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Abstract

At least six families of mammalian acid lipases (E.C. 3.1.1.-) catalyse the hydrolysis of
triglycerides in the body, designated as LIPA (lysosomal), LIPF (gastric), LIPJ (testis) and LIPK,
LIPM and LIPN (epidermal), which belong to the AB hydrolase superfamily. In this study, in
silico methods were used to predict the amino acid sequences, secondary and tertiary structures,
and gene locations for acid lipase genes and encoded proteins using data from several mammalian
genome projects. Mammalian acid lipase genes were located within a gene cluster for each of the
8 mammalian genomes examined, including human (Homo sapiens), chimpanzee (Pons
troglodytes), rhesus monkey (Macacca mulatta), mouse (Mus musculus), rat (Rattus norvegicus),
cow (Bos taurus), horse (Equus caballus) and dog (Canis familaris), with each containing 9
coding exons. Human and mouse acid lipases shared 44-87% sequence identity and exhibited
sequence alignments and identities for key amino acid residues and conservation of predicted
secondary and tertiary structures with those previously reported for human gastric lipase (LIPF)
(Roussel et al., 1999). Evidence for a new family of acid lipase genes is reported for mouse and rat
genomes, designated as Lipo. Mouse acid lipase genes are subject to differential mRNA tissue
expression, with Lipa showing wide tissue expression, while others have a more restricted tissue
expression in the digestive tract (Lipf), salivary gland (Lipo) and epidermal tissues (Lipk, Lipm and
Lipn). Phylogenetic analyses of the mammalian acid lipase gene families suggested that these
genes are products of gene duplication events prior to eutherian mammalian evolution and derived
from an ancestral vertebrate LIPA gene, which is present in the frog, Xenopus tropicalis.
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Introduction

At least six mammalian acid lipase genes have been reported, including LIPA, encoding
lysosomal acid lipase/cholesteryl ester hydrolase (E.C.3.1.1.13) (Anderson & Sando, 1991;
Anderson et al., 1994; Ameis et al, 1994); LIPF, encoding a gastric lipase (E.C.3.1.1.3)
(Bodmer et al., 1987; Lohse et al., 1997) ; LIPJ, expressed in testis (Thierry-Mieg &
Theirry-Mieg, 2006) and three other genes (LIPK, LIPM and LIPN), which are expressed in
epidermal cells of the body (Toulza et al, 2007) and form part of an acid-lipase gene
complex on human chromosome 10 (Deloukas et al., 2004). Acid lipases have the capability
to withstand acid conditions and lack any significant homology (<20%) with previously
described neutral lipases (Bodmer et al., 1987), including endothelial lipase (LIPE) (Hirata
etal., 1999; Jaye et al., 1999), hepatic lipase (LIPC) (Martin et al., 1998), lipoprotein lipase
(LIPL) (Wion et al., 1987) and pancreatic lipase (LIPP) (Lowe et al., 1989), which perform
specialized roles in lipid metabolism in various tissues and cells of the body.

LIPA catalyses the deacylation of triacylglycerols and cholesteryl esters of lysosomal low
density lipoproteins (LDLs), an essential intracellular lipid catabolic process (Goldstein et
al., 1975; Wang et al., 2008). Two major genetic diseases, a severe infantile-onset Wolman
disease (Patrick & Lake, 1969; Hoeg et al., 1984) and a milder late-onset cholesteryl ester
storage disease (CESD) (Assmann et al.,, 1973), are caused by mutations of the LIPA gene.
LIPF is involved with the metabolism of dietary triglycerides under acidic conditions, being
synthesized by gastric chief cells in the fundic mucosa of the stomach and responsible for
30% of triglyceride digestion in humans (Bodmer et al., 1987). Structures for other acid
lipase genes have been determined, including LIPJ, LIPK, LIPM and LIPN, and derived
from whole genome sequences for human chromosome 10 (Deloukas et al., 2004; Toulza et
al., 2007) and mouse chromosome 19 (The MGC Project Team, 2004; Carninci et al., 2005),
which contain acid lipase gene clusters in each case. Human LIPK, LIPM and LIPN genes
are specifically expressed in epidermal cells and may play a role in differentiated
keratinocyte cells in the body (Toulza et al., 2007). Mammalian acid lipase genes usually
contain 9 coding exons of DNA encoding enzyme sequences which undergo exon shuffling
generating several acid lipase isoproteins (Thierry-Mieg and Thierry-Mieg, 2006).
Predictive three-dimensional structural analyses of human LIPA have been undertaken using
the human gastric lipase as a model, and key residues and sequences have been identified
(Roussel et al., 1999).

