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Abstract

Image labeling and parcellation are critical tasks for the assessment of volumetric and 

morphometric features in medical imaging data. The process of image labeling is inherently error 

prone as images are corrupted by noise and artifact. Even expert interpretations are subject to 

subjectivity and the precision of the individual raters. Hence, all labels must be considered 

imperfect with some degree of inherent variability. One may seek multiple independent 

assessments to both reduce this variability as well as quantify the degree of uncertainty. Existing 

techniques exploit maximum a posteriori statistics to combine data from multiple raters. A current 

limitation with these approaches is that they require each rater to generate a complete dataset, 

which is often impossible given both human foibles and the typical turnover rate of raters in a 

research or clinical environment. Herein, we propose a robust set of extensions that allow for 

missing data, account for repeated label sets, and utilize training/catch trial data. With these 

extensions, numerous raters can label small, overlapping portions of a large dataset, and rater 

heterogeneity can be robustly controlled while simultaneously estimating a single, reliable label 

set and characterizing uncertainty. The proposed approach enables parallel processing of labeling 

tasks and reduces the otherwise detrimental impact of rater unavailability.
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1. INTRODUCTION

Numerous clinically relevant conditions (e.g., degeneration, inflammation, vascular 

pathology, traumatic injury, cancer, etc.) correlate with volumetric/morphometric features as 

observed on MRI. Quantification and characterization of these correlations requires the 
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labeling or delineation of structures of interest. The established gold standard for identifying 

class memberships is manual voxel-by-voxel labeling by a neuroanatomist, which can be 

exceptionally time and resource intensive. Furthermore, different human experts often have 

differing interpretations of ambiguous voxels (on the order of 5–10% of a typical brain 

structure). Therefore, pursuit of manual approaches is typically limited to either (1) 

validating automated or semi-automated methods or (2) the study of structures for which no 

automated method exists.

Statistical methods have been previously proposed to simultaneously estimate rater 

reliability and true labels from complete datasets created by several different raters or 

automated methods [1-4]. These maximum likelihood/maximum a posteriori methods (e.g., 

Simultaneous Truth and Performance Level Estimation, STAPLE [2]) increase the accuracy 

of a single labeling by combining information from multiple, potentially less accurate raters 

(as long as the raters are independent and collectively unbiased). However, the existing 

methods require that all raters delineate all voxels, which limits applicability in real research 

studies where different sets of raters may delineate arbitrary subsets of a population of scans 

due to the rater availability or the scale of the study.

Herein, we present and demonstrate Simultaneous Truth and Performance Level Estimation 

with Robust extensions (STAPLER) to enable use of data with:

1. Missing labels: partial labels sets in which raters do not delineate all voxels;

2. Repeated labels: labels sets in which raters may generate repeated labels for some 

(or all) voxels; and

3. Training trials: label sets in which some raters may have known reliabilities (or 

some voxels have known true labels). These may also be derived from catch trials. 

We consider this information ancillary as it does not specifically relate to the labels 

on structures of interest, but rather to the variability of individual raters.

STAPLER simultaneously incorporates all labels from all raters to estimate a maximum a 

posteriori estimate of both rater reliability and true labels. The impacts of missing and 

training data are studied with simulations based on two models of rater behavior. First, the 

performance is studied using traditional “random raters,” which are parameterized by 

confusion matrices (i.e., probabilities of indicating each label given a true label). Second, we 

develop a new, more realistic set of simulations in which raters make more mistakes along 

the boundaries between regions.

2. METHODS

STAPLE exploits expectation maximization to calculate rater reliabilities ), i.e., the 

probability that a rater j) reports that a voxel i) has a particular label s) given a true label T). 

Rater reliabilities and observed data Dijr) with repetition r can be used to calculate the 

conditional probability that a voxel belongs to a class ) at iteration k. First, we extend Eq. 

20 in [2] to include all observed data:
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(1)

Second, we extend Eq. 24 in [2] to prevent update of rater reliabilities for raters with known 

reliabilities or without data:

(2)

where I is the indicator function. If a subset of truth labels is given, then an additional rater 

is introduced for these voxels with known perfect reliability. Alternatively, if label sets are 

available from a rater with known reliability, then the reliability of this rater may be treated 

as known. STAPLER was implemented in Matlab (Mathworks, Natick, MA). An adaptive 

mean label frequency is used to update the unconditional label probabilities p(Ti = s)).

DATA

Simulated label sets from simulated raters were derived from a high resolution labeling of 

12 divisions of the cerebellar hemispheres (Figure 1A) (149×81×39 voxels, 0.82×0.82×1.5 

mm resolution). Two distinct models of raters (described below) were evaluated within the 

following Monte Carlo framework: (1) Random raters were simulated; (2) Simulated label 

sets from the raters were generated according to the profiles; (3) Traditional STAPLE was 

evaluated by combining labels from 3 random raters; (4) STAPLER was evaluated by labels 

from 3*M raters where 3 raters were randomly chosen to delineate each slice, and each rater 

delineated approximately 1/Mth (i.e., each rater labels between 50% and 4% of slices with 

the total amount of data held constant); (5) The advantages of incorporating training data 

were studied by repeating step 4 with all raters fully labeling a second, independent test data 

set with known true labels.

