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Progress in microelectrode-based technologies has facilitated the development of
sophisticated methods for manipulating and separating cells, bacteria, and other
bioparticles. For many of these various applications, the theoretical modeling of the
electrical response of compartmentalized particles to an external field is important.
In this paper we address the analysis of the interaction between cells immersed in
rf fields. We use an integral formulation of the problem derived from a consider-
ation of the charge densities induced at the interfaces of the particle compartments.
The numerical solution by a boundary element technique allows characterization of
their dielectric properties. Experimental validation of this theoretical model is ob-
tained by investigating two effects: �1� The influence that dipolar “pearl chaining”
has on the dielectrophoretic behavior of human T lymphocytes and �2� the fre-
quency variation of the spin and orbital torques of approaching insulinoma �-cells
in a rotating field. © 2010 American Institute of Physics. �doi:10.1063/1.3454129�

I. INTRODUCTION

The development of noncontact methods, using ac electric fields, for manipulating microscale
and nanoscale biological particles, has produced a new area of research dealing with the mecha-
nisms of interaction of bioparticles with electric fields. A variety of devices based on dielectro-
phoresis �DEP� has been proposed in the past years for separation, handling, and trapping of cells,
viruses, and biomolecules.1–4 Besides, there has been a great development of methods for the
detection and identification of bioparticles without the use of labels or tags.5–7 Similarly, electroro-
tation �ER� produced by a rotating electric field has been used to characterize the properties of cell
membrane and cytoplasm and to provide a monitor for cell viability.8–10

The theoretical understanding of these phenomena is crucial both for the design of electroki-
netic devices and the identification and characterization purposes using such devices. The basic
theory of dielectrophoresis and cell electrorotation is well established and its application is tradi-
tionally based on analytical solutions for idealized models of isolated single cells. These models
consider multishelled spheres or spheroids characterized by sets of electrical parameters, each
describing the complex conductivity �or permittivity� of an individual phase �e.g., the cell mem-
brane, cytoplasm, nucleus, and extracellular medium�.11 While such models provide simple ana-
lytical solutions, they have significant limitations in dealing with real cells which do not conform
to those idealized geometries �e.g., the discoid shape of erythrocytes or platelets�. They also fail to
include cases where cell-cell interactions or associations occur. For example, cells in electric fields
can interact to form characteristic “pearl chains” oriented along the field lines.12 Although the
basic dipole-dipole forces controlling the formation of cell chains are well understood, this effect
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is usually ignored in the discussion of DEP experiments. However, the DEP behavior of isolated
cells can be different from those that form doublets, triplets, or higher order aggregates. The DEP
force between two lossy dielectric particles polarized by an external field was studied by Sancho
et al.13 using multipole expansions centered in both spheres and solving the resulting linear system
of equations. A similar approach was used by Jones12,14 for chains of dielectric spheres with
extension to the case of magnetic particles in a magnetic field. Huang et al.15 proposed a multiple
image approximation to study the polarization spectra of a pair of colloidal particles. All these
studies are restricted to plain spherical particles, aligned with the direction of the electric field. The
practical calculation of the interaction requires truncation of expansions at some finite number of
terms and is affected by convergence problems when particles have high dielectric constant or
they are closely spaced. Using the dipole approximation for shelled particles, Giner et al.16 ana-
lyzed the formation of longitudinal and transverse chains of yeast and latex particles in an electric
field, observed in the experiments. The effect of mutual interactions on cell electrorotation in
rotating fields has not been generally considered. However, the rotation produced by the interac-
tion between two cells in a linearly polarized field was described by Mahaworasilpa et al.17 An
interesting technique based on this coupled electrorotation of two dielectric microspheres was
investigated both theoretically and experimentally by Simpson et al.18,19

Numerical computations, based on finite element methods �FEMs� or boundary element meth-
ods �BEMs�, enable the modeling of realistic structures and shapes of bioparticles, as well as the
interaction effects between them, in all orders of multipole expansion. However, the different size
scales involved in the problem �nanometers for the membrane thickness and micrometers for the
cell diameter� lead to inaccurate solutions unless very dense grids and sophisticated adaptive
meshing techniques are used. Furthermore, the primary solution of standard BEMs or FEMs is the
potential distribution so that the polarizabilities of the cells have then to be deduced using math-
ematical treatments that involve inaccurate numerical differentiation.20 In this paper we apply a
special BEM version that fits the needs of modeling for interpreting many DEP and ER experi-
ments.

