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Abstract
Latent structure models have been proposed in many applications. For space time health data it is
often important to be able to find underlying trends in time which are supported by subsets of
small areas. Latent structure modeling is one approach to this analysis. This paper presents a
mixture-based approach that can be appied to component selction. The analysis of a Georgia
ambulatory asthma county level data set is presented and a simulation-based evaluation is made.

1 Introduction
In the analysis of geo-referenced health data, it is commonly found that models for relative
risk are structured around additive risk components (see e.g. [1,2]). These components are
often assumed to be random effects. While these models provide parsimonious descriptions
of risk variation, they do not provide information directly about between area structure in
terms of localized differences in behavior. In the spatiotemporal domain, the extension of
the spatial component into sequences of disease maps leads to new temporally-referenced
components being added to the random effect set. In what follows, we will confine our
discussion to a commonly occurring format for space-time disease data: counts observed
within small arbitrary geographical areas (census tracts, counties, zip codes etc.) and also
fixed time periods. Various authors have proposed random effect models for relative risk
estimation in such situations ([3], [4], [5], [2], [6], [7], [8], [9], [10]). In general, random
effect models attempt to mimic the underlying smooth variation in risk by using global
parameterization of the model. This implies, for example, that one spatially-structured
random effect describes all the regional spatially-structured behavior. Here, we attempt to
describe the overall level of risk in space-time via an interaction of spatial and temporal
latent effects. In this sense, our models differ substantially from those previously proposed
as they have a non-fixed mixture formulation which is meant to allow the decomposition of
the overall risk into groups of effects defined by spatial location. Alternative ST modeling
approaches are described in [11], [12] and [13]. An evaluation of conventional space-time
random effect models is given in [14].

The development is presented as follows. In section 2, we present the interaction latent
variable space-time model. In sections 3 and 4, we develop the Bayesian implementation via
posterior sampling. Following that, we present the application of the approach to a county
level ambulatory care sensitive asthma dataset from the state of Georgia USA, and then in
section 6, we consider a simulation-based evaluation of the capabilities of the method.
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Finally, we conclude with general discussion of the approach and future directions for
development.

2 Model Development
Given a set of spatial and temporal observation units, we wish to model temporal variations
that are disaggregated by region. Essentially, we believe that underlying the map sequence
(evolution), there are some temporal effects expressed by only some subsets of regions.
Notice this is not the same as assuming that there are geographically-varying regression
parameters ([15]) or that classification tree structures are being estimated ([16]).

Define the count of disease (incident, prevalent or mortality) within an observation unit as yij
where i = 1, …., m small (geographic) areas and j = 1, …‥, J time periods. The units are
assumed to be non-overlapping. We make the common assumption that at the 1st level of
the hierarchy the data have a Poisson distribution with expectation μij, i.e.

where μij = eij·ηij and eij is the expected count and ηij the relative risk in the i – j th unit.
While this assumption is convenient in the analysis of disease count data, it is possible to
generalize this in our approach. This is discussed further in a later section. We focus here on
the modeling of the relative risk parameter ηij. In practical applications, the specification of
eij will be important, of course, but our focus here is on the modeling of the relative risk
component. In our approach, we assume that the log relative risk consists of three
components : a predictor which is a function of fixed covariates, a function of random
effects and a mixture term that describes how regions relate to different temporal
components. This can be defined in its most general form as,

(1)

where  is a vector of covariate values for the i th area at the j th time period, βj is a

parameter vector indexed by the time period,  is a vector of random effect values for the i
th area and j th time period and γ is a unit vector and the term Γij is a mixture component
which is also indexed for the i th area and j th time period. In general, conventional space-
time random effect models often assume the first two of these components to allow for
covariate effects (often social deprivation, or spatial trend components), and random effects
(unobserved confounding or heterogeneity). These effects are usually globally-defined (i.e.
controlled by global parameters for the whole map or time period). In what follow, bar an
intercept term, we will focus only on models including the last term (Γij). Discussion of the

implication of fitting both  and Γij in terms of identification is discussed briefly at the
end of this paper.

2.1 Mixture specification
The component Γij should be designed to disaggregate the temporal variation and associate
different forms with the spatial features. To this end, a variety of approaches have been
proposed. For example, [17] and [18] described a factor analytic approach to the
specification of spatial latent structure where the mean structure of the model consists of
functions of loadings and their associated factors. The factors have spatial labeling, i.e. g(θij)
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= μj + λjf(si) where j denotes the variable and i the observation unit and si the spatial
location. Alternative specifications have been suggested by [19], and [20]. While factor
analysis provides a useful mechanism to yield orthogonal components it is sometimes
preferred to have components which do not require such constraints. It is possible that
components could be regarded as being attached to areas and these areas form groups. In
that case, a mixture approach can be considered.

