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Abstract

The goal of this study was to identify a set of hepatic genes regulated by ligand-dependent
activation of the estrogen receptor in juvenile rainbow trout (Oncorhynchus mykiss). A custom
rainbow trout oligo DNA microarray, which contains probes targeting approximately 1450 genes
relevant to carcinogenesis, toxicology, endocrinology, and stress physiology was utilized to
identify transcriptional fingerprints of in vivo dietary exposure to 17p-estradiol (E2), tamoxifen
(TAM), estradiol + tamoxifen (E2 + TAM), diethylstilbestrol (DES), dehydroepiandrosterone
(DHEA), dihydrotestosterone (DHT), and cortisol (CORT). Estrogen exposure altered the
expression of up to 49 genes involved in reproduction, immune response, cell growth,
transcriptional regulation, protein synthesis and modification, drug metabolism, redox regulation,
and signal transduction. E2, DES, and DHEA regulated 18 genes in common, mostly those
associated with vitellogenesis, cell proliferation, and signal transduction. Interestingly, DHEA
uniquely regulated several complement component genes of importance to immune response.
While the effect of TAM on E2-induced changes in gene expression was mostly antagonistic,
TAM alone increased expression of VTG1 and other genes associated with egg development and
immune response. Few genes responded to CORT treatment, and DHT significantly altered
expression of only one gene targeted by the OSUrbt array. Hierarchical cluster and principal
components analyses revealed distinct patterns of gene expression corresponding to estrogens and
non-estrogens, though unique patterns could also be detected for individual chemicals. A set of
estrogen-responsive genes has been identified that can serve as a biomarker of environmental
exposure to xenoestrogens.
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Estrogens are essential for the normal growth, differentiation, development, and function of
reproductive tissues. Moreover, these steroid hormones are important regulators of various
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physiological processes in other tissues considered nonclassical estrogen targets including
bone, liver, kidney, cardiovascular system, spleen, lung, and brain. Most biological actions
of estrogens in humans and other vertebrates are mediated by two distinct, differentially
expressed intracellular receptors, estrogen receptor alpha (ERa) and estrogen receptor beta
(ERB), which are considered unusually promiscuous receptors having affinity for numerous
environmental contaminants and pharmaceuticals. Human and animal exposures to
xenoestrogens have been linked to reproductive tract and development abnormalities and
increased risk of breast, ovary, and liver cancer (Damstra et al., 2002; Flétotto et al., 2001;
Martin et al., 2007). Simple, standardized in vitro assays are available for preliminary
screening of chemicals for possible carcinogenic or endocrine-disrupting properties
including various ER gene reporter assays (Harris et al., 1997; Sanseverino et al., 2005).
However, with recent advances in genomic technology, sophisticated experiments are now
possible in which DNA microarrays are utilized to determine the expression level of
hundreds to thousands of genes simultaneously. The potential of “omics” technologies
applied to the field of toxicology is considerable and includes drug development, risk
assessment of novel drugs, novel applications for existing drugs, discovery of diagnostic
markers, and compound screening for potential toxic, carcinogenic, and/or endocrine-
disrupting effects (Benninghoff, 2007; Hamadeh et al., 2002; Shirai and Asamoto, 2003).
Researchers anticipate that DNA microarrays may be routinely used in the identification of a
set of differentially regulated genes, a gene expression fingerprint, that would serve as a
biomarker of specific chemical exposure and could be used in predicting adverse health
effects based upon the apparent mode of action discerned from the gene expression data
(Hamadeh et al., 2002). Several studies have described distinct gene expression patterns
resulting from exposure to chemicals from multiple compound classes including heavy
metals, polycyclic aromatic hydrocarbons, and xenoestrogens (Bartosiewicz et al., 2001;
Hamadeh et al., 2002; Koskinen et al., 2004; Terasaka et al., 2004; Vezina et al., 2004,
Wang et al., 2004). The knowledge of the potential mechanism of action of a suspect
chemical can be very useful in the evaluation of potential hazards that xenobiotics may pose
to human and environmental health.

