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Abstract
Purpose—The purpose of the study was to characterize signaling intermediates involved in
angiogenic responses of retinal endothelial cells (RECs) to the extracellular matrix and growth
factors, by using specific inhibitors.

Methods—Tubelike structure formation and the development of secondary sprouts on a
basement membrane (BM) matrix, cell proliferation, and cell migration were studied in cultures of
bovine and human RECs. Specific inhibitors were tested for inhibition of retinal
neovascularization in a mouse model of oxygen-induced retinopathy (OIR).

Results—In initial experiments, the broad-spectrum protein kinase inhibitors, H7 and H89,
stabilized REC tubes on BM matrix and inhibited secondary sprouting, cell migration, and cell
proliferation. Among more specific kinase inhibitors tested, only inhibitors of protein kinase CK2
(formerly, casein kinase II), such as emodin and DRB, were able to duplicate the effects of H7 and
H89. Actinomycin D caused only minor changes in angiogenic assays, suggesting that CK2’s
effects on REC did not involve its known impact on transcription. The extent of retinal
neovascularization in a mouse OIR model was reduced >70% (versus untreated or vehicle-treated
groups) after treatment with emodin (6 days at 60 mg/kg per day) and by approximately 60% after
treatment at the same dose with TBB, the most specific CK2 inhibitor known. In the treated
retinas, the main vascular tree had minimal changes, but the neovascular tufts were greatly
reduced in number or absent.

Conclusions—This is the first demonstration of the involvement of ubiquitous protein kinase
CK2 in angiogenesis. Naturally derived CK2 inhibitors may be useful for treatment of
proliferative retinopathies.

Retinal neovascularization, as observed in proliferative diabetic retinopathy (PDR),
represents an abnormal angiogenic process that occurs in response to insufficient tissue
oxygenation.1 In the retinas of diabetic patients, homeostatic abnormalities result in retinal

Corresponding author: Alexander V. Ljubimov, Ophthalmology Research Laboratories, Burns and Allen Research Institute, Cedars-
Sinai Medical Center, 8700 Beverly Boulevard, D-2025, Los Angeles, CA 90048; ljubimov@cshs.org.
Disclosure: A.V. Ljubimov, (P); S. Caballero, None; A.M. Aoki, None; L.A. Pinna, None; M.B. Grant, (P); R. Castellon, (P)

NIH Public Access
Author Manuscript
Invest Ophthalmol Vis Sci. Author manuscript; available in PMC 2010 August 6.

Published in final edited form as:
Invest Ophthalmol Vis Sci. 2004 December ; 45(12): 4583–4591. doi:10.1167/iovs.04-0686.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



nonperfusion and subsequent ischemia, which leads to characteristic PDR
neovascularization and disruption of normal retinal vasculature.2 Retinal neovascularization
in PDR appears to involve alterations of a variety of angiogenic growth factors, such as
vascular endothelial growth factor (VEGF); its homologue, placenta growth factor (PlGF);
basic fibroblast growth factor (FGF)-2; insulin-like growth factor (IGF)-I; hepatocyte
growth factor (HGF); and platelet-derived growth factor (PDGF).2–14

Hypoxia-inducible VEGF is usually considered to be the main mediator of PDR
neovascularization, probably in concert with IGF-I.15 It may also be the main mediator of
choroidal neovascularization in age-related macular degeneration.16,17 VEGF may promote
both neovascularization and vascular permeability, resulting in fluid leakage and
hemorrhages.6,7,18–20 However, VEGF may not be the sole causative factor of retinal
neovascularization in patients with PDR or macular degeneration. Recent data, including
ours, suggest that angiogenic growth factors synergize to induce full response of endothelial
cells in vitro and in vivo.21–24 Growth factor synergy may be critical for the development of
PDR neovascularization, as vitreous of patients with PDR has significantly increased
concentrations of various angiogenic growth factors.5–14 A similar situation apparently
exists in macular degeneration.17

Angiogenic growth factors exert their action through cell surface tyrosine kinase receptors
that bind to and phosphorylate signaling molecules. Considerable progress has been made in
dissecting the respective signaling pathways. Different growth factors use the same
pathways for migratory, mitogenic, or antiapoptotic effects on cells.25 Depending on the
conditions, cell type, and receptor involved, the actual pathway used and hence, the
outcome, may vary greatly.26 Such peculiarities of signaling by different growth factors may
form the basis of their synergy observed both in vitro and in vivo.