In our development, we assume a linear predictor as in (1) but with the specification

Here we assume there are l = 1, …, L underlying components. We consider temporal
components χj : {χ1j, …., χLj}′, where χ is an L × J matrix of unobserved temporal
components {χlj}. In addition, we assume that each region of the spatial map can have a
(possibly time-varying) weight for each component :w is a L × m × J weight matrix, with
element wlij. These two components form the basis of the mixture model. As can be seen,

when written by element: , this linear combination describes underlying
temporally-varying components where a spatially-dependent weight ‘votes’ for each
component. In addition, the weight can be time-dependent. In what follows, we do not
examine the time dependence of weights and so we focus on . This has advantages, in
particular as it provides for greater identification of components.

2.2 Properties of χ and w
2.2.1 Temporal components—The temporal components in this model are defined by a
prior distributional structure that provides for time dependence. We would like to allow
smooth temporal variation but do not want to restrict this variation too much. A joint
specification for the temporal components is considered here where the vector of
components χj has a multivariate Gaussian distribution with

where NL(a, B) denotes a L-component multivariate Gaussian distribution with mean vector
a and L × L covariance matrix B, and · denotes a Schur product. This is an autoregressive
formulation with the smooth transition between time points governed by the autoregression
dependent on a single time lag. The parameter vector ρ controls the strength of dependency
on the previous value and has dimension L. The choice of the ψ matrix may have import in
the ability of computational algorithms to detect distinct components. Our first assumption
regarding this matrix is that we assume it is constant in time. This is a reasonable
assumption given that we allow variation over time in the components. This also helps to
provide for identification of the temporal components. Alternatives exist of course such as
block diagonal covariances. We do not consider these here.

Hence, we initially choose to define a Gaussian autoregressive dependence on the
component :
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This specification allows for dependence while also allowing the separate specification of a

precision parameter . Note that a different precision parameter is allowed for each
component. This corresponds with a simple diagonal covariance matrix of the form τχ · I,
where I is a unit matrix. A log transformation can also be used to ensure positivity. An
alternative possibility for this lag dependence would be a gamma distribution such as

As these temporal components are not observed, we need to make assumptions about their
form. First, it is important not only to specify the form of temporal dependence, but it is also
important to specify how these components will relate to each other. Here, we don't want to
impose unnecessary restrictions on the time components, such as orthogonality. For
example, it is of course conceivable that components could cross over each other in some
applications where spatial disaggregation is the focus. On the other hand, it may be
reasonable to assume that components must be distinct, if simply from a standpoint of
computational efficiency. For the precision components, we assume conventional uniform
distributions on σl, such as σl ∼ U(0, c) where  and c is a constant (see Section 3).

2.2.2 Spatial weights—Region specific weights wlij are relative measures of component

contribution to each region, which satisfy two conditions, wlij > 0 and . Hence
the weights have a probability distribution across the components for a given region and

time. To obtain normalization, we assume that , and proceed to model . We
can assign a range of distributions for the un-normalized weights . Note that, in general,
we might want to model both spatial and temporal variation in the weights. Here, we will
focus on the spatially-dependent weights and we drop the temporal subscript for
convenience. The weights should be positive and so a suitable distribution could be a log-
normal prior distribution to :

For the prior distribution of un-normalized weight means α1li, we can consider a variety of
full MVN prior models or Markov Random field models which allow spatial correlations
between weights of different components:

For convenience, the conditional autoregressive prior distribution is assumed here
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where {α1l,−i} = (α1l1, ⋯, α1l,i−1, α1l,i+1, ⋯, α1lm)T, ni is the number of neighbors of site i,

τα1 is the conditional variance of α1li, and , the average of the neighboring
values (∂i is the neighborhood of site i). As will be seen later we can in fact extend the single
field CAR model as the weight fields {α1li} can be considered to be cross-correlated. This
can be accommodated via a multivariate CAR specification. The Multivariate intrinsic CAR
model ([21]) has the capability to allow for correlation to be specified between the spatially
structured components of different spatial fields. Define α1i = (α1li, ⋯, α1Li). The MCAR is
defined as,

where α1−i = (α11, ⋯, α1i−1, α1i+1, ⋯, α1L) and  is a L × 1 vector of sum of
the weighted neighboring values. Bij is the ijth L × L block of the IL × IL symmetric positive
definite matrix B which is defined by the adjacency matrix C and variance matrix Σ,

where Σ−1 and C are IL × IL matrix which satisfy the condition . We denote
this specification as MCAR(Σ).

As an alternative specification, a Dirichlet prior distribution may be substituted for the prior
distributions of weights by assigning Gamma distributions to .

where α1li is the parameter that is not temporally-dependent but varies over space. This
provides for a simple alternative which does not involve any prior spatial dependence.