This paper reports the predicted gene structures and amino acid sequences for several
mammalian acid lipase genes and proteins, including human (Homo sapiens), chimpanzee
(Pons troglodytes), rhesus monkey (Macacca mulatta), mouse (Mus musculus), rat (Rattus
norvegicus), cow (Bos taurus), horse (Equus caballus) and dog (Canis familaris). Predicted
secondary and tertiary structures for mammalian acid lipases are also described, as well as
the structural, phylogenetic and evolutionary relationships of these genes and enzymes with
other mammalian lipase gene families. In addition, evidence for a new family of acid lipase
genes is reported for mouse and rat genomes, designated as Lipo.

Materials and Methods

In silico mammalian acid lipase gene and protein identification

BLAST (Basic Local Alignment Search Tool) studies were undertaken using web tools from
the National Center for Biotechnology Information (NCBI)
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al, 1997). Protein BLAST analyses used
mammalian acid lipase amino acid sequences previously described (Table 1). Non-
redundant protein sequence databases for several mammalian and vertebrate genomes were
examined using the blastp algorithm, including human (Homo sapiens) (International
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Human Genome Sequencing Consortium, 2001); chimpanzee (Pan troglodytes)
(Chimpanzee Sequencing & Analysis Consortium, 2005); orangutan (Pongo abelii)
(Orangutan Genome Project, 2007); rhesus monkey (Mucaca mulatta) (Gibbs et al., 2007),
horse (Equus caballus) (Horse Genome Project, 2008), cow (Bos Taurus) (Bovine Genome
Project, 2008); mouse (Mus musculus) (Mouse Genome Sequencing Consortium, 2002); rat
(Rattus norvegicus) (Rat Genome Sequencing Consortium, 2004); guinea pig (Cavia
porcellus) (MGC Project Team, 2004); (dog (Canis familiaris) Dog Genome Project, 2005);
and frog (Xenopus tropicalis) (Xenopus tropicalis Genome Project, 2005). This procedure
produced multiple BLAST *hits’ for each of the protein databases which were individually
examined and retained in FASTA format, and a record kept of the sequences for predicted
MRNAs and encoded acid lipase-like proteins . These records were derived from annotated
genomic sequences using the gene prediction method: GNOMON and predicted sequences
with high similarity scores generated.

BLAT analyses were subsequently undertaken for each of the predicted acid amino acid
sequences using the UC Santa Cruz genome browser
[http://genome.ucsc.edu/cgi-bin/hgBlat] (Kent et al. 2003) with the default settings to obtain
the predicted locations for each of the mammalian acid lipase genes, including predicted
exon boundary locations and gene sizes (see Table 1). Structures for mouse acid lipase
isoforms were obtained using the AceView website
(http://lwww.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html?human) to examine
predicted gene and protein structures to interrogate this database of mouse MRNA sequences
for mouse Lipa, Lipf, Lipk, Lipm, Lipn and Lipol genes(Thierry-Mieg and Thierry-Mieg,
2006).

Predicted Structures and Properties of Mouse Acid Lipases

Predicted secondary and tertiary structures for mouse acid lipases were obtained using the
PSIPRED v2.5 web site tools provided by Brunel University
[http://bioinf.cs.ucl.ac.uk/psipred/psiform.htmlI] (McGuffin et al. 2000) and the SWISS
MODEL web tools [http://swissmodel.expasy.org], respectively (Guex & Peitsch 1997;
Kopp & Schwede 2004). The reported tertiary structure for human gastric lipase (LIPF)
(Roussel et al., 1999) served as the reference for the predicted mouse acid lipase tertiary
structures, with a modeling range of residues 22-395 (LIPA); 20-395 (LIPF); 27-394
(LIPK); 40-409 (LIPM); 28-398 (LIPN); and 24-392 (LIPO1). Theoretical isoelectric points
and molecular weights for mammalian acid lipases were obtained using Expasy web tools
(http://au.expasy.org/tools/pi_tool.html). SignalP 3.0 web tools were used to predict the
presence and location of signal peptide cleavage sites
(http:/lwww.cbs.dtu.dk/services/SignalP/) for each of the predicted mammalian acid lipase
sequences (Emanuelsson et al 2007). The NetNGlyc 1.0 Server was used to predict potential
N-glycosylation sites for human, mouse and rat acid lipases
(http:/lwww.cbs.dtu.dk/services/NetNGlyc/). Predictions of subcellular locations for
mammalian acid lipases were conducted using PSORT 11
(http://psort.ims.u-tokyo.ac.jp/form2.html) (Horton & Nakai, 1997).