For a successful antiangiogenic therapy, it is important to first understand the mechanisms
of angiogenesis. In molecular terms, it means to identify which signaling pathways govern
complex angiogenic cell reactions such as migration, stromal invasion, capillary-like tube
formation, and pericyte recruitment. In this report, we investigated these pathways using
inhibitors of various key signaling molecules. As a result, we have identified the ubiquitous
and pleiotropic protein kinase CK2 as a major modifier of key signaling pathways.
Previously, there was no evidence for a role of CK2 in angiogenesis despite its known links
to angiogenic growth factors. We show herein that specific CK2 inhibitors can stabilize
retinal endothelial cell tubes on basement membrane (BM) matrix, inhibit growth-factor–
stimulated endothelial cell migration, proliferation, and secondary sprouting on this matrix,
and significantly decrease oxygen-induced retinal neovascularization in mice.

Methods
Cell Culture

Retinal endothelial cells (RECs) were isolated from fresh bovine eyes provided by Sierra for
Medical Science (Santa Fe Springs, CA) by a modified method of Grant and Guay.27

Cultures of human RECs from healthy and diabetic donor eyes obtained from the National
Disease Research Interchange (NDRI, Philadelphia, PA) were also used. NDRI has a human
tissue collection protocol approved by a managerial committee and subject to National
Institutes of Health oversight. It is managed according to the provisions of the Declaration of
Helsinki. Cedars-Sinai Medical Center judged this tissue to be exempt from the institutional
review board review (exemption 4). Primary cell cultures were established as published in
detail previously.21,28 Briefly, dissected retinas were passed through a sterile 45-μm nylon
mesh, digested with collagenase (Worthington Biochemical Corp., Lakewood, NJ) in
Dulbecco’s phosphate-buffered saline (PBS) for 30 minutes, resuspended in incomplete
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REC medium (50% Ham’s F-12, 50% low-glucose DMEM with antibiotics/antimycotics
[Invitrogen, Carlsbad, CA] and 10% fetal calf serum [FCS]) and centrifuged at 400g for 5
minutes. The pellet was resuspended in high serum, complete REC medium (incomplete
medium plus insulin/transferrin/selenium, endothelial cell growth supplement [Sigma-
Aldrich Co., St. Louis, MO] and 20% FCS). After the first passage the serum was reduced to
10%. Only passages 3 to 5 were used for experiments. Cultures were checked for purity by
immunostaining with rabbit antibodies to von Willebrand factor (Sigma-Aldrich).

Cell Viability and Proliferation Assay
Bovine RECs (5 × 103 REC per well of triplicate 96-well plates) were incubated in complete
REC medium with 10% FCS (proliferation) or 0.5% FCS (viability in low serum). Inhibitors
were added at the time of cell seeding. Control cultures received medium with the inhibitor
vehicle, dimethylsulfoxide (DMSO), at ≤0.1%. The number of cells was determined on days
4 to 7 using the MTS cell-proliferation assay (Promega Corp., Madison, WI) according to
the manufacturer’s instructions.

Tube Formation Assay on a Reconstituted Basement Membrane Matrix
This assay has been published in detail previously.21 Briefly, 50 μL of reconstituted
basement membrane (BM) matrix from mouse EHS tumor (Matrigel; BD Biosciences
Labware, Bedford, MA) was added into each well of cold 96-well plates and allowed to
solidify for 1 hour at 37°C. The 5 × 104 bovine RECs per 100 μL were seeded into triplicate
wells in 0.5% FCS-incomplete REC medium. Appropriate inhibitors were added at the time
of cell seeding (effect on tube formation) or 24 hours later (effect on tube collapse).
Capillary-like tube structures formed by REC on reconstituted basement membrane matrix
were photographed at various intervals ranging from 12 to 72 hours. Pictures were scanned,
digitized, and analyzed using image-processing software.21