2.3 Estimation of number of components
In the simplest model, the number of components (L) is assumed fixed, which is appropriate
when the number of components is known. However, in general, the number of components
is not known, and must be estimated. There are several different approaches to estimation of
the number of components. One common way is to compare a range of models with
different fixed number of components via posterior probability, BIC, Bayesian model
averaging, or DIC to assess goodness-of-fit, and decide the number of components by
choosing the best model based on several criteria. This approach might be easy to conduct
when we assume the component number is small. However, when we expect large numbers
of components, comparing every possible model with some criterion would be very
inefficient, and another simple approach is required. Another approach is to use reversible
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jump MCMC to estimate the component number and components based on samples from the
joint posterior of the component number and components within a Bayesian framework.
Although this approach provides a more efficient way to estimate the component number
than the previous approach, reversible jump MCMC in general still requires computational
intensiveness and usually requires purpose-written software implementation. In our model,
we suggest a simple approach to the estimation of the component number by introducing an
entry parameter to each component which describes the presence or absence of the
components (see e.g. [22]). This entry parameter method is, in fact, a special case of
reversible jump MCMC, which can be easily implemented without additional software
development. By using entry parameters, each component has a chance of being sampled at
each iteration, and the presence of components are determined based on the average
posterior distributions of entry parameters. The approach requires the introduction of a ‘full
model’ with a large number of L components. Considering the entry parameters, the mixture
component is defined as,

(2)

where ψl is an entry parameter ([23]). Other variants of this approach are found in [24]. For
the prior distribution of ψl, we consider the Bernoulli distribution with probability pl,

This allows the component to enter the model with probability pl. The Bernoulli probability
can also have a hyper-prior distribution or could be considered constant (0.5 being an non-
informed guess). If a hyperprior were assumed then a beta distribution would be a
conventional choice.

3 Bayesian implementation
For the purposes of exposition, in what follows we focus on models without covariates or
additional random effect terms. These can be added in a straightforward manner in a given
application. We also have found that much extra-variation is accounted for by mixture
components and these models can yield better goodness-of-fit diagnostics than random
effect models (see an example of this in Section 7). In the Bayesian implementation,
statistical inference is based on Markov chain Monte Carlo samples, generated from a
posterior distribution. The likelihood for the model specified above can be written in the
general form

The Bayesian model specification is completed by assigning prior distributions to each
parameter. The intercept parameter (α0) will be assumed to have a highly dispersed zero-
mean Gaussian prior distribution:
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where τα0 is the variance of the Gaussian distribution. For the variance parameters (τα0, τχl,
τw), we will consider uniform prior distributions for the standard deviations,

where c is a constant ([25]). For Σ in the MCAR model, we assign a Wishart distribution
(Wishart(R−1, r)) where R is a m × m dimensional positive definite matrix and r is a degree
of freedom. Beta prior distributions are assigned to the temporal dependency parameter (ρ)
in the latent parameter and the Bernoulli probability (pl) which is associated with the entry
parameter.

The choice of d = 1 yields a uniform prior distribution.

The full posterior distribution obtained based on the likelihood and prior distributions is
defined as,

where y = (y11…., ymJ)T, w = (w1, …., wm)T, α1 = (α1111, …., α1LmJ)
T, χ = (χ11, …., χLJ)T, ρ

= (ρ1, …., ρL)T, p = (p1, …., pL)T, τα1 = (τα11, …., τα1L)T, ψii=(τα0, τw, τχl)
T.

Samples are generated from the posterior distribution using several sampling algorithms
such as Gibbs and Metropolis via adaptive rejection sampling. The Gibbs sampling method
is applied to the variance parameters (τ) for τu, τυ, τα0, τα*, τχl, τw (in the form of standard
deviations). For other parameters, Metropolis adaptive rejection sampling method are
applied, since the conditional distributions are not easy to sample from, in general.

4 Model comparison
Bayesian model comparison has been examined via a range of measures both predictive and
otherwise. Our primary measure is the Deviance Information Criterion (DIC) which is based
on the posterior distribution of the deviance function,

where L(data∣θ) is the likelihood function for the observed data given the parameter θ ([26]).
The DIC considered here is the standard DIC composed of D ̄ which measures the model fit
and pD which penalizes overfitting by measuring the model complexity,
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D ̄ is the mean posterior deviance defined by,

and pD represents the effective number of parameters defined by,

The DIC evaluates models by measuring the goodness of fit in terms of the overall fitting of
the model. Variants of the basic DIC measure have been proposed (see for example [27])
and we will examine two variants here in conjunction with the basic measure. In mixture
models, there is a concern that the standard DIC measure does not properly reflect the
correct effective number of parameters ([28]). In that case, it is useful to try to estimate this
penalty using alternative specifications. Here we examine two additional estimates of the
effective number of parameters suggested by [28]: the penalized expected deviance (Le) and
the corrected DIC (DICc). In the first case we have Le = D ̅ + popt where popt was computed
via importance sampling based on the output from two chains. In the second case, we
assume a corrected DIC of the form DICc = D ̅ + Σj ΣipDij and compute the pDij from the
double chain output.