Mouse Acid Lipase Gene Expression

The mouse genome browser (http://genome.ucsc.edu) (NCBI37/mm9 2007 assembly) (Kent
et al. 2003) was used to examine GNF Expression Atlas 2 data using various expression
chips for mouse acid lipase genes Lipa, Lipf, Lipk, Lipm, Lipn and Lipol (using GenBank ID
Al747699) (http://biogps.gnf.org). Mouse chip expression ‘heat maps’ were examined for
comparative gene expression levels among mouse tissues showing high (red); intermediate
(black); and low (green) expression levels.
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Phylogenetic Studies and Sequence Divergence

Alignments of acid lipase protein sequences and percentages of sequence identities were
assembled using BioEdit v.5.0.1 and the default settings (Hall, 1999). Alignment ambiguous
regions, including the amino and carboxyl termini, were excluded prior to phylogenetic
analysis (BioEdit v.5.0.1) yielding alignments of 365 residues for comparisons of
mammalian LIPA, LIPF, LIPJ, LIPK, LIPM, LIPN and LIPO sequences with the frog
(Xenopus tropicalis) LIPA sequence (Table 1). Evolutionary distances were calculated using
the Kimura option (Kimura, 1983) in TREECON (Van de Peer & de Wachter, 1994).
Phylogenetic trees were constructed from evolutionary distances using the neighbor-joining
method (Saitou & Nei, 1987). Tree topology was reexamined by the boot-strap method (100
bootstraps were applied) of resampling and only values that were highly significant (=90)
are shown (Felsenstein, 1985).

Results and Discussion

Alignments of Mouse Acid Lipase Amino Acid Sequences

Amino acid sequence alignments for five previously reported mouse acid lipases [LIPA,
LIPF, LIPK, LIPM and LIPN (Carninci et al., 2005)] are shown in Figure 1 together with
predicted sequences for four new acid lipases (designated LIPO1, LIPO2, LIPO3 and
LIPO4). The relative values of sequence identities (41-60%) and comparisons of amino acid
sequence alignments for the mouse LIPA, LIPF, LIPK, LIPM, LIPN and LIPO1 sequences
strongly suggest that these proteins are products of distinct but related gene families,
whereas the predicted mouse LIPO1, LIPO2, LIPO3 and LIPO4 sequences exhibited higher
levels of identities (76-96%), indicating that these are members of the same family,
designated as LIPO (or Lipo for the gene family) (Table 2).

Amino acid sequences for these nine mouse acid lipase proteins contained between 395
(LIPF) and 422 (LIPM) residues with the latter exhibiting extended N- and C-termini
(Figure 1). The results of three dimensional structural studies for human LIPF were used to
identify key residues which are likely to contribute to the catalytic and structural features for
these enzymes (sequence numbers refer to mouse LIPA) (Roussel et al., 1999). These
included the catalytic triad for the active site (Serl72; Asp343; His372); the active site motif
(Gly-Xaa-Ser-Yaa-Gly) (residues 172-176); residues Leu89 and GIn175 (replaced with
175Glu for chicken LIPA) which stabilize the ‘oxyanion’ transition state during catalysis;
and cysteine residues which form a disulfide bond (Cys248/Cys257 [37] to support the
enzyme’s structure.