Rainbow trout have been widely used as a research model in environmental toxicology
studies for decades, and this species has been proposed as an appropriate animal model for
studies in comparative ecotoxicogenomics (Denslow et al., 2007). Previously, researchers
described the design, manufacture, and application of a custom oligonucleotide microarray
(OSUrbt array) for trout (Tilton et al., 2005). The OSUrbt version 2 microarray contains
1676 elements representing approximately 1450 genes important for carcinogenesis,
environmental toxicology, comparative immunology, stress physiology, and endocrinology.
In the present study, the OSUrbt microarray was used to identify a set of hepatic genes
regulated by ligand-dependent activation of the estrogen receptor in juvenile rainbow trout.
We hypothesized that (1) the transcriptional profile resulting from exposure to model
estrogen compounds would be distinct from that of non-estrogens, (2) a subset of genes
commonly regulated by all estrogen treatments could be identified, and (3) the selective
estrogen receptor modulator (SERM) tamoxifen (TAM) would antagonize estrogen-induced
changes in expression of these fingerprint genes.

METHODS

Animal care

Mt Shasta strain rainbow trout were hatched and reared at the Sinnhuber Aquatic Research
Laboratory at Oregon State University in Corvallis, Oregon. Fish were maintained in flow-
through 375-I tanks with activated carbon water filtration, water temperature at 12°C, and a
12:12 h light:dark cycle. Each experimental group consisted of three tanks containing 15
juvenile trout approximately 15 months old with an average weight of 140 g. Fish were fed a
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maintenance ration (2.8% of body weight) of Oregon Test Diet, a semipurified casein-based
diet with menhaden oil as the lipid (Lee et al., 1991), for 2 weeks prior to experimental
treatments. All procedures for treatment, handling, maintenance, and euthanasia of trout
used in this study were approved by the Oregon State University Institutional Animal Care
and Use Committee.

Experimental exposures

Eight experimental treatments were selected to examine hepatic gene expression in response
to estrogens, a SERM, and non-estrogens. Treatments and concentrations (calculated with
respect to diet wet weight) are as follows: control (CON), 5 ppm 17B-estradiol (E2), 50 ppm
TAM, 5 ppm E2 + 50 ppm TAM (E2 + TAM), 2 ppm diethylstilbestrol (DES), 500 ppm
dehydroepiandrosterone (DHEA), 5 ppm dihydrotestosterone (DHT), and 5 ppm cortisol
(CORT). Test chemicals were purchased from Sigma-Aldrich (St Louis, MO) and were
added directly to the oil portion of the custom diet. Experimental treatments were
administered for 14 days, and feeding occurred 5 days per week. The concentrations of E2
and DHEA were selected based upon their ability to significantly induce vitellogenin (Vtg)
gene and protein expression (Tilton et al., 2006), and the concentration of DES was chosen
based upon reported relative binding affinity for the trout estrogen receptor (Matthews et al.,
2000). To examine potential agonistic and antagonistic effects of TAM, a 10-fold higher
concentration of that chemical compared to E2 was tested alone and coadministered with 5
ppm E2. Finally, DHT and CORT were administered at concentrations equivalent to that of
E2.

On day 15, trout were euthanized with an overdose (250 ppm) of tricane methanesulfonate.
Four males were sampled from every experimental tank. Immediately after sacrifice, an
approximate 200 mg portion of each liver was quick frozen in TRIzol reagent (Invitrogen,
Carlsbad, CA) and stored at — 80°C. Body weight and liver weight were recorded at the time
of sacrifice to calculate the hepatosomatic index (HSI = liver weight/body weight x 100),
and blood sera E2 levels were measured using a commercial enzyme immunoassay kit
(Cayman Chemical, Ann Arobor, MI).

RNA isolation and quality determination

Total hepatic RNA was extracted in TRIzol reagent according to supplier’s instructions.
Equal amounts of RNA from each individual liver sample were subpooled according to tank
(four males pooled per tank) resulting in three biological replicates for each treatment. A
reference RNA pool was made by combining equal amounts of RNA from all individual
male CON liver samples (12 liver samples in total). Following cleanup with the RNeasey
Mini kit (Qiagen, Valencia, CA), RNA quantity and quality were ascertained using the
NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies, Inc.,
Wilmington, DE) and the Bioanalyzer 2100 (Agilent, Palo Alto, CA), respectively.