3.1 Traditional Random Raters (errors distributed evenly within the volume)

In the first model, each rater was randomly assigned a confusion matrix such that the 

average true positive rate was 0.93. The i,jth element of this matrix indicates the probability 

that the rater would assign the jth label when the ith label is correct. Label errors are equally 

likely to occur throughout the image domain. This is the same model of rater performance as 

employed by the statistical framework. Ten Monte Carlo iterations were used for each 

simulation.

3.2 New, Boundary Random Raters (errors distributed along label boundaries)

In the second model, rater errors occurred at the boundaries of labels rather than uniformly 

throughout the image domain. Three parameters describe rater performance: r, l, and b. The 

scalar r is the rater’s global true positive fraction. The vector l encodes the probability, given 

an error occurred, that it was at the ith boundary. Finally the vector b describes the error bias 
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at every boundary which denotes the probability of shifting a boundary toward either 

bounding label. For an unbiased rater, bi = 0.5, ∀i . Twenty-five Monte Carlo iterations were 

used for each simulation. This random rater framework was implemented in the Java Image 

Science Toolkit (JIST, http://www.nitrc.org/projects/jist/).

4. RESULTS

4.1 Traditional Random Raters

The Jaccard index (i.e., intersection divided by union) for a single rater was 0.67±0.02 (one 

label set shown in Figure 1C). Using three raters in a traditional STAPLE approach 

increased the average Jaccard index to 0.98±0.012 (one label set shown in Figure 1D). 

Although STAPLER improved reliability for all simulations (Figure 1E), performance 

degraded with decreasing overlap. The decrease in reliability arises because not all raters 

have observed all labels with equal frequency, so the rater reliabilities for the unseen labels 

are under-determined, which leads to unstable estimates. Use of training trials greatly 

improves the accuracy of label estimation when many raters each label a small portion of the 

data set (Figure 1E).

4.2 New, Boundary Random Raters

The Jaccard index for a single rater was 0.83±0.01 (one label set shown in Figure 2B). Using 

three raters in a traditional STAPLE approach increased the average Jaccard index to 

0.91±0.01 (one label set shown in Figure 2E). With each rater performing very limited data 

sets (<10%), STAPLER was prone to “label inversion” an increased error over a single 

rater. In this case, off-diagonal elements of the estimated confusion matrix become large and 

lead to label switching (Figure 2C,E-G). Use of data from training trials alleviates this 

problem by ensuring that sufficient data on each label from each rater is available (Figure 

2D,H-J).

5. CONCLUSIONS

STAPLER extends the applicability of the STAPLE technique to common research 

situations with missing, partial, and repeated data and facilitates use of training data to 

improve accuracy. These ancillary data are commonly available and may either have exact 

known labels or be labeled by a rater with known reliability. A typical scenario would 

involve a period of rater training followed by their carrying out a complete labeling on the 

training set. Only then would they carry out independent labeling of test data. STAPLE was 

successful both when simulated error matched modeled errors (i.e., the traditional model) 

and with more realistic, boundary errors, which is promising for future application to work 

involving efforts of large numbers of human raters. With the newly presented technique, 

numerous raters can label small, overlapping portions of a large dataset, which can then be 

recombined into a single, reliable label estimate, and the time commitment from any 

individual rater can be minimized. This enables parallel processing of manual labeling and 

reduces detrimental impacts should a rater become unavailable during a study. Evaluation of 

STAPLER with partially labeled datasets from human raters is an active area of research and 

will be reported in subsequent publications. As with the original STAPLE algorithms, 
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STAPLER can readily be improved by introducing spatially adaptive unconditional label 

probabilities, such as with a Markov Random Field (MRF).
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Figure 1. 
Simulations with traditional random raters. Coronal sections of the three-dimensional 

volume show the high resolution MRI image (A), manually drawn truth model (B), an 

example delineation from one random traditional rater (C), and the results of a STAPLE 

recombination of three label sets (D). STAPLER enables fusion of label sets when raters 

provide only partial datasets, but performance suffers with decreasing overlap (E). With 

training data (F), STAPLER improved the performance even with each rater labeling only a 

small portion of the dataset. Box plots in E and F show mean, quartiles, range up to 1.5σ, 

and outliers. The highlighted plot in E indicates the simulation for which STAPLER was 

equivalent to STAPLE--i.e., all raters provide a complete set of labels.
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Figure 2. 
Simulations with boundary random raters. Axial sections of the three-dimensional volume 

show the manually drawn truth model (A) and sample labeling from a single simulated rater 

(B) alongside STAPLER fused results from 3, 36, and 72 raters producing a total of 3 

complete labeled datasets without training data (E-G) and with training data (H-J). Note that 

boundary errors are generated in three-dimensions, so errors may appear distant from the 

boundaries in cross-sections. Boundary errors (e.g., arrow in F) increased with decreasing 

rater overlap. Label inversions (e.g., arrow in G) resulted in very high error with minimal 

overlap. As with the traditional model (Figure 1), STAPLER enables fusion of label sets 

when raters provide only partial datasets, but performance suffers with decreasing overlap 

(C). With the addition of training data (D), STAPLER results in sustained performance 

improvement even with each rater labeling only a small portion of the dataset.
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