Secondary Sprouting Assay on Matrigel
Our group has recently developed an assay,21 which, unlike many other assays, replicates
not one but several steps of the angiogenic process. Briefly, endothelial cells on basement
membrane matrix (Matrigel; Invitrogen) form capillary-like tubes within 24 hours, as
described earlier. Tubes then start shortening, and the cells aggregate into clumps and are
thought to all die by apoptosis in 48 to 72 hours. Because of a longer examination time (up
to 2 weeks), we found that the seemingly dead clumps actually contain living cells. By day
5, these von Willebrand factor–positive cells start to proliferate, sprout out of the clumps
(migrate), and invade Matrigel forming three-dimensional spheres. Secondary sprouts are
usually well developed by day 9. Some spheres form connections between each other that
resemble larger capillaries and contain lumens. Growth factors such as FGF-2 and PDGF
greatly enhance the sprouting.

For this assay, RECs were seeded on BM in duplicate or triplicate and incubated in 0.5%
FCS-incomplete REC medium without growth factors for 2 to 3 days, allowing for tube
formation and collapse. On days 2 to 3, human recombinant or purified growth factors
(VEGF+IGF-I+FGF-2+PlGF21) were added to a final concentration of 10 ng/mL each and
incubated for another 5 to 6 days. This combination of growth factors synergistically
enhanced secondary sprout formation.21 Inhibitors were added with growth factors. Control
cultures received medium with or without inhibitor vehicle (DMSO at ≤0.1%). Digital
photographs were obtained with a camera (MDS 100; Eastman Kodak, Rochester, NY)
attached to an inverted microscope (DM IL; Ernst Leitz, Wetzlar, Germany). The extent of
secondary sprouting was determined by measuring the number of living cells in the
sprouting colonies with the MTS cell-proliferation assay.
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Wound Migration Assay
Cells were seeded in 24-well plates and allowed to reach confluence. Before growth factor
treatment, cells were serum starved overnight in incomplete REC medium with 0.5% FCS.
All monolayers within an experiment were wounded with a single sterile wood stick of
constant diameter to ensure uniformity in the wound areas. Wounded monolayers were
rinsed with low-serum (0.5%) medium to remove detached cells and treated with a
combination of four growth factors (VEGF+IGF-I+FGF-2+PlGF)21 at 10 ng/mL each. As
with secondary sprouting, the combination of these factors greatly increased cell migration
in a synergistic way.21 Inhibitors were added with growth factors. Control cultures received
medium with inhibitor vehicle (DMSO at ≤0.1%). On day 7, cells were rinsed three times
with PBS, fixed with methanol for 15 minutes, and stained with Mayer hematoxylin for 5
minutes. All wells were photographed with a 4× or 10× objective digital camera (MDS 100;
Eastman Kodak). The original wound area at 0 hours was used as a baseline for comparison
to the treated wells at the end of the experiment. Migrating cell counting was automated on
computer (AAB software; Advanced American Biotechnology, Fullerton, CA).

Inhibitor Treatments
Because various inhibitor doses and assays were used, a large number of cells was required.
Therefore, most of the studies were performed using cultured bovine RECs. They were very
similar to human RECs in response to growth factors. For each angiogenic assay, cells were
treated with growth factor combinations, with or without signaling inhibitors, as described.
The inhibitors were as follows: H7 (blocks various protein kinases; Seikagaku America, East
Falmouth, MA), H89 (blocks protein kinase [PK]A and PKG, also affects CK229; Seikagaku
America), calphostin C (blocks PKC; BioMol, Plymouth Meeting, PA), LY379196 (blocks
PKC-β; from author MBG), KN-93 (blocks Ca2+/calmodulin kinase II; Seikagaku America),
CKI-7 (blocks casein kinase (CK)1, also affects CK2 at high doses; Seikagaku America),
wortmannin (blocks phosphoinositide 3 [P13]) kinase; Sigma-Aldrich), LY294002
(CK2+PI3 kinase; Sigma-Aldrich), emodin (1,3,8-trihydroxy-6-methyl-anthraquinone;
Sigma-Aldrich), DRB (5,6-dichloro-1-β-o-ribofuranosyl benzimidazole; BioMol), and TBB
(4,5,6,7-tetrabromobenzotriazole; synthesized according to protocol described by Büchel30;
all block CK2 with TBB being the most specific to date31–36), PD98059 (blocks mitogen-
activated protein [MAP] kinase kinase [MEK])/extracellular signal-regulated kinase [ERK],
SB202190 (blocks p38 MAP kinase), SB203580 (blocks p38 MAP kinase and MAP kinase-
activated protein [MAPKAP] kinase), and SB202474 (an inactive compound used as a
negative control for MAP kinase inhibitors). The last four inhibitors were part of MAP
kinase inhibitor set I (Calbiochem, San Diego, CA). In preliminary experiments, inhibitors
of CK2 and some other kinases, apigenin (4′,5,7-trihydroxyflavone), and quercetin (3,5,7,3′,
4′-penta-hydroxyflavone, both from Sigma-Aldrich), were also used. Quercetin was further
used in pilot animal experiments because of its lack of toxicity to cultured cells, animals,
and humans.37,38 In some experiments, the matrix metalloproteinase (MMP) inhibitor
galardin (GM6001; BioMol) and a transcription inhibitor, actinomycin D (Sigma-Aldrich),
were used. Working concentrations of all inhibitors and assays in which they were tested are
summarized in Table 1.