We present two experiments related to cell interactions in DEP aggregation of human T
lymphocytes and ER of rat insulinoma �-cells. In the first one, we study the influence of the cell
chaining due to cell attraction on the measured crossover frequency. In the second case we
interpret the observed mutual orbital rotation between pairs of cells. There is a good agreement
between observations and our numerical modeling in both experiments.

II. NUMERICAL METHOD

The average dielectrophoretic force experienced by a cell in a nonuniform field in the effec-
tive dipole moment approximation is

�F�t�� = 1
2Re��� � E2, �1�

where E is the field intensity and � is the complex polarizability of the particle, defined as the ratio
between the induced dipole and the corresponding electric field. Equation �1� is valid for small
particle sizes compared to the distance along which the electric field varies appreciably.

For a spherical cell of radius r,

� = 4�r3fCM, fCM =
��c

� − �m
� �

��c
� + 2�m

� �
. �2�

�c
� and �m

� are complex permittivities of the cell and surrounding medium, respectively, and fCM is
the Clausius–Mossotti factor.12 When the influence of neighboring cells cannot be ignored, Eq. �1�
is not valid and a multipolar approach should be used instead, taking into account the successive
induced moments between them. In the present study we propose an accurate computation of the
field distribution in both particles and medium using numerical methods. To this purpose we will
apply a special BEM approach based on an integral formulation of Laplace’s equation, derived
from a consideration of the charge densities induced at the interfaces of a compartmentalized
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dielectric particle.21 On solving the integral equation for the charge densities, both the particle
polarizability and the force produced by an external field will be obtained directly, including the
effect of multipole contributions. Next we summarize the main steps of the derivation.

An integral expression for the electric potential produced by a polarized dielectric body
subjected to an external field, in quasistatic approximation, is

��r� = �0�r� +
1

4��0
�

S

��r��G�r,r��dS�, �3�

where �0�r� is the potential produced by the external sources and ��r�� is the charge density
located on the interface S �that can be a nonconnex surface as is the case for a layered or
multishelled particle�. G�r ,r�� is the electrostatic Green’s function; for a three-dimensional: Ge-
ometry, G�r ,r��=1 / �r−r��. An important point to note is that since, in general, the media are
conductive, ��r�� and ��r� are complex magnitudes, reflecting phase shifts with respect to the
applied potential �0�r�.

Denoting by Eij the normal component of the electric field at a point defined by r, at the
interface between media i and j �pointing from medium i to medium j�, we obtain the following
from Eq. �3�:

Eij�r� = Eij
0 �r� −

1

4��0
	


k
�

Sk

��r��
�G

�n
dS� + 2���r�� , �4�

where the contribution of the singularity of the integrand at r=r� is explicitly included. From Eq.
�4� and using the relation between induced charge density and electric field, the following Fred-
holm integral equation is obtained:

��r� = 2uij�
0�r� −

1

2�
uij


Sk

�
Sk

��r��
�G

�n
�r,r��dS�, �5�

where uij = ��i
�−� j

�� / ��i
�+� j

��, �0�r�=�0Eij
0 �r�, and �i

� ,� j
� denote the complex permittivities of ma-

terial phases i , j in contact at point r of the interface.
To obtain a numerical solution for Eq. �5� the interfaces first have to be divided into small

domains of area �Si. On each of the surface elements the charge density is assumed to be
approximately constant. Thus, the integral equation is converted into a linear algebraic system that
is solved by a standard triangular factorization method. From the calculated charge densities, the
electrical response of the cell and its ponderomotive behavior can be readily obtained. Thus the
effective dipolar moment and the corresponding polarizability are calculated from

peff = �effE0 = �m

i

r�i�Si, �6�

where the sum extends to all subareas of the considered cell. As the polarization charges are
supposed to be in the vacuum, the dipole moment has been multiplied by the real part of the
medium permittivity �m to get its effective value in that medium.