The hydrophobic N-terminus signal peptide function (residues 1-18 for mouse LIPA) has
been retained for all of the mouse acid lipase sequences examined, although these vary in
length from 18 for LIPA (residues 1-18) to 33 (residues 1-33 for LIPM) (Figure 1). The
mannose-6-phosphate containing N-glycosylation site (residues 161-3: Asn-Lys-Thr for
mouse LIPA) (Sleat et al., 2006) was not present for other mouse acid lipase sequences,
with the exception of mouse LIPN, which supports the reported microlocalization of LIPA
within lysosomes (Goldstein et al., 1975). A basic amino acid ‘patch’ at the mouse LIPA C-
terminus (residues 394Lys-395Lys) is present only within the LIPA sequence, which may
interact with lysosomal UDP-N-acetylglucosamine phosphotransferase, causing
phosphorylation of specific LIPA residues, which are proposed to target this enzyme for
lysosomal location (Baranski et al., 1990). Two other high probability N-glycosylation sites
predicted for mouse LIPA (Asn36-Val37-Ser38; and Asn273-274Met-275Ser) were also
observed for all other human, mouse and rat acid lipase sequences examined. Other high
probability N-glycosylation sites are described in Table 3 and Figure 1, including site 2 for
human LIPA (72Asn-73His-74Ser) and mouse LIPO1 and LIPO3 sequences; site 3 for
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mouse LIPA (99Asn-100Ser-101Ser), mouse LIPF (98Asn-99Asn-100Ser), human LIPJ
(68Asn-69Asn-70Ser), mouse LIPM (113Asn-114Asn-115Ser) and mouse LIPN
(102Asn-103Gly-104Ser); site 5 for human LIPF (185Asn-186Pro-187Ser) and mouse
LIPO3 (183Asn-184GIn-185Ser); site 8 for human LIPA (321Asn-322GIn-323Ser), human
LIPJ (288Asn-289GIn-290Ser), human LIPN (320Asn-321GIn-322Ser) as well as mouse
and rat LIPO sequences (316Asn-317GIn-318Ser for mouse LIPOL); site 9 for human LIPF
(327Asn-328Val-329Thr) and LIPK (327 Asn-328l1le-329Thr); site 10 for mouse LIPO
sequences (357Asn-358Leu-359Thr); and site 11 for human LIPN
(413Asn-414Leu-415Ser). Four N-glycosylation sites have been previously identified for
human LIPJ by three dimensional studies (Roussel et al., 1999) which may contribute to the
stability and activity of this enzyme in acid environments. Individual differences were
observed for the theoretical isoelectric points (pl) of the human, mouse and rat acid lipases
examined, with higher values (pl values > 8) predicted for human LIPK, mouse LIPK and
LIPM and rat LIPK, LIPM and LIPN, as compared with the other acid lipases examined,
which exhibited lower predicted pl values (Table 1).

Predicted Secondary and Tertiary Structures for Mammalian Acid Lipases

Analyses of predicted secondary structures for mammalian acid lipase sequences were
compared with the previously reported secondary structure for human LIPF, or human
gastric lipase, and the predicted structure for human LIPA (Roussel et al., 1999) (Figure 1).
Similar a-helix B-sheet structures were observed for all of the mammalian acid lipases
examined, particularly near key residues or functional domains, including the a-helix within
the N-terminal signal peptides, the B-sheet and a-helix structures surrounding the active site
Ser172 (for mouse LIPA) and the a-helix enclosing the lysosomal targeting signal residues
(Asn-Lys-Thr residues 159-161 for mouse LIPA). The pattern of secondary structures were
very similar to those reported for human LIPF and predicted for human LIPA and are
numbered according to Roussel and coworkers (1999). These have been previously
described as globular enzymes which are o/ hydrolase-like, contain a core domain between
residues 26-200 and 326-396 (see Figure 1 for mouse LIPA), and a central B-sheet
composed of 8 strands, designated as 1 — 8, and 6 a-helices, designated as a1, oA, aB1/
B2, aC1/C2, oE and aF, with 3 helices on each side of the central B-sheet. In addition, a
‘Cap’ domain is described for human LIPF and LIPA with 8 helices (designated as ael-ae8)
within residues 203-329 for human LIPA (Roussel et al., 1999). This domain may serve as a
‘lid” for the active site Serl74, restricting access to the aqueous environment but enabling
cholesteryl ester and other substrate entry when the ‘lid’ opens. All of these secondary
structures have been retained for the mammalian acid lipases examined however these are
based on predictions and may not reflect fully structures in vivo.