Rainbow trout oligonucleotide microarray

Details on the development, manufacture, and quality control assessment of the OSUrbt
microarray have been provided previously (Tilton et al., 2005) and will be only summarized
here. Array printing and quality control analysis were conducted at the Center for Genome
Research and Biocomputing at Oregon State University. Each element was printed in
duplicate onto Corning UltraGap slides (Acton, MA). Additionally, 16 replicate sets (one for
each array block) of 10 SpotReport Alien Oligos (Stratagene, La Jolla, CA) were also
printed on each array. Inclusion of these control features allows for standardization across
arrays and estimation of cDNA labeling efficiency, hybridization sensitivity, and intra- and
interarray variability. Buffer-only spots were included as negative controls. Altogether, each
array consists of 4096 spots. Array print quality (shape and alignment of features, missing
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features, etc.) was assessed by scanning for red reflectance using a ScanArray 4000 scanner
(PerkinElmer, Boston, MA). One array per printing batch was subjected to quality control
hybridization (SpotQC, Integrated DNA Technologies) to confirm absence or presence of
DNA in appropriate features. Arrays were stored for less than 6 months prior to
hybridization.

Microarray hybridization and scanning

For detection of gene expression on the OSUrbt array, the Genisphere 3DNA Array 350 kit
(Hatfield, PA) was used in a dye-swap, reference sample design following the supplier’s
protocol. During reverse transcription (SuperScript 1, Invitrogen) of total RNA (7 pg) using
the supplied Genisphere oligo d(T) primers, each biological sample was tagged separately
with a capture sequence for one of two fluorescent dendromer reagents, Cy3 or Cy5. Each
reverse transcription reaction also included spiked-in mMRNA corresponding to the
SpotReport Alien Oligo controls. Corresponding reference RNA was reverse transcribed
with the capture sequence for the opposite reagent (Cy3 or Cy5). To account for any
differences in dye labeling efficiency, technical replicates were performed for two of the
three biological replicates so that the capture sequence tags for Cy3 and Cy5 were swapped
between the sample and reference RNA (replicate A, reference is labeled Cy3 and sample is
labeled Cy5; replicate B, reference is labeled Cy5 and sample is labeled Cy3). Five arrays
per experimental treatment were processed, including the CON treatment.

Following reverse transcription, equal amounts of capture sequence—tagged sample and
reference cONA were combined, concentrated using the Millipore Microcon YM-30
(Billerica, MA), and treated with RNase cocktail (Ambion, Austin, TX) to degrade any
remaining RNA. Hybridization of cDNA and capture reagents to the OSUrbt arrays was
performed as described previously (Tilton et al., 2005) with a few modifications. Sterile 20x
standard saline citrate (SSC) was prepared with 3 M sodium chloride and 0.3 M sodium
citrate at a pH of 7.0; appropriate dilutions were made with sterile water for hybridization
wash buffers. Sodium dodecy! sulfate (SDS) was also added to some hybridization wash
buffers at a 0.1% (wt/vol) final concentration. Prior to hybridization, arrays were prewashed
with gentle mixing on a rocking platform twice in 0.1% SDS for 5 min at room temperature
(RT), twice in 2x SSC, 0.1% SDS for 10 min at 47°C, once in 0.1x SSC at RT for 5 min,
and once in ultra-pure water for 5 min. Slides were dried by centrifugation. cDNA was
hybridized to the arrays in formamide-based hybridization buffer (25% formamide, 4x SSC,
0.5% SDS and 2x Denhardt’s solution, Genisphere, Inc.) for 16 h at 47°C in a Hybex
Microarray Incubation System (SciGene Corporation, Sunnyvale, CA). After hybridization,
the arrays were rinsed in 2x SSC, 0.1% SDS for 10 min at 47°C in the Hybex water bath.
Then, arrays were washed with gentle mixing twice in 2x SSC, 0.1% SDS for 5 min at
47°C, twice in 1x SSC for 5 min at RT, and twice in 0.1x SSC for 5 min at RT. Slides were
dried by centrifugation and prewarmed to 49°C. Next, the 3DNA Cy3/Cy5 capture reagent
mixture was hybridized to the arrays for 3 h at 49°C in the dark. After this second
hybridization, the arrays were rinsed, washed, and dried again as previously described in
SSC buffers containing 100 uM DTT dithiothreitol in the dark. All arrays were treated with
DyeSaver2 Anti-fade Coating (Genisphere, Inc.) to preserve fluorescence of the capture
reagent.