Mouse Oxygen-Induced Retinopathy Model
Proliferative retinopathy in neonatal mice was induced in heterozygous C57BL/6J mice
(Jackson Laboratory, Bar Harbor, ME).39,40 All procedures adhered to the ARVO Statement
for the Use of Animals in Ophthalmic and Vision Research and were conducted under
amended Institutional Animal Care and Use Committee (IACUC) protocol 0524 from the
University of Florida. Mice from the retinopathy group were placed in 75% oxygen at
postnatal day 7 and maintained in these conditions with their nursing mothers for 5 days.
These mice were then returned to normal air and maintained for another 5 days. Nor-moxic
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control mice were maintained in normal air for the same duration as test mice and under the
same conditions of light cycle and temperature.

At the end of the experiment, mice were euthanatized by intraperitoneal injection with
tribromoethanol (0.1 mL/g body weight). This method is consistent with the
recommendations of the Panel on Euthanasia of the American Veterinary Association and
was selected for its rapid action and lack of effect on tissue (especially vascular) ultra-
structure. Animals were perfused through the left ventricle with 4% paraformaldehyde in 0.1
M phosphate buffer (pH 7.4) with 50 mg/mL of 2 × 103-kDa fluorescein-dextran (Sigma-
Aldrich). The eyes were enucleated and fixed in 4% paraformaldehyde in 0.1 M phosphate
buffer (pH 7.4) for 18 hours. Retinas from one eye of each mouse were dissected, the
peripheral retinas cut in five places and flat-mounted with glycerol-gelatin, and the
specimens photographed under a fluorescence microscope. Fellow eyes from all mice were
embedded in paraffin and serial 6-μm sections of whole eyes were cut sagittally through the
cornea parallel to the optic nerve. Every 30th section was mounted on a slide. Cell nuclei
were counted under a light microscope on 5 to 10 hematoxylin- and eosin-stained sections.
Individuals blinded to the treatment identity counted all nuclei above the inner limiting
membrane (preretinal nuclei) in each eye. Sections with the optic nerve were excluded,
because normal vessels emanating from the optic nerve fulfilled the counting criterion and
would have increased the error. Vascular cell nuclei were considered to be associated with
new vessels if found on the vitreal side of the inner limiting membrane. Pericytes were not
identified in the neovascular tufts and have not been documented in neovasculature.
Nevertheless, pericytes or their precursors may have been included in our cell counts.

For in vivo administration, the CK2 inhibitors emodin and TBB were dissolved in PBS (pH
7.2) with 20% polyethylene glycol 400 (PEG 400) and 2% Tween-8041 (both from Sigma-
Aldrich). This solvent did not elicit any animal tolerance problems, unlike ethanol or
DMSO. Inhibitors were injected intraperitoneally in volumes of 50 μL or less per mouse at
doses of 15 to 30 mg/kg body weight, twice daily, starting from day 11. These doses were
based on available pharmacokinetic data42 and previously established concentrations of
emodin that did not show general toxicity, developmental toxicity, or genotoxicity when
administered intraperitoneally to mice.43–45 Control mice were injected with PEG-Tween
vehicle alone.