The DIC criterion does not reflect on the prediction performance in the evaluation, and it is
useful to examine another criterion to compare models in terms of the prediction
performance. The mean squared prediction error is another criterion which measures
prediction performance by comparing observed values and prediction values, which is
defined by,

where yij is the observed value,  is the predicted value obtained from (2) in posterior
sampler output, and N is the number of samples.

5 Data example: Georgia Ambulatory case sensitive asthma
In this example, counts of ambulatory case sensitive asthma in the 159 counties of Georgia
were available from the public access health information system OASIS (Georgia Division
of Public Health: http://oasis.state.ga.us/) for the years 1999 to 2006. There are 159 small
areas (counties) and 8 time periods (years). The counts of asthma were obtained from
OASIS and expected rates were obtained from the statewide rates broken by age and gender.
For each area the total expected count summed over all age and gender strata was used.
Figure 1 displays the standardized incidence ratios for 80 counties (left panel) and the
remaining 79 counties (right panel) in alphabetical order.

Figure 2 displays a selection of standardized incidence maps for the 159 Georgia counties.
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Using the Georgia ambulatory case sensitive asthma data, we explored various models that
we proposed in the previous section. Extensive exploratory examination of the data suggest
that a small number of components would usually suffice to capture the disaggregated
temporal variation across space. Hence, in this example we have fitted full models with L =
4 components. Larger component numbers were examined but found to yield a poorer fit in
general. This choice is a compromise between allowing for disaggreation and searching for a
parsimonious fit. We first consider the model with a Dirichlet prior distribution for the

weights wli by assigning Gamma distributions to un-normalized weight , and we denote
this model as Model 1:

In model 1, there is no consideration of the spatial structure of the weights and it is possible
to extend the model by modeling spatial structure in the weight prior distributions. The next
model we applied to our data is a model with log normal distribution and multivariate

intrinsic CAR distribution (MCAR) for un-normalized weights  to allow a spatially
correlated effect in the mean of the weights. For the hyper prior distribution of Σα1, we
assign the Wishart distribution, Wishart(R−1, r) where R−1 is a diagonal matrix with an
element 0.01, and r is the number of latent components. This model is denoted as Model 2:

In the previous two models, weights associated with latent factors are assigned to any value
between 0 and 1 and all latent components are involved in modeling the mean of the Poisson
model. Instead of allowing the inclusion of all latent components in the model, we may
assume that there is only one dominant latent component that determines the underlying
process. In such a situation, the main objective is to find out the particular primary latent
component, and we can suggest a model with a singular multinomial distribution for the
weights (Model 3):

This model allows there to be an assignment to a single component. To allow for the
spatially correlated effects in pli, we can also assign a multivariate intrinsic CAR (MCAR)
distribution for the mean of  (Model 4):
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In the all models, we assign a random walk Gaussian distribution for the prior distribution to
allow the temporal correlated variation of latent components:

The results of fitting these four different models to the Georgia data is given in Table 1. For
the calculation of the DIC and the MSPE, we used two software implementations:
WinBUGS and R, in which the pD is calculated in different ways. While in WinBUGS, the
pD is calculated by the difference between the expectation of deviance and the deviance
estimated at the mean of the posterior distribution, (pD = Eθ∣y(D) − D(Eθ∣y(θ))), in R, the pD
is calculated by the variance of deviance (pD = var(D)/2). In the case of models with
continuous weights (Model 1 and Model 2), the pD and the DIC is calculated in WinBUGS
and for the models with the multinomial distribution (Model 3 and Model 4), the pD and the
DIC are calculated by R. The pD of Model 1 and 2 is calculated by D ̅ − D(θ ̄), where θ ̄ is the
posterior mean of θ, and the pD of Model 3 and 4 is var(D)/2. Hence, we can compare
model 1 and 2 or model 3 and 4, but we can not compare all models at the same time. The
MSPE is a more suitable criterion for general model comparison, albeit predictive
comparison. Model 1 which uses a Dirichlet prior distribution for weights shows the lowest
MSPE values. The adjusted DICs (Le, DICc) are larger than the standard DIC, which
suggests a degree of optimism in the standard DIC, but also tend to support the model 1 as
the most appropriate model. It is reassuring that each criterion leads to the same model
choice, although the ranking is not completely the same. The DICc does not display the
same overall ranking as Le, and model 3 is favored over model 4 by Le, although model 1 is
selected by all the criteria.