The predicted tertiary structures for mouse LIPF, LIPK, LIPA, LIPM, LIPN and LIPO1
were sufficiently similar to the previously reported human LIPF (gastric acid lipase) and the
predicted human LIPA structures (Roussel et al., 1999) (Figure 2) to enable predictions of
these tertiary structures which were based on incomplete sequences for these enzymes
(residues 22-393 for mouse LIPA). The predictions observed suggest that the secondary and
tertiary structures for human LIPF and LIPA resemble those for each of the six mouse acid
lipase proteins examined, reflecting conservation of the major structural features for these
enzymes.

Predicted Gene Locations and Exonic Structures for Mammalian Acid Lipase Genes

Table 1 summarizes the predicted locations for mammalian acid lipase genes based upon
BLAT interrogations of several mammalian genomes using the reported sequences for
human and mouse acid lipases, LIPA (Anderson et al., 1994;Ameis et al, 1994), LIPF
(Bodmer et al., 1987;Lohse et al., 1997), LIPJ, LIPK, LIPM and LIPN) (Deloukas et al.,
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2004;Toulza et al, 2007), and the predicted sequences for rat acid lipases (see Table 1 for
sources) and the UC Santa Cruz Genome Browser (Kent et al. 2003). The mammalian acid
lipase genes were located in a gene cluster in each case, although the gene order underwent
changes for different species, including an addition of one (rat) or four (mouse) acid lipase
genes, designated as LIPO (Lipo for the gene family). Supplementary Table 1 also provides
data for other mammalian acid lipases genes, including those predicted for chimpanzee,
orangutan, horse, cow, guinea pig and dog genomes. These BLAT interrogations of
mammalian genomes with the corresponding acid lipase sequences suggested that the gene
cluster was syntenic for chromosomes 10 (human, chimp and orangutan), 9 (rhesus
monkey), 19 (mouse), 1 (rat and horse) and 26 (cow and dog). Figure 1 summarizes the
predicted exonic start sites for human, mouse and rat acid lipase genes with each having 9
coding exons, in identical or similar positions to those reported for the human acid lipase
genes (Deloukis et al., 2004).

Comparative Mouse Acid Lipase Gene Expression and Transcripts

Figure 3 illustrates the comparative predicted structures of mMRNA mouse acid lipase gene
transcripts (http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html?mouse) for the
major transcript isoform in each case (Theirry-Mieg & Thierry-Mieg, 2006). There were 9
introns present for the mMRNA transcripts for all mouse acid lipase genes with the exception
of Lipol, which contained 10 introns, and 9 coding exons. Mouse Lipa and Lipol transcripts
were encoded on the minus strand whereas other mouse acid lipases were encoded on the
positive strand (Table 1; Figure 3). With the exception of mouse Lipn transcripts, mouse
acid lipase transcripts contained extended 3’-noncoding sequences.

Figure 4 presents ‘heat maps’ showing comparative gene expression for various mouse
tissues obtained from GNF Expression Atlas Data using the U74a (Lipa), GNF1N (Lipf,
Lipk Lipn and Lipo) and U74b (Lipm) mouse chips (http://genome.ucsc.edu;
http://biogps.gnf.org). These data supported a broad tissue expression for mouse Lipa (Du et
al., 1996); mouse Lipf expression in tissues associated with digestion, including pancreas,
stomach and salivary gland (Bodmer et al., 1987; and Lipk, Lipm and Lipn expression at
higher levels particularly in epidermal tissues, but also in tongue, trachea, liver and kidney
(Lipk), trachea, bone marrow and eye (Lipm) and in liver and kidney (Lipn). In contrast,
Lipo expression (data available only for the Lipol gene) showed higher levels only in the
salivary gland. Mouse acid lipase gene expression levels were compared with the expression
for average mouse gene (see Table 1) (Theirry-Mieg & Thierry-Mieg, 2006)
(http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html?mouse). Average or
higher expression levels were observed for mouse Lipa, Lipf and Lipol acid lipase genes,
while Lipj, Lipk, Lipm and Lipn showing lower than average expression in the mouse.
Similar results were observed for human acid lipase genes with LIPA and LIPF having much
higher levels of expression than the average human gene and the other acid lipase genes,
LIPJ, LIPK, LIPM and LIPN.