Image and Statistical Analysis
Inhibitor treatment data sets for cultured RECs were individually compared to their
respective controls by the paired Student’s t-test (Prism 3.0 program; GraphPad Software,
San Diego, CA). In the experiments in which one treatment was compared with several
others, a nonparametric one-way ANOVA test was used (GraphPad Software). In animal
studies, all data among various groups were compared using ANOVA. Tube formation
images were processed by background subtraction, thresholding and measurement of total
length of tubes by computer (Photoshop ver. 5.0; Adobe Systems Inc., Mountain View, CA;
and the Image Processing Toolkit ver. 3.0, Reindeer Games, Inc., Gainesville, FL), as
previously described.21,28

Results
In initial experiments, the broad-spectrum protein kinase inhibitors, H7 and H89, stabilized
REC tubes on BM matrix (when added to formed tubes, 24 hours after cell seeding on
Matrigel; Invitrogen), inhibited secondary sprouting (see the Methods section), cell
migration, and proliferation (Table 2, Fig. 1 for tube stabilization). When added to the cells
at the time of their seeding on the substrate, both inhibitors decreased REC tube formation
(Table 2). We then tried to identify specific kinase(s) that were inhibited by H7 and H89 and
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played a role in these events. Most inhibitors of major signaling intermediates caused only
minor effects in all assays over the range of tested concentrations (Table 2). Only molecules
inhibiting protein kinase CK2 mimicked H-7 and H-89 in their effects on REC proliferation,
secondary sprouting, migration, tube formation, and collapse (Table 2).

More specific CK2 inhibitors were as effective as H-7 or H-89 in modulating angiogenic
behavior of REC. DRB produced a concentration-dependent inhibition of cell proliferation
in 10% serum (Fig. 2). In serum-starved cells (0.5% serum), DRB caused a decrease in cell
viability (Fig. 2). A similar dose-dependent effect on secondary sprouting was also observed
(Fig. 3). Emodin was very similar to DRB (not shown here). These effects of CK2 inhibitors
were statistically significant. When cells were treated with a synergistically acting
combination of four angiogenic growth factors, VEGF+IGF-I+PlGF+FGF-2,21 secondary
sprouting, measured as the number of live cells in cultures, was significantly enhanced (Fig.
4). Emodin completely abrogated this effect of four growth factors, bringing the number of
cells to baseline level (Fig. 4). In the wound migration assay, a combination of these four
growth factors synergistically increased cell migration more than threefold. Again, emodin
was able to reduce this effect significantly (Fig. 5). In separate experiments, we tested
whether the inhibitor effects could be due to the known influence of CK2 on transcription.46

To this end, cells were treated with a transcription inhibitor, actinomycin D, over a range of
concentrations. This agent caused only minor changes in the multistep secondary sprouting
assay (Fig. 6) suggesting that the observed CK2 effects on REC did not involve its impact
on transcription.

We next tested the effects of specific CK2 inhibitors on retinal neovascularization in vivo,
using a mouse model of proliferative OIR. In the vehicle-treated retinas, peripheral tufts of
newly formed blood vessels were readily visible on retinal angiograms and stained sections
(Figs. 7A, 7B, arrows). Emodin treatment reduced the extent of retinopathy by 70% versus
untreated group or vehicle-treated group (Fig. 7C). The same results were obtained using 30
or 60 mg/kg per day. The most specific CK2 inhibitor to date, TBB, produced approximately
60% inhibition at 60 mg/kg per day (Fig. 7C). Of note, the main vascular tree had few
changes in the treated retinas, but the neovascular tufts were greatly reduced in number or
absent. Sections of inhibitor-treated retinas did not show any adverse changes in retinal
structure, as in control, normoxic, retinas.

Discussion
Details and interrelationships of various signaling pathways mediating angiogenic behavior
of endothelial cells remain incompletely understood. Using various inhibitors, we examined
signaling molecules that may mediate endothelial cell migration, capillary-like tube
formation on basement membrane matrix (Matrigel; Invitrogen), and secondary sprouting.
Whereas cell migration is an early event in angiogenesis and tube formation is a late one,
secondary sprouting recapitulates several steps in the angiogenic process, including tube
formation and collapse, sprouting through cell proliferation and migration, and matrix
invasion.21,28 Our results show that these diverse angiogenic steps, together with cell
proliferation or survival in low serum, could be inhibited by agents blocking the activity of
one key cellular enzyme, protein kinase CK2.