A fixed parametrization does not allow the selection of components within a model and so
the then included entry parameters in the models and applied them to our data to test
whether the entry parameters improve the goodness of fit or prediction capability. The new
formulation is then:

Table 2 shows the DIC, DIC variants and MSPE results for the entry parameter models. The
results demonstrate that the model which uses a Dirichlet prior distribution for weights
(Model 1) is the best fit model in terms of the MSPE.

For the models with continuous weights, the 4 latent components are all selected in the
model, while when we used the multinomial distributions for the weights, only 2 latent
components are selected.
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Comparing the DIC and the MSPE after and before applying entry parameters is difficult as
the entry parameters are a variable selection tool and must inevitably lead to increased
parameterization. Hence direct comparison of DIC between Table 1 and 2 is not appropriate.
However, MSPE can be compared directly and it appears that model 1 in Table 2 is smallest
overall, followed by model 1 in Table 1. These models both assume a Dirichlet prior
distribution for the weight vector. In addition to the standard DIC the variants (Le, DICc)
display a similar pattern in that the non-multinomial models are favored and in fact the
lowest Le, or DICc is for model 1.

Figures 3, 4 and 5 depict the results of fitting a four component entry parameter model to
these data. The model fitted was model 1 in Table 2 which yielded the lowest DIC among
the entry parameter models and overall. The model was sampled after convergence (at
100,000 iterations). Convergence genrally takes place much earlier for model 1 and 2 than
for models 3 and 4 and so this iteration length is much greater than required. In this case
there is a clear selection of two major components: component 1 with a decreasing trend,
and component 3 with an increasing trend. The other components are negligible.

5.0.1 Model fitting and sensitivity
For both data sets we explored a range of models and their sensitivity to prior specification.
For example, in both data examples, we examined the effect of removing the entry
parameters, and so fitting a full models with maximum number of components. In addition
we have examined the effect of changing variance hyperprior specifications, in particular,
the range of the uniform specification for the standard deviations. Finally, we have also
examined the effect of varying the specification of the Bernoulli entry probability (pl) when
entry parameters are used. In general we have found that across a range of upper uniform
limits there was little sensitivity. However for the entry parameter we have found that there
is a degree of sensitivity to specification of the entry probability prior distribution. If the
parameter is fixed (e. g. at 0.5) there appears to be better recovery than when the parameter
is allowed to have a hyperprior distribution.

We have also examined a model where the temporal components have an AR2 Gaussian
prior distribution (i. e. χlj ∼ N(ρ1χlj−1 + ρ2χlj−2, τχ)). This distribution was employed to
assess whether additional identification of temporal components would be achieved with
such a more flexible assumption. This model, when used with entry parameters, in fact
yielded estimated components and weights close to those found for the random walk
specification, but yielded a larger DIC measure (by > 40 units). This suggest that a random
walk model is likely more appropriate for these data.

In the next section we also report the results of a simulation study designed to assess the
identifiability issue of the temporal components as well as model misspecification.

6 Simulation studies
In this section, we present a small simulation study to explore the performance of the space-
time latent component models developed in the previous section. The main objectives of our
study are to investigate the capability of recovering of true models and the impact of the
model misspecification when space-time unobservable latent components exists in the
process. We conduct our simulations under two different scenarios, when the number of
latent components is known, and when the number of latent components is unknown and
needs to be estimated by using the entry parameters. Due to limitations of time, we have
restricted our examination to a range of models that provided reasonably good recovery in
our example. Hence, here we examine the uncorrelated component and CAR component
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models, but do not examine the multinomial and multinomial MCAR models. The latter
models are discussed further in Section 7.

Simulated counts of disease yij over space i and time j are generated from a Poisson model
with expected rate eij and relative risk ηij.

where i = 1, ⋯, I, and j = 1, ⋯, J. For the spatial study region, we use Ohio counties as our
spatial test-bed, which consist of I = 88 units, and for the time sequential simulation, we
consider 10 time periods. Ohio counties have a regular geography with approximately equal
size and shape of counties. The expected rate eij at county i and time j is generated from the
Poisson distribution with mean 5 and add 1 to each generated expected rate to make it larger
than 0. We assume L underlying components, and model the true relative risk ηij as a
function of temporal components and spatially varying standardized weights :

where wi is a spatially varying L × 1 weight matrix, and χj is a temporally varying L × 1
matrix of unobserved temporal components. α0 is chosen an appropriate value to restrict the
average relative risk to 1 and the relative risk within the range of 0 to 3.5. χjl is simulated
from a normal distribution with N(ρlχj−1l, 0.5) to model the temporal dependency of the
latent components. We assume ρl changes over components, and fix ρl to different values
which allow different strength of temporal dependency for each temporal component. For
the simulation of spatially varying weights, we first generate weight components  from
the lognormal distribution with mean α2il and variance 100 to ensure the positivity of the
weight components.