Sequence ldentities and Phylogeny of Mammalian Acid Lipases

Table 2 summarizes the percentages of identity for human and mouse acid lipase family
sequences (and the rat LIPO sequence) which are > 74% identical in comparison with the
44-62% identities observed comparing sequence identities between acid lipase families. This
supports a proposal for at least 7 mammalian acid lipase gene families, namely LIPA, LIPF,
LIPJ, LIPK, LIPM, LIPN and LIPO (designated as Lipo for mouse and rat genes for
consistency with other rodent acid lipase genes).

Phylogenetic trees (Figure 5) were constructed from alignments of mammalian acid lipase-
like amino acid sequences with the frog (Xenopus tropicalis) LIPA sequence. The
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dendrogram showed clustering of the sequences into 7 mammalian acid lipase gene family
groups. This is consistent with these gene families being present throughout mammalian
evolution and of an origin of more than ~100 million years ago, which corresponds to the
time of appearance for the eutherian mammalian common ancestor (Woodburne et al.,
2003;Donoghue & Benton, 2007). Figure 5 also shows the number of times a clade
(sequences common to a node or branch) occurred in the bootstrap analyses with replicate
values of 90 or more (which are highly significant) for the 100 replicates undertaken in each
case. Of particular interest are the nodes demonstrating highly significant separations for
each of the mammalian acid lipase gene family sequences (LIPA, LIPF, LIPJ, LIPK, LIPM,
LIPN and LIPO) sequences during mammalian evolution, which supports the separate
family status for each of these genes. There were however species differences in the
distribution of these mammalian gene families, with LIPJ apparently absent in rodents
(mouse, rat and guinea pig), while the Lipo gene family was found only in mouse and rat
genomes among the mammalian species studied (Table 1; Figure 5). The highly significant
clustering of the mammalian LIPA clade with the single frog acid lipase sequence reported
(designated as frog LIPA) (Table 1) suggests that LIPA may have served as a primordial
gene for subsequent gene duplication events generating the 7 families of mammalian acid
lipases. The sequence and timing however for these proposed acid lipase gene duplication
events remain to be determined.

Conclusions

The results of this present study support previous studies for at least 6 mammalian acid
lipase genes and encoded acid lipases, namely LIPA (encoding lysosomal lipase), LIPF
(encoding gastric lipase), LIPJ (encoding a human testis lipase), and LIPK, LIPM and LIPN
(encoding epidermal lipases). This report also reports evidence for a new acid lipase gene
family in mouse and rat (designated as Lipo), for which the mouse genome contains 4 Lipo-
like genes, designated as Lipol, Lipo2, Lipo3 and Lipo4, whereas the rat genome contains a
single Lipo gene. All of these mammalian acid lipase sequences share key conserved
sequences and predicted secondary and tertiary structures that have been reported for human
LIPJ and LIPA (Roussel et al., 1999), including active site and catalytic transition state
supporting residues, as well as disulfide bond forming cysteine residues. A specific N-
glycosylation site involved in the localization of mammalian LIPA within lysosomes was
also conserved within mammalian LIPA sequences. Comparative gene expression data
showed that human and mouse LIPA and LIPF genes are expressed at higher levels than
those for the average gene (as defined by Theirry-Mieg & Thierry-Mieg, 2006;
http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html?mouse) . This is consistent
with key metabolic roles for these enzymes in lysosomal cholesterol ester and triglyceride
metabolism and in gastric triglyceride metabolism, respectively. A high level of expression
for mouse Lipol was also observed in the salivary gland, which may indicate a supporting
role for this acid lipase in triglyceride hydrolysis, either during mastication of food or the
subsequent digestion in the stomach . Phylogeny studies using several mammalian acid
lipases (human, chimp, orangutan, mouse, rat, guinea pig, horse, cow and dog) indicated that
these genes have apparently appeared prior to the eutherian common ancestor more than 100
million years ago, and may have evolved from one or more vertebrate acid lipase gene
common ancestors, which include the vertebrate LIPA gene.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Amino acid sequence alignments for mouse (Mus musculus) acid lipase sequences