Within 24 h of hybridization, array images at a resolution of 5 pm were obtained using the
ScanArray 4000 (PerkinElmer) with 90% laser power at 543 and 633 nm excitation
wavelengths for Cy3 and Cy5, respectively. Photomultiplier tube settings were adjusted
using the intensities of the SpotReport Alien Oligo controls to balance global intensities for
the Cy3 and Cy5 fluors and to normalize across slides.
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Image and data analyses

Array image files were processed, and spot intensities were quantified using QuantArray
software (PerkinElmer); raw median signal and background values were obtained and
uploaded to BioArray Software Environment (Saal et al., 2002) for database management
and data normalization. For each array feature, raw median signal values were background
corrected, LOWESS normalized, and exported to Excel (Microsoft Corp., Redmond, WA).
Fold change in gene expression was determined by calculating the ratio of fluorescence
intensity for the sample compared to the reference for each array feature. Average fold
change values were calculated by determining the geometric mean for array technical
replicates (duplicate spots for each element per array), treatment technical replicates (dye
swaps), and finally for the biological replicates (n = 3) so that triplicate fold change
expression values were available for every array element; these values were log,
transformed and uploaded to TM4 MultiExperiment Viewer (TMeV) (Saeed et al., 2003).
Statistical analyses of gene expression were performed in TMeV using the normalized,
geometric mean expression values for each biological replicate to compare experimental
treatments to the control; a statistically significant change in gene expression was inferred
when p < 0.05 (Welch’s t-test, between subjects and assuming unequal variances).
Unsupervised, bidirectional hierarchical clustering and principal components analyses were
performed in TMeV. Normalized data were also exported to GraphPad Prism 4 (GraphPad
Software, Inc., San Diego, CA) for pairwise correlation analysis and for statistical
comparisons of quantitative PCR expression data.

Gene annotation

Array feature annotation was performed by querying the Dana-Farber Cancer Institute
(DFCI) R.trout Gene Index (http://compbio.dfci.-harvard.edu/tgi/) for the closest EST match
to the array 70-mer sequence. Matching EST sequences were then BLASTX queried in the
National Center for Biotechnology Information genome database. The top hit (lowest E-
score) was selected as the matching gene. If an EST had no significant (E-value < 1075)
BLASTX hit, then the most significant BLASTN hit is shown. Additional information on
the matching gene and BLASTX hit information are provided in Supplementary Table 3
including the DFCI accession number, the accession number for the corresponding GenBank
nucleotide sequence and the species, E-value, % identity, and SwissProt accession number
for the most significant BLASTX hit. For the proteins encoded by the putative trout
homolog mRNAs, functional information was inferred from annotations in the Gene
Ontology, Online Mendelian Inheritance in Man (OMIM), and SwissProt Protein
Knowledgebase databases.

Real-time qRT-PCR

To validate changes in gene expression detected on the OSUrbt array, mRNA levels of
select genes were evaluated by the quantitative real-time reverse transcriptase (QRT) PCR.
Total hepatic RNA was used from the previous isolation as described above and treated with
DNase (Invitrogen) following the supplier’s directions. Total RNA (1 pg) was reverse
transcribed (Superscript 11, Invitrogen) according to the supplier’s protocol with oligo d(T)4g
primer and a final reaction volume of 50 ul. PCR was conducted using 1 ul of synthesized
cDNA template, 0.3 uM each primer, and 1x SYBR Green PCR master mix (DyNAmo
gPCR kit, Finnzymes, Finland) with a final reaction volume of 20 ul. Primer pairs were
designed so that the PCR product contained the original 70-mer oligonucleotide sequence
(unless noted otherwise), and the primer sequences are shown in Table 1. PCR was
performed with a DNA Engine Cycler and Opticon 2 Detector (MJ Research, Waltham,
MA\) for 35 cycles with denaturation at 94°C for 10 s, annealing at the optimum temperature
determined for each primer pair (54°C — 62°C) for 20 s and extension at 72°C for 18 s. For
DNA quantification, the C(t) value was set to ensure that values were within the linear range
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Vtg ELISA

RESULTS

of the fluorescence curve. PCR standards for each gene were prepared by gel purification of
PCR products (QIAX 11, Qiagen, Valencia, CA), quantified using the PicoGreen dsDNA
Quantification Kit (Molecular Probes, Eugene, OR), and serially diluted for final
concentrations ranging from 0.001 to 100 ng DNA.

