir-
able property that it agrees with the observed IRD. Moreover,
it can be shown (our ongoing work) that in the case of time-
varying covariates’ effects, the estimates are measuring the
average of the covariates’ effects over the total number of
person-years using data on all of the events. A limitation of
the present proposal is that the method does not model the
time-varying IRD, which may be needed in some research
situations. Further methodological development is needed.

We have also compared the asymptotic and small-sample
versions of the robust sandwich estimator. The differences
among them are fairly minor, especially when the sample
size is larger than 500. However, there is no harm in always
using the HC; estimator. Interestingly, even HC; tends to
have a coverage proportion slightly lower than the nominal
level, although the undercoverage is small in many realistic
situations. This issue has been raised by other researchers in
the context of analysis of recurrent events, but there remains
no explanation (22).
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