In the case of cells immersed in a rotating circularly polarized field, E0=E0�ux+ juy�, dipole
moment and electric field are phase shifted so there is a torque on each cell that produces cell
electrorotation. Thus, the average spin torque on the cell is12

�	spin� � − Im��eff�E0
2uz. �7�

On the other hand, considering two interacting particles the force and torque on one cell can
be directly computed as the superposition of the stresses at each subarea. Then, the average net
force on cell 1 can be written as
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�F1�t�� =
1

8��m
Re


i



j

�i�̃ j�Si�Sj
�ri − r j�
�ri − r j�3

, �8�

where the symbol  means complex conjugated and each sum extends to the interfaces pertaining
to cells 1 and 2, respectively. Furthermore, there exists an orbital torque, acting on cell 1 with
respect to the center of the other cell, at the distance r, given by

�T1� = r 
 �F1� , �9�

and similarly for particle 2.

III. RESULTS AND DISCUSSION

In this section we present some results regarding two electrokinetic experiments in which the
interaction effects are noticeable and can be interpreted using our proposed BEM.

A. Dipolar chaining effects in DEP response of cells

This first example concerns the experimental observations of the dielectrophoretic behavior of
isolated and clusters of Jurkat E6-1 T-cells, which form pearl chains. DEP experiments were
performed by pipetting cell suspensions �106 cells /ml� into chambers containing microelec-
trodes fabricated using standard photolithography. The procedure and apparatus have been de-
scribed elsewhere.5,7,22 In summary, sequences of ac voltages at preset frequencies in the fre-
quency range from approximately 5 kHz to 100 MHz, and at five discrete steps per decade of
frequency, were applied to the microelectrodes to generate a sequence of alternate positive and
negative DEP forces. If the average DEP crossover frequency for a population of test cells was
known in advance, the full frequency range was reduced and more discrete steps were used,
centered on the crossover frequency. Images of the DEP-induced motions of the cells were cap-
tured at 30 frames/s. The location of each cell was continuously tracked, and their velocities were
computed to an accuracy of �0.1 �m /s and normalized with respect to the variation of the
electric field strength and field gradient between the electrode edges. The diameter of each cell
was also determined ��0.25 �m� from the average value obtained from the images collected over
the time �5 min� of each experiment run. After application of the electric field, some of the cells
interacted with others to form doublets, triplets, or higher order pearl chains. The frequency—
where each cell, or two or more cells forming a chain, exhibited a transition between negative and
positive DEPs �the so-called DEP crossover frequency fx0�—was computed from interpolation of
the DEP frequency responses from either side of the crossover frequency.

The experimental values of crossover frequencies fx0 and the corresponding cell radii obtained
for T-cells are shown in Fig. 1. We used a shelled sphere for modeling the dependence of single
cell fx0 on radius. The following electrical and geometrical parameters of a typical T-cell were
chosen: Membrane thickness =4.5 nm, permittivity and conductivity of cytoplasm �cyt=50�0

and �cyt=1 S /m, specific membrane conductance Gm=100 S /m2, and capacitance Cm

=6 mF /m2. Permittivity and conductivity of the suspending medium were the experimental val-
ues �med=79�0 and �med=40 mS /m. The corresponding curve obtained as a function of cell radius
is also displayed in Fig. 1. The scattering of experimental dots shows the variability of the
morphology and physiological characteristics of the cell population, besides some random experi-
mental errors.

These experimental fx0 data fit to Gaussian distributions and corresponding sigmoid cumula-
tive curves. Figure 2 shows the cumulative distribution of cells displaying a crossover frequency
for single cells and for cells connected in chains. Cells forming chains have DEP fx0 shifted
toward higher frequencies. The average shift was 10.7 kHz. This effect can be understood as a
consequence of the mutual polarization effect between neighboring cells.

For the numerical modeling, we apply Eq. �5� to the set of N cells forming a chain and from
the computed charge densities, we calculate the dipole moment and the effective polarizability �eff

of each cell. Figure 3 shows calculated DEP spectra for linear chains of N cells. Peaks of dielec-
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trophoretic response increase with the number of interacting cells because of the induced electrical
images produced by neighbors. �Note that the effective Clausius–Mossotti factor per cell can be
greater than 1.0 because of these mutual interactions.� The theoretically derived shift of fx0

qualitatively agrees in sign and order of magnitude with the experimentally observed effect shown
in Fig. 2.