Protein kinase CK2 (formerly, casein kinase II) is a tetrameric serine/threonine protein
kinase with two catalytic (α and/or α′, 43–45 kDa) and two regulatory (β, 25 kDa) subunits.
46 Recently, a variant α chain, α″, with a translated Alu sequence at the C-terminal end, has
been described.47 CK2 can be stimulated by tyrosine phosphorylation48 and probably also
acts as a tyrosine kinase in some organisms—hence, the term “dual-function kinase.”49 This
ubiquitous enzyme plays a role in development, cell cycle, transcription, proliferation,
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differentiation, apoptosis, DNA repair, and tumor growth.49–59 CK2 is expressed in
probably all eukaryotic cells and has more than 300 identified protein substrates in the
cytoplasm, nucleus, and extracellular matrix.60 It is found in various intracellular
compartments and on the cell surface.46,47,49,54,60–68 CK2 interacts with and/or
phosphorylates key signaling molecules including p53, protein phosphatase 2A, tumor
suppressor phosphatase PTEN, p38 MAPK, PKC, various transcription factors, A-Raf, Akt/
PKB, and S6 kinase46,49,50,60,69,70 (see also Fig. 8). Elevated expression of CK2 is
associated with tumor growth, and its downregulation results in tumor cell apoptosis.
50,53,57–59 CK2 is involved in growth factor effects. It can be activated by some growth
factors, including FGF-2, IGF-I, insulin, and TGF-β.71–73 It can also modulate IGF-I
activity by phosphorylating IGF-binding proteins.74,75

Our present data for the first time link this ubiquitous protein kinase with angiogenesis.
Inhibitors of CK2 were able to decrease normal and diabetic REC proliferation, migration,
and viability in low-serum medium (Figs. 1, 2, 3). It is noteworthy that these inhibitors also
readily abrogated potent effects of four combined angiogenic growth factors on all the
studied parameters of bovine and human REC. This finding may be explained by the
participation of CK2 in several major pathways activated by angiogenic growth factors
including Ras-Raf-MEK-ERK, p38 MAPK, PKC, and PI3 kinase-Akt pathways50,60,69,70

(Fig. 8). As TGF-β contributes to REC tube collapse,28 and CK2 inhibitors stabilized these
tubes, CK2 could be also involved in TGF-β signaling. Recent findings suggest that such
pleiotropic effects of CK2 may be attributed to its ability to phosphorylate a molecular
chaperone, Cdc37, which interacts with multiple signaling kinases.76

It may thus be suggested that CK2 enhances cell responses to angiogenic growth factors and
protect endothelial cells from apoptosis. This hypothesis is corroborated by recent evidence
that CK2 inhibitors promote apoptosis of tumor cells.56,77–80 In case of emodin, it may
involve generation of reactive oxygen species and subsequent inhibition of NF-κB and AP1
signaling.78 CK2 activity is generally elevated in actively proliferating cells.77 Therefore,
CK2 inhibitors may mostly affect such cells. In our experiments with a mouse model of
OIR, specific CK2 inhibitors decreased the extent of retinal neovascularization by up to 70%
(Fig. 7). The inhibitory effect primarily concerned neovascular tufts where actively
proliferating endothelial cells are concentrated81–84 but was not pronounced in the main
vascular tree.

Our data may provide the molecular mechanism for the reported antitumor activity of
bioflavonoids such as quercetin, emodin, and apigenin, for example. These compounds
among other effects can inhibit CK2, which may reduce tumor growth by adversely
affecting tumor neovasculature. In fact, the antiangiogenic effect of quercetin was observed
previously,85,86 but it was not attributed to the blocking of CK2, because quercetin is not a
specific CK2 inhibitor. In a recent work, tumor growth was significantly reduced by
antisense oligonucleotides to CK2,53 but their effects on tumor vascularization were not
studied. Distinct antiangiogenic effects of specific CK2 inhibitors, emodin and TBB, were
clearly observed in our in vitro and in vivo experiments using retinal endothelial cells and a
mouse model of retinal neovascularization. Because of the very high specificity of TBB
toward CK2 we can conclude that CK2 is essential for angiogenesis. It is of obvious interest
to identify the impact of CK2 inhibition on tumor neovascularization as well.