Glyceraldehyde-3-phosphate dehydrogenase (GADPH) and B-actin were selected as genes
for normalizing the gRT-PCR data since neither microarray nor gRT-PCR analyses revealed
significant treatment-induced changes in mMRNA levels of these two housekeeping genes. All
expression values obtained by qRT-PCR were normalized by the mean fold change of both
genes. These normalization values were calculated from the ratio of pg cDNA for a
biological replicate over the average pg cDNA for all three CON biological replicates for
both B-actin and GADPH genes as follows: HSKGa = (Acta/Actayg) X (GADPHA/
GADPH,g) where HSKG indicates the mean fold change of the two housekeeping genes,
A indicates the biological replicate, and avg indicates the average of three biological
replicates. For comparison to microarray expression values, fold-change ratios were
calculated for treated samples compared to the CON treatment.

Blood samples from each donor animal were obtained at sacrifice. The plasma fraction of
each sample was obtained by centrifugation at 850X g and then snap frozen at — 80°C.
Blood plasma Vtg was measured following an ELISA procedure previously described
(Donohoe and Curtis, 1996; Shilling et al., 2001) using a rabbit anti-chum salmon Vtg
antibody graciously donated by A. Hara at Hokkaido University. Briefly, samples were
incubated with the VTG antibody (1:1500) in 96-microwell plates for 24 h at 4°C and then
were transferred to preblocked plates (1% bovine serum albumin) coated with purified
rainbow trout VTG (25 ng per well) and incubated again for 24 h at 4°C. To develop the
assay, the plates were first incubated with biotinylated donkey anti-rabbit 1gG (1:1500, GE
Healthcare, Buckinghamshire, U.K.) for 2 h at 37°C, then with streptavidin horseradish
peroxidase conjugate (1:600, GE Healthcare) for 2 h at 37°C, and finally with 0.01%
3,3'5,5'-tetramethylbenzidine and 0.01% hydrogen peroxide in 0.5 M sodium acetate, pH
6.0, for 10 min at RT. Color development was stopped with 2 M sulfuric acid. Absorbance
at 450 nm was measured on a SpectraMax 190 spectrophotometer with SoftMax Pro 4.0
software (Molecular Devices, Sunnyvale, CA). A Vtg standard curve (6.25-3200 ng/ml) was
included in every assay plate, and the Vtg concentration of each sample was calculated from
the linear portion of this curve (GraphPad Software). The interassay coefficient of variance
was 8.4% with an assay detection limit of 6.25 ng/ml. Equal volumes (100 pl) of blood
plasma from four males were pooled by tank so that each pool represented a biological
replicate, as in the microarray experiment. Each sample was assayed in duplicate with a
minimum of three dilutions (1:10 to 1:500 for samples with expected low Vtg levels; 1:5000
to 1:50 000 for samples with expected high Vtg levels) to ensure that absorbance values of
unknowns were within the linear part of the standard curve.

Hepatosomatic Indices and Blood Plasma E2 Levels in Experimental Animals

The 14-day dietary exposure to the experimental treatments described above did not
significantly alter body weight, although hepatosomatic indices were significantly increased
in trout fed E2, E2 + TAM, and DHEA compared to control animals (Supplementary Fig. 1);
HSI values were not significantly altered in animals treated with DES, TAM, DHT, or
CORT. Blood sera levels of E2 in animals fed E2, E2 + TAM, or DHEA were also markedly
elevated (Supplementary Fig. 2); DHEA did not significantly cross-react with the E2-
specific antibody in the Enzyme immunoassay (data not shown).
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Data Filtering and Comparison of Numbers of Genes Regulated by Experimental

Treatments

All raw gene expression data are available at the Gene Expression Omnibus online
microarray data repository (http://www.ncbi.nlm.nih.gov/geo/, accession GSE8226).
Calculated fold-change ratios of experimental samples compared to reference after
background subtraction and LOWESS normalization are provided in Supplementary Table
1. Quality control analysis of array hybridization using the SpotReport Alien oligos showed
that, in general, intra- and interarray variability was low and that hybridization was
consistent and reproducible (Supplementary Fig. 3).

Multiple criteria were used to reduce the original raw data sets to subsets of genes
considered as significantly regulated by any one of the experimental treatments. Results of
the stepwise application of these criteria are shown in Table 2. These criteria included filters
for statistical significance (p value < 0.05 by Welch’s t-test with unequal variance), spot
consistency (> 1.5-fold change in 9 out of the 10 biological and technical replicate features)
and mean fold change (> 2-fold). Many more genes were identified as statistically
significant by the Welch’s t-test than were included in the final gene list (Table 2). Inclusion
of the 2-fold change criterion eliminated numerous genes that were modestly induced or
repressed by the experimental treatments.