The value of 6 mF /m2 taken for Cm is typical for a smooth surfaced biological membrane.23

However, it has been recognized that such membrane surface features as microvilli, blebs, folds,
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FIG. 1. Experimental DEP crossover frequencies for single T-cells �solid circles� and cells connected in chains �open
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chains �open circles�. Solid lines are sigmoidal fits.
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and ruffles can contribute to larger values of membrane capacitance.7,23 The morphological het-
erogeneity accounts for the large standard deviations of fx0 observed for the different cells shown
in Fig. 2.

To further investigate this effect, we have used the concept of membrane topography param-
eter �,24 which represents the ratio of capacitances of the actual cell membrane to that of a
perfectly smooth shell with the membrane composition, covering the cytoplasm. This parameter
physically includes not only the effect of a greater surface area but also other possible molecular
or simply geometrical factors that increase the effective membrane capacitance. Figure 4 shows
calculated and experimental fx0 values versus cell radii for different topography parameter values.
Theoretical values of fx0 for each N value are computed using cell radii equal to the average radius
measured for cells in chains with the same N. The comparison between the theoretical curves and
experimental results suggests a topographical factor in the range from �=2 to �=3. In previous
work, Jurkat T-cells were found to have a topography factor of mean value �=2.2.7 The results
shown in Fig. 4 for single cells and doublets are in good agreement with this. Murine erythroleu-
kemia �DS19� cells have been found to have similar � values,24 while values as high as �=5 have
been reported for rat kidney cells.25 From Fig. 4 we find that the experimentally observed rate of
increase of fx0 with an increasing number of connected cells is low compared to the slope of the
theoretical curves. These lower values of the observed fx0 shifts probably reflect that the electrical
interaction between close rough surfaces is not as strong as for smooth membrane surfaces, thus
producing less mutual polarization of the cells in the chain.

B. Cells: ac rotating field interaction

In this case we address the analysis of the interaction between insulinoma �-cells immersed in
a rotating ac field, as illustrated in Fig. 5. We perform a numerical analysis, based on BEM, to
account for the multipole interactions at all orders. Results for spin and orbital torques as functions
of the frequency are presented and compared to the measured data. The procedure and experimen-
tal setup have been described elsewhere.26,27 In short, INS-1 �rat insulinoma �-cells� were grown,
centrifuged, and washed twice in the media to be used in the ER measurements. Cell suspending
solutions of physiological osmolarity were prepared with controlled conductivity in the range from
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11.5 to 42.5 mS/m. The conductivities were measured, to within �0.25%, and adjusted using KCl.
Digitally generated voltages with 8 Vp.-p., in phase quadrature, of frequencies between 10 kHz
and 10 MHz were applied to quadrupole electrodes. The microelectrodes of so-called “bone”
design were manufactured by photolithography in a clean room onto glass microscope slides, with
a 5 nm chrome adhesion layer covered by a 70 nm gold layer. The cells, at a working concentra-
tion of 2
105 cells /ml or lower, were pipetted directly onto the electrode assembly and secured
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FIG. 5. Images of a pair of �-cells �left side of the frames� rotating counterclockwise in an electrorotation experiment at
a frequency of 200 kHz.
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with a cover slip. At this concentration most of the suspended cells remained apart during the ER
experiments. The electrokinetic responses of the cells were visualized using a Zeiss Axioskop and
recorded at 30 frames/s for later analysis, with a final magnification of 750 on a TV monitor.
Electrorotation rates were obtained mainly by simple timing with a stopwatch. When better accu-
racy was required, the video-captured frames were analyzed using an image processing method
described previously.28 The exact distance between opposite electrode faces �e.g., 393 �m for the
nominal 400 �m bone electrodes� was used as the scale to determine cell diameter to an accuracy
of �0.3 �m.

Forces between a pair of identical �-cells have been calculated using Eq. �8�. Geometrical and
electrical parameters of the cells taken from the captured images and ER analysis are average
radius a=3.5 �m, membrane thickness of 10 nm, membrane capacitance of 10.4 mF /m2, mem-
brane conductance of 50 S /m2, cytoplasm permittivity of 50�0, and cytoplasm conductivity of 0.5
S/m. The pattern of forces on each cell shows a rotational component in agreement with experi-
ments, as can be seen in Fig. 6.