Both emodin and quercetin are plant-derived compounds found in tea, red wine, lettuce,
rhubarb, aloe, and other plants. Moreover, quercetin is part of several over-the-counter
dietary supplements. Therefore, these and more specific CK2 inhibitors may be promising
tools for developing efficient drug therapy for PDR and other conditions with pathologic
neovascularization, including solid tumors.
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Emodin’s effects on CK2 activity and downstream expression of c-myc have been fully
validated using CK2-specific antisense oligonucleotides.34 However, a small molecule
inhibitor approach to CK2 inhibition should be considered with caution. The existing
inhibitors may not be completely specific for CK2 and their possible interactions with other
known or yet unidentified kinases, some of which may also be expressed only in certain
tissues, should be taken into account. Alternative approaches to CK2 inhibition may use
powerful RNAi or antisense oligonucleotide technologies50,70 that provide absolute
specificity to the target. However, CK2 RNAi has so far achieved only moderate inhibition,
70 and antisense oligonucleotides are difficult to use in vivo and may require special carriers.
Possibly, a combination of gene-based and pharmacologic CK2 inhibitors would provide in
future the magnitude and specificity of action necessary to eliminate pathologic
neovascularization without significant side effects.

In summary, we found that a key signaling molecule, protein kinase CK2, was important for
many angiogenic characteristics of RECs and their responses to growth factors. Blocking
CK2 activity with a variety of inhibitors some of which were quite specific, produced
significant changes, especially in tube formation, endothelial cell migration, and
experimental retinal neovascularization in mice. CK2 has been shown to impinge on many
signaling pathways (Fig. 8). We now provide the first evidence of the participation of CK2
in the angiogenic process. Based on our data, CK2 seems to be a major signaling molecule
mediating growth factor effects in normal and pathologic angiogenesis. However, further
experimentation is necessary to determine its role in the progression of DR to the vision-
threatening proliferative stage.87
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Figure 1.
H7 stabilized REC tubes. Cells were seeded on basement membrane and incubated for 48
hours. In control cultures (left), tubes largely collapsed and clumps formed. In H7-treated
cultures (middle, right) no tube collapse occurred. Phase-contrast microscopy.
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Figure 2.
Dose-dependent effect of DRB on bovine REC proliferation and viability. Cells were plated
on plastic in medium with 0.5% (viability) or 10% (proliferation) serum containing various
concentrations of DRB. The number of live cells was measured on day 6 with the MTS
assay. Bars, mean ± SEM of results in two experiments in triplicate. DRB significantly
lowered the number of cells in both serum concentrations. *P < 0.05 versus vehicle.
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Figure 3.
Dose-dependent effect of DRB on bovine REC secondary sprouting. Cells were seeded on
basement membrane in medium with 0.5% serum. DRB was added at various concentrations
on day 3 after tube collapse.21 The number of live cells was measured on day 9 with the
MTS assay. Bars, mean ± SEM of results in two individual experiments in duplicate. DRB
significantly decreased the number of cells starting at 25 μM. *P < 0.05 versus vehicle.
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Figure 4.
Effect of emodin on growth factor–enhanced REC secondary sprouting. Bovine RECs were
seeded on basement membrane, and the tubes were allowed to collapse. Four growth factors
(4 GFs), IGF-I+VEGF+FGF-2+PlGF at 1 ng/mL each, were added on day 3 subsequent to
emodin at 25 μM. The number of live cells was measured on day 9 by MTS assay. Note the
dramatic decrease in the number of cells after treatment with the inhibitor. Bars, mean ±
SEM of at least two experiments in duplicate. *P < 0.05 versus 4 GFs.
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Figure 5.
Effect of emodin on growth factor–mediated cell migration. Confluent bovine RECs on
plastic were wounded and kept for 7 days in medium+0.5% serum, with or without (control)
four growth factors (4 GFs), IGF-I+FGF-2+VEGF+PlGF at 10 ng/mL each, with or without
emodin (25 μM). Cell migration into the wound was then counted. Note the significant
decrease in growth factor–stimulated cell migration by both CK2 inhibitors. Bars, mean ±
SEM of at least three experiments. *P < 0.005 versus 4 GFs.
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Figure 6.
Effect of actinomycin D on bovine REC secondary sprouting. Cells were seeded on
basement membrane in medium with 0.5% serum containing various concentrations of
actinomycin D (Act-D). The number of live cells was measured on day 9 with the MTS
assay. Act-D only slightly lowered the number of cells, even at 10 μg/mL, with no
significant difference from vehicle. Bars, mean ± SEM of results in two individual
experiments in duplicate.
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Figure 7.
CK2 inhibitors significantly reduced retinal neovascularization. (A) Fluorescein-dextran
perfusion of retinas from mice treated intraperitoneally with solvent (vehicle) or inhibitor
(emodin). (B) Hematoxylin-eosin–stained sections of retinas from mice treated with vehicle
or TBB. Arrows: neovascular tufts in vehicle-treated retinas. (C) Counts of preretinal nuclei
in various groups of mice. Neovascularization is significantly decreased in all inhibitor-
treated groups without visibly affecting the main vascular tree. N, number of mice in a
group. Five to 10 sections per eye from each mouse were counted. Emodin was used at 30 or
60 mg/kg per day with similar results and TBB at 60 mg/kg per day. *P < 0.001 versus
untreated or vehicle.
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Figure 8.
Major signal transduction pathways of angiogenic growth factors and ECM proteins. The
most-studied pathways are shown (PKC, PI3K-Akt/PKB, Raf-ERK, and p38 MAPK stress
response). Differences in signaling from different receptors (R) of a single growth factor are
depicted only for VEGF-PlGF (VEGFR1 and VEGFR2). Major CK2 interaction-
phosphorylation points49,59,68,69 that may affect signaling pathways are shown. Up arrows:
stimulation; down arrows: inhibition. IRS-1, insulin receptor substrate-1.
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Table 1