For the spatially correlated weights, α2il is generated from the normal distribution whose
mean is generated from the proper conditional autoregressive model.

where τ is the conditional variance in an improper conditional autoregressive model. In our
simulation, we fix τ to be 1. This also allows the addition of extra noise in the weight
simulation.

The first part of the simulation is conducted under the scenario that the number of
components is known, and addresses the question of how our models can be recovered and
what is the impact of misspecification of models. We simulate data from true models with
different latent components, and fit the same model (i.e. fitted model = true simulated
model) in each case to the simulated data to assess whether different number of latent
components affects model recovery. We produced 500 simulated replicate data sets for each
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simulated model. We consider 2, 4, and 6 latent components, and fix different values for ρl,
which are defined as ρ2 = (1, 0.8), ρ4 = (1, 0.8, 0.6, 0.4) and ρ6 = (1, 0.9, 0.8, 0.7, 0.6, 0.5),
for the 2, 4, and 6 latent component models. To evaluate the capability of recovering of our
model, we compare models with the DIC and the mean square prediction error. All of the
results displayed are computed from 5,000 iterations after a burn-in of 4000 iterations. Since
we estimate several latent components simultaneously, we need to identify the component
estimates (χ̅lj) and associate the component estimates with the true components (χlj). This
identification of components is done based on the mean square error (MSE). We calculate
the MSE of all components for each estimate, and assign a particular component estimate to
the true component which yields the minimization of the MSE. In short we computed

(3)

where χ̅lj is the posterior mean estimate under the fitted model. We present the identification
in Figure 6. Model comparison results of model fitting are done by the average deviance
information criterion (ADIC) and the average mean square prediction error (AMSPE) over
500 simulations which are summarized in Table 3. We notice that the ADIC decreases as the
number of latent components decreases and the AMSPE decreases as the number of latent
components increases. These results indicate the overall fitting is better for the models with
fewer latent components, while the prediction capability increases for the models with more
latent components. Figure 6 displays the profile plots of estimates of latent components of
the model with 6 latent components, based on the minimized MSE in (6). The evidence in
this figure suggests that in some cases a reasonably unbiased fit is achieved, but in others
(notably factor 1 and 5) there is a poor recovery. This may suggest components are poorly
identified in the estimation process. In fact with larger component number the identification
can become more problematic especially when an unknown component number is to be
estimated. This is discussed in a general context in Section 7.

We also studied the impact of misspecification of models by fitting models to the simulated
data generated from a particular model. Data are simulated from the model with 4 latent
components, and simulated data are fitted to the models with different number of
components. To assess the impact of spatial correlation of weights on the performance of
our models, we also fit the model with uncorrelated weights to the data generated from the
model with spatially correlated weights. The uncorrelated weights are generated from the
normal distribution with mean 0 and variance 100,

For this assessment 200 simulations were performed. The ADIC and AMSPE of the models
were calculated to compare the fitting of models. The results are given in Table 4, which
show that the best fit model is the model with 4 latent components and spatially correlated
weights based on the ADIC, and the model with 4 latent components and uncorrelated
weights also shows similar results. When we fit the models with 6 latent components, we
obtain the lower AMSPE than the model with 4 components, which is reasonable due to the
contribution of redundant latent components to the prediction of models. However, in terms
of the ADIC which is the criterion that penalizes model complexity, we still notice the lower
ADIC for the models with 4 components than the models with 6 components, which shows
that the DIC would be a good criterion to evaluate the performance of the model. When we
compare models with 2 components and 4 components, the ADIC and the AMSPE of
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models with 2 components are both higher than the models with 4 components, which
indicates that models with fewer latent components lead to inefficiency of models in terms
of the ADIC and the AMSPE.

In the second part of our simulation study, we considered the situation where the exact
number of components is unknown, and needs to be estimated by using the entry
parameters. We investigate the performance of the entry parameter in the model for the
latent component selection by fitting models with entry parameters of different number of
components to the simulated data. We consider models with 4 latent components, and fix
various values for ρl, which is defined as ρ4 = (1, 0.7, 0.4, 0.1) to distinguish each
component from the others by allowing different temporal dependency of previous values
for each latent component. We generate data from the models with 4 latent components and
fit entry parameter models with 2, 4, and 6 latent components. For the prior distribution of
the entry parameters, we use a Bernoulli distribution with probability 0.5. The evaluation of
the performance of entry parameters is done by comparison of models using the DIC and the
MSPE. Table 5 presents the estimated number of latent parameters based on the estimated
entry parameters when the underlying process has 4 latent components. We accept a latent
component in the model if the estimated entry parameter is larger than 0.5. When we fit the
entry parameter model with fewer latent components (Model 2) to the data generated from 4
latent components, the 2 latent components are all included in the model. When we apply
entry parameter model with 4 latent components (Model 4) to the simulated data using 4
latent components, most cases select the true number of latent components. We also fit the
entry parameter model with more latent components than the true number of latent
components, and observe that redundant components are selected based on the entry
parameters. We compare the performance of different models using the DIC and the
AMSPE in Table 6. Based on the DIC, the model with entry parameters of 4 latent
components is the best fit model, while the model with entry parameters of 6 latent
components shows smaller AMSPE than the other models.