The case is representative of two interacting cells, with coordinate origin taken at the position
of one of them. The force on the second cell is plotted at different positions around the first one;
it is attractive and this explains why the distance between both cells in Fig. 5 slowly reduces, but
has also a rotating component, especially at short distances, which is responsible for the orbital
rotation of the second cell around the first one. The resulting torque �with respect to the center of
the first cell� diminishes when the distance between cells increases.

Curves in Fig. 7�a� represent spectra of real and imaginary parts of the polarizability for a cell
in a touching pair, obtained using a shelled sphere model. We have first studied the dipole moment
of each sphere produced by the external field and the field of the other sphere29 and then compared
the result with that obtained by applying the numerical BEM. It can be seen that the dipole

FIG. 6. Force produced by a polarized cell in a rotating field �f =200 kHz�. The radius of the exclusion �white area� is
imposed by the closest distance 2a.
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approximation underestimates the magnitude of the cell polarization. We tested that at long dis-
tances both calculations—dipole theory and BEM—give the same spectrum. Figure 7�b� shows
the behavior of the orbital torque for the same interval of frequencies. The orbital rotation can be
cofield or antifield in analogy with the spin movement. Having in mind that the spin torque is
proportional to −Im���, we observe that both torques follow similar curves, crossing the axis at
the same frequency f =2.5 MHz.

Figures 8�a� and 8�b� show the dependence of both spin and orbital torques on the distance
between interacting cells. As the distance increases, the spin torque tends to the value of −Im���
for the isolated cell. The curve shows that the spin torque differs from this asymptotic value by
10% when the distance between cells is approximately 1.6 times their diameter. The orbital torque
also decreases sharply with increasing distance between cells �more than one order of magnitude
when cells separate from contact, r=2a, to r=3a�, in qualitative agreement with experimental
observations.

The physical model of the cells rotating in the electric field must include the consideration of
the viscous forces acting on the spheres. We will assume that these forces are given by the simple
Stokes law.30 In consequence, the rotation rate �rot is proportional to the acting torque, T1=c�rot. In
a first approximation, neglecting hydrodynamic interactions, we will assume that the proportion-
ality constant c is independent of distance and will assume it as an adjustable parameter in the
theory.

We have considered the experiments performed on �-cells and selected 10.6 and 10.3 �m
diameter cell doublets at different distances. Fitting of the theoretical predictions to the experi-
mental values of rotation rates, by least square deviation, gives the 3D diagram represented in Fig.
9. The graph depicts a maximum of rotation speed at frequencies of the order of 3.5
105 Hz, for
cells in contact. The high frequency cofield rotation region has not been explored in this experi-
ment and it is not shown in the figure.
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IV. CONCLUSIONS

Interactions between cells influence all the electrokinetic experiments. Therefore, careful
analyses of cell-to-cell forces are of importance for the design of devices and especially for
analytical applications. It has been experimentally determined that the formation of pearl chains
influences the DEP collection spectra and particularly the frequencies where a transition between
positive and negative DEPs may occur. Furthermore, in ER experiments it has been observed that
pairs of cells rotate around each other, at the same time that they spin because of the applied
rotating field. We have described quantitatively the phenomenon and found that it depends on field
frequency and distance between cells in a similar way to that of the spin rotation.

All these characteristics are explained by the electrical interaction between polarized cells.
The dipole approximation provides a good description at long distances but we have shown that a
numerical approach is needed at distances of the order of the cell diameter. The special version of
the boundary element method described here allows interpretation of the experimental data ob-
tained for both examples, giving a good agreement with the theory.

The analysis of the influence of cell chaining on the crossover frequency can be useful in
devising DEP-based cell separation protocols, especially for cases of high cell concentrations,
where field-induced pearl chains can be more dominant than the existence of single cells.

In addition, the effect of orbital rotation could be used as a complementary method for the
dielectric characterization of cells. Fitting of the theory to the experimental spectra would give the
permittivity and conductivity of the different cell compartments. It also has the advantage of an
easy automation of measurements.

In conclusion, the combination of both experiments on cells interactions with rf fields and
numerical tools for interpreting results allows a progress in the understanding of these mechanisms
as well as of the electrical nature of biological cells.
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