See Table 1 for sources of acid lipase sequences; * identical residues; : 1 or 2 conservative
substitutions; . 1 or 2 non-conservative substitutions; residues involved in processing at N-
terminus (signal peptide); potential N-glycosylation sites including residues NKT (161-163)
which serves as a lysosomal targeting sequence AL TS; active site residues Ser174; Asp345;
and His374; disulfide bond C residues Cys248 and Cys257for human LIPA,; helix (human
LIPA) or predicted helix; Sheet (human LIPA) or predicted sheet; numbered according to
Roussel et al [37]; potential basic amino acid ‘patch’ for lysosomal targeting at LIPA C-
terminus +; residues Leu89 and GIn175 contribute to the oxyanion *hole’ near active site
[37]; and bold underlined font shows known or predicted exon junctions.
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Figure 2. Predicted tertiary structures for mouse acid lipases

The predicted structures for mouse LIPF, LIPK, LIPA, LIPM, LIPN and LIPOL1 are based
on the reported structure for human LIPF (Roussel et al., 1999). Predicted structures were
obtained using the SWISS MODEL web site
http://swissmodel.expasy.org/workspace/index.php?. See Table 1 for sources of these
sequences. The rainbow color code describes the 3-D structures from the N-(blue) to C-
termini (red color).

Comp Biochem Physiol Part D Genomics Proteomics. Author manuscript; available in PMC 2011 September 1.


http://swissmodel.expasy.org/workspace/index.php

1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Holmes et al. Page 13

Mouse Lipa Transcript encoded on the minus strand

N1 1 b e

0 500bp "
| S S |

Mouse Lipf Transcript encoded on the positive strand
b e

0 100 200bp
Leasslinsal

Mouse Lipk Transcript encoded on the positive strand

0 500bp
IS T |

Mouse Lipm Transcript encoded on the positive strand

0 100 200bp
Lisaslinaal

Mouse Lipn Transcript encoded on the positive strand
a 1w

0 100 200bp
(FEETE NN

Mouse Lipo Transcript encoded on the minus strand
11 ] ] a M)

0 500bp
S T S T T |

Figure 3. Gene structures and major splicing isoforms for mouse Lipa, Lipf, Lipk, Lipm, Lipn and
Lipol genes

From AceView website (Thierry-Mieg and Thierry-Mieg, 2006)
http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/ Mature isoform variants (designated
as a or b isoform) are shown for each mouse gene transcript with capped 5’- and 3'- ends for
the predicted mRNA sequences. Scales of base pairs of nucleotide sequences are shown.
Flags identify validated endings: cap site on the 5’ side, polyadenylation site on the 3’ side.
Filled flags correspond to frequent events while empty flags have lesser supporting cDNAs
(all validated); at the 3’ side, black flags are associated to the main AATAAA signal, blue
flags to any single letter variant of the major sequence.
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Figure 4. Mouse tissue gene expression ‘heat maps’ for acid lipase genes

Taken from the mouse genome browser (http://genome.ucsc.edu) (NCBI37/mm9 2007
assembly) (Kent et al. 2003). GNF Expression Atlas 2 data using various expression chips
for mouse acid lipase genes Lipa, Lipf, Lipk, Lipm, Lipn and Lipol (using GenBank 1D
Al747699) (http://biogps.gnf.org). Comparative gene expression levels among mouse
tissues: red (high); black, (intermediate); and green (low) expression levels.
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Figure 5. Phylogenetic tree of mammalian acid lipase LIPA, LIPF, LIPJ, LIPK, LIPM, LIPN
and LIPO amino acid sequences with frog (Xenopus tropicalis) LIPA sequence
The tree is labeled with the acid lipase gene name and the name of the mammal or frog.
Note the major clusters for each of the 7 acid lipase gene families. The gene duplication
events generating these distinct gene families (LIPA, LIPF, LIPJ, LIPK, LIPM, LIPN and
LIPO) is proposed to have occurred prior to the eutherian mammalian common ancestor
estimated at ~100 million years ago (Woodburne et al., 2003). A genetic distance scale is
shown. The number of times a clade (sequences common to a node or branch) occurred in
the bootstrap replicates are shown. Only replicate values of 90 or more which are highly
significant are shown. 100 bootstrap replicates were performed in each case. Of particular
interest are the nodes (marked with an asterisk*) supporting the significant separation of
each of the acid lipase gene families examined.
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