Summarizing our findings, these simulation results show the importance of the choosing
appropriate number of components. Although redundant latent components might improve
the accuracy of model in terms of the AMSPE, we conclude that the model with the
appropriate number of components is the most efficient model rather than the model with
redundant latent components considering the model complexity. Also, the model with fewer
latent components does not show better model fit in the respect of the overall model fitting
and prediction capability than the model with the appropriate number of components. When
we use the entry parameters in the model to estimate the number of latent components, the
entry parameters tend to include redundant latent components. However, using the DIC, we
can estimate appropriate number of latent components after applying various models with
different number of components to data.

7 Discussion, Identification and Conclusions
In this paper we have presented a novel approach to the disaggregation of space-time small
area health data via the use of mixture models specified for the mean of the process. We
have demonstrated some success in recovering true underlying risk components and stressed
the importance of the number of components in this recovery determination. Prior sensitivity
has also been examined and we note that the use of a fixed Bernoulli prior parameter (0.5) is
preferred compared to the use of a beta hyperprior distribution for the entry parameters
modeled. In our real data examples we appear to have recovered components that have 95%
credible intervals that do not overlap for a significant portion of the time periods and this
suggests strongly that the components are being well estimated. In the Georgia example this
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is even more evident where there is dramatic separation of the decreasing and increasing
trend components.

The generality and usefulness of this approach should also be stressed. Although we have
examined small area health data it would certainly be possible to consider other forms of
spatiotemporal data such as economic or sociological. Finally to stress the usefulness of the
approach, we have also considered a comparison of the method to a conventional random
effects model which could be assumed for the Georgia data example. A well-known random
effect model, proposed by [2], has been fitted to the Georgia data and overall goodness-of-fit
measured with DIC and MSPE. The model consists of separable additive spatial
(convolution prior: ui + υi) effects and a temporal effect (random walk prior: γj) and an
additive ST interaction term (zero-mean Gaussian prior: ηij). All precisions were assumed to
have half-Cauchy prior distributions (as described in Section 3). The relative risk was
specified as log θij = α0 + ui + υi + γj + ηij. The purpose of this comparison is to assess
whether a latent effect model could yield a better overall goodness-of-fit than a typical
random effect model. In this case, following convergence at 20,000 iterations and based on a
sample of 2000, the DIC was 4112 with pD of 339.4 and MSPE of 5.789 for this model.
Hence, the mixture model 1 applied to these data yielded a lower DIC (4070) but higher
MSPE (6.224) but higher Plummer corrected variants. An additional comparison was made
where the ST random effect model was assumed to have a higher order autoregressive prior
distribution for the interaction term (second order). In that case the DIC was 4081 with pD
=302. While this is a reduction in DIC it remains higher than the model 1 mixture. This
stresses the dual ability of these latent models: they can provide estimates of underlying
latent components but can also provide a reasonably good overall description of the data
themselves.

In all latent structure models the issue of identifiability of components arises. In the model
presented here there are two issues. First, as the model allows the estimation of overall small
area relative risk it can be seen as a competitor to conventional convolution and fixed
component mixture models (e.g. L&C or zip models). In that case the models can be
compared without concern about identification of components. In our paper we have
demonstrated that the overall goodness-of-fit of the latent model (based on DIC) is
comparable to, or can be better than, a commonly used conventional space-time convolution
model with uncorrelated interaction (Knorr-Held). Note that there is poor identification of
spatial components in that model also, but it can still be used for risk estimation (e.g. [29]).
Hence from purely the relative risk estimation point-of-view a latent component model can
be beneficial and provide a useful summary of small area risk.

Second, identification affects the estimation of the latent components. In a factor analytic
approach to latent modeling and estimation in ST ([17]; [18]; [20]), the orthogonality of
components allow for identification. However the disadvantage of this approach is that the
interpretation of such decomposition is not simple and could be very difficult in complex
real examples (see e.g. [20]). In our models we have temporal components that are naturally
interpreted (as a spatial decomposition of an overall temporal series. In our latent model, we
approach identification by insisting that the different components have different dependency
structures in each dimension. We allow temporal components to intersect which is a natural
requirement in real applications. Factor analytic models have somewhat unrealistic
assumptions about time dependence of factor effects that make them unattractive in our
experience.