Characteristics of Tested Signaling Inhibitors

Inhibitor (target) Range Tested Optimal Concentration Assays

H7 (broad spectrum) 0–100 μM 10–20 μM SSP, M, T, P, V

H89 (broad spectrum) 0–100 μM 25 μM SSP, M, T, P, V

galardin (MMPs) 0.01–10 μM 2.5 μM SSP, M, T, P, V

KN-93 (Ca2+/calmodulin kinase II) 0–1 μM 500 nM SSP, M, T, P, V

CKI-7 (CK-1) 0–50 μM 50 μM SSP, M, T, P, V

LY379196 (PKC-β) 0–5 μM 50 nM SSP, M, T, P, V

calphostin C (PKC) 0–5 nM 2.5 μM SSP, M, T, P, V

wortmannin (PI3K) 0–500 nM 100 nM SSP, M, T, P, V

PD98059 (MEK-ERK) 0–10 μM 10 μM SSP, M, T, P, V

SB202190 (p38 MAPK) 0–10 μM 10 μM SSP, M, T, P, V

SB203580 (p38 MAPK/MAPKAP) 0–10 μM 10 μM SSP, M, T, P, V

SB202474 (MAPK negative control) 0–10 μM 10 μM SSP, M, T, P, V

LY294002 (CK2, PI3K) 1–50 μM 20 μM SSP, T

quercetin (CK2 + others) 0.001–100 μM 50 μM SSP, M, T, P, V

chrysin (CK2 + others) 0.001–100 μM 50 μM SSP, M, T, P, V

apigenin (CK2 + others) 0.001–100 μM 10–25 μM SSP, M, T, P, V

DRB (CK2 + others) 0.001–100 μM 10–25 μM SSP, M, T, P, V

emodin (CK2 + a few others) 0.001–100 μM 10–25 μM SSP, M, T, P, V

actinomycin D (transcription) 0–10 μg/mL 2 μg/mL SSP, T, V

SSP, secondary sprouting; M, migration; T, tube formation and collapse; P, proliferation in 10% serum; V, viability in 0.5% serum.
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