Genes that passed all three stringency criteria are listed in three tables categorized by the
type of response or lack thereof to E2 exposure. Genes induced or repressed by E2 are listed
in Tables 3 and 4, respectively. Genes that were not altered by E2 exposure, but were
induced or repressed by one of the other experimental treatments, are listed in Table 5. Gene
descriptions are provided based on sequence homology using the most significant (E < 1075)
BLASTX hit. While most OSUrbt array features represent unique genes, some elements
represent distinct oligonucleotide sequences for the same gene (i.e., OmyOSU208 and
OmyOSU222 array features both targeted vitellogenin). Thus, the average of the expression
values for all features matching the indicated gene is reported (Tables 3-5); mean fold
change values for each array element are available in Supplementary Table 3.

Of the approximate 1450 genes represented on the OSUrbt array, fewer than 4% were
significantly regulated by any of the experimental treatments. E2 exposure altered the
expression of 49 genes, more than any of the other compounds tested. More transcripts were
significantly induced by E2 (38 genes) than were repressed (11 genes), and this pattern was
similar for most of the experimental treatments (Tables 3 and 4). E2, DES, and DHEA
commonly altered expression of 18 genes (Fig. 1), though DHEA exposure differentially
regulated 18 additional genes that were not similarly affected by E2 or DES (Table 5). TAM
induced expression of five transcripts that were also upregulated by E2 (Fig. 1). When TAM
was coadministered with E2, fewer total genes were differentially regulated compared to E2
alone. DHT, a nonaromatizable androgen, significantly altered the expression of only one
transcript, which was also induced by E2. Exposure to the non-estrogenic corticosteroid
hormone CORT had no effect on expression of genes that were regulated by E2, though
expression levels of three other MRNAs were uniquely induced (Table 5). Some genes were
identified that surpassed both the spot consistency and fold change criteria but did not pass
the statistical criterion due to high variability among the biological replicates. These genes
have been included in Tables 3-5 for informational purposes but were not included in the
treatment group tallies.

Biological Processes Associated with Differentially Regulated Genes

Genes have been categorized by function based on putative trout homologs using the Gene
Ontology, OMIM, and SwissProt Protein Knowledgebase databases. The functional
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categories listed in Tables 3-5 were defined by the authors based on information obtained
for each gene from the above sources. The biological processes associated with hepatic
genes differentially regulated by dietary exposure to estrogenic and non-estrogenic
treatments are indicated within each gene list table. The transcripts differentially regulated
by E2 represent numerous biological processes important for signal transduction,
transcription, translation, protein modification and protein transport, redox regulation, drug
metabolism, stress and immune response, extracellular matrix, and cell cycle, growth, and
proliferation. Genes associated with vitellogenesis and immune response were most strongly
induced by estrogen exposure (> 30-fold increase), whereas the strongest repressions of gene
expression (> 4-fold decrease) were observed for transcripts associated with cell cycle,
growth, and proliferation (e.g., cdc2I1), transcription (e.g., dmrt2), and drug metabolism
(CYP2KD5). Finally, several transcripts encoding proteins of unknown biological function
were differentially regulated in E2-exposed animals, including RTN9A-1 and RTN9A-2.

Of the 18 mMRNAs commonly regulated by E2, DES, and DHEA, some encoded transcripts
for proteins associated with vitellogenesis and egg development, signal transduction and
transcription, protein transport, immune response, and cell proliferation. While 22 genes
were determined to be uniquely regulated by E2, treatment with DES and DHEA influenced
expression of most of these genes in a similar manner though to a lesser degree (e.g., kIf9,
dmrt5, tcpbp, chmtxn, sdha, and TM4SF). Some unique targets for E2 included a number of
transcripts involved in signal transduction, drug metabolism, and protein synthesis, folding,
and transport. DHEA exposure exclusively altered expression of 18 genes, including
mMRNAs encoding proteins associated with ion binding and transport (icta and fth2) and
redox regulation (cox6A1). Also, multiple transcripts encoding complement components
C3-3, C3-4, and C5 were significantly repressed in DHEA-exposed animals.

Genes induced by TAM were similar to those upregulated by E2, including mRNAs
encoding proteins involved in vitellogenesis, transcription, and immune response, although
the degree of response was much lower in TAM-exposed animals. TAM uniquely repressed
expression of PGDS by approximately 5-fold compared to control. Combined treatment of
E2 + TAM resulted in many fewer differentially expressed genes compared to E2 treatment
alone; for most genes determined to be significantly induced or repressed by cotreatment of
E2 + TAM, the degree of change was reduced compared to E2 exposure alone.

Transcripts induced by CORT exposure include hpl and hp2, involved in the acute phase
immune response, and gth2b, which is an important reproductive hormone.

Relationships of Gene Expression Profiles among Estrogen and Non-Estrogen Treatments

Several analytical approaches were used to examine the relationships of transcript profiles
among the estrogen and non-estrogen treatments. First, values for all 1676 array elements
were charted in scatter-plot graphs to compare directly the E2-induced gene expression
profile with each of the other experimental treatments (Fig. 2). A correlation coefficient (r
value) for each comparison was calculated from the linear regression of the two data sets.
Pairwise analyses revealed strong correlations between E2 and DES, DHEA, and E2 + TAM
treatments (r = 0.891, 0.803, and 0.844, respectively) and a moderate correlation between E2
and TAM treatments (r = 0.687) (Figs. 2A-D). Alternatively, the E2 expression profile was
poorly correlated with profiles for DHT and CORT treatments (r < 0.001 and = 0.085,
respectively) (Figs. 2E and 2F).

Hierarchical cluster analyses were used to visualize patterns of gene expression for estrogen
and non-estrogen treatments for either all array elements (Fig. 3A) or for a subset of genes
that were significantly regulated by any one of the experimental treatments (Fig. 3B).
Bidirectional hierarchical clustering, in which expression values were sorted according to
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similarity of expression among all genes (left tree) and among all samples (top tree),
revealed distinct patterns of expression corresponding to two primary nodes in the sample
tree. In a subset of genes that were regulated by at least one of the experimental treatments,
the left node includes estrogen treatments E2, DES, and DHEA, as well as the E2 + TAM
treatment group (Fig. 3B). The right node includes CON, DHT, and CORT samples as well
as TAM samples within a separate subnode. Distinct patterns of gene expression are evident
for each experimental condition.

Principal components analysis was used to reduce the dimensionality of the gene expression
data sets so that general relationships between experimental treatments could be discerned
more easily (Fig. 4). This analysis supports the observations from previous correlation
analyses indicating that estrogen treatments have gene expression profiles distinct from non-
estrogens. CON, CORT, and DHT treatments grouped closely together (Fig. 4, hatched gray
circle), whereas E2, DES, and E2 + TAM treatments were grouped together distant from and
were the non-estrogen group (Fig. 4, solid gray circle). TAM and DHEA treatments were
isolated within the PCA plot, indicating that gene expression signatures for these compounds
are distinct from each other and from the estrogen and non-estrogen groups.

Validation of Microarray Data by gRT-PCR

Ten genes were selected for validation by gRT-PCR to represent several observed patterns
of gene expression: highly induced by estrogens (VTG1, ESR2), moderately induced by
estrogens (cstD and ESR1), repressed by estrogens (tcpbp and CYP2KS5), repressed by TAM
(PGDS), repressed by DHEA (C5), induced by CORT (hpl), and unchanged (CYP1A). In
general, patterns of gene expression evaluated by gRT-PCR were highly similar to
expression values obtained from the OSUrbt array (Fig. 5). For some genes, gRT-PCR
detected a greater magnitude change in gene expression, most notably for VTG1. One
notable discrepancy between array and qRT-PCR results was observed for ESR2. PCR
analysis showed no significant treatment-induced changes in ESR2 expression, contrary to
measurements with the array. Otherwise, no major discrepancies between the gPR-PCR and
array data were noted for the remaining genes evaluated by PCR.

Correlation of Hepatic Vtg mRNA Expression to Blood Plasma Vtg Protein

Levels of circulating Vtg protein detected in blood plasma were strongly correlated with
hepatic Vtg mRNA expression detected by the microarray (Fig. 6). As was observed for Vtg
transcript levels, TAM treatment significantly increased plasma Vtg protein, though not to
the extent of the other estrogen treatments E2, DES, and DHEA. Moreover, TAM
cotreatment did not significantly reduce E2-induced elevation of plasma Vtg protein, similar
to results obtained for Vtg transcript levels with the microarray and gRT-PCR. DHT and
CORT treatment did not significantly alter blood plasma Vtg protein levels.

DISCUSSION

In