Empirical evidence of identification is apparent both in the relatively small standard errors
of the estimated components in the real data example (Section 5, Figure 3) and in the
simulated examples. The credible intervals for the temporal components do not overlap for
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the two major components found in the real example (see Figure 3). When components are
poorly separated under the simulated true model (Section 6, e.g. Figure 6) then they are
poorly estimated. This is to be expected and reflects a lack of separation in the true
components. If true components are well separated then we would hope that they could be
estimated well. This is in fact the case here as we make the assumption that the temporal
components have lag 1 autoregressive prior dependence and the weights are functions of
components with spatial structured prior distributions. It is necessary to make these
assumptions to guarantee identification. Stronger prior temporal correlation, such as χlj ∼ N
(α1lχlj−1 + α2lχlj−2, τ χl) can also be assumed and this would also support strong separation of
components ([30], [31]). We aim to investigate some of these assumptions in the future.

In all practical examples examined here, we have assumed that the temporal latent
components have only temporal AR dependence, while the spatial weights have spatial
dependence only. This both allows the temporal components to gain strength from the
multiple time series in the small areas, while the spatial weights gain strength from the
temporal repeated measurement in each area.

While computational identification, or lack thereof, could be a problem during sampling
([29]), it has been found to be of limited concern in these applications when samplers are
being run over long time periods. It is especially important when CAR models are being
employed that longer time is allowed for convergence. Note that for the simple gamma
model convergence is often found within a few thousand iterations, and this partly because
there are no unit level random effects to estimate in these models.

Models that were not evaluated in our simulation are the more complex multinomial models
that fitted poorly in our data example. We would recommend that these models be
considered when a categorical selection is the focus.

Finally we should note that we did not consider the inclusion of either covariates in our
models nor conventional random effects. We are reassured by the fact that a simple Dirichlet
prior distribution for the weights with a random walk Gaussian prior distribution for
temporal effects provides a remarkably good fit, compared to more complex models. The
addition of covariates to this model is straightforward within the linear predictor, with the
caveat that any aliasing with spatial effects modelled in the mixture should be considered
([32]; [33]). The addition of random effects (unstructured or spatially- or temporally-
structured) could also be considered. However, this has been avoided in this work so that the
ability of a simple mixture model could be evaluated. Clearly an unstructured effect might
absorb additional noise, while an structured effect could more likely affect mixture
components. Identification of these effects may be problematic in addition, although from a
pragmatic viewpoint, if the addition of an effect yields better and parsimonious explanation,
then it may be welcomed.
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Figure 1.
The state of Georgia county level standardized incidence ratios for ambulatory asthma for
the period 1999- 2006. Left panel: first 80 counties (in alphabetical order); right panel:
remaining 79 counties (in alphabetical order).
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Figure 2.
A selection of four years of standardized incidence maps of county level ambulatory
sensitive asthma in Georgia (1999, 2002, 2004, 2006).
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Figure 3.
Georgia ambulatory asthma incidence data (1999-2006): posterior expected temporal effects
(χl) with 95% credible intervals obtained from a converged sampler from an entry parameter
model with four latent components.
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Figure 4.
Georgia ambulatory asthma incidence data (1999-2006): posterior mean of relative risks
averaged over all 8 time periods for each county for a four component entry parameter
model. Clearly displayed is the large cluster of relative risk in Pulaksi and Wilcox counties.
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Figure 5.
Georgia ambulatory asthma incidence data (1999-2006): posterior expected weight maps for
the four components (wil) from a converged sampler based on a four latent component
model. Component 3 has elevated weights for Pulaski and Wilcox counties.
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Figure 6.
Profile plots of latent component estimators based on the model with 6 latent components.
The solid line is the true component and the dotted line is the posterior averaged estimated
component.
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Table 3

Model fitting: the average DIC (ADIC), the average pD (ApD) and the average MSPE (AMSPE) over 500
simulations, Model 2: the model with 2 latent components, Model 4: the model with 4 latent components,
Model 6: the model with 6 latent components

ADIC ApD AMSPE

Model 2 4019 56 14

Model 4 4087 127 13

Model 6 4185 245 13
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Table 4

Model misspecification: the average DIC and the average MSPE over 200 simulations, Model 2: the model
with 2 latent components with spatially correlated weights, Model 4: the model with 4 latent components with
spatially correlated weights, Model(U) 4: the model with 4 latent components with uncorrelated weights,
Model 6: the model with 6 latent components with spatially correlated weights. Data are generated from
Model 4 and fitted by Model 2, Model 4, Model(U) 4, and Model 6.

ADIC ApD AMSPE

Model 2 4509 95 17

Model 4 4086 123 13

Model(U) 4 4087 125 13

Model 6 4155 228 12
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Table 6

Model fitting with entry parameters with 2, 4, and 6 latent components: the average DIC and the average
MSPE over 200 simulations, the true number of latent components: 4

ADIC ApD AMSPE

Model 2 4510 90 18

Model 4 4105 139 14

Model 6 4128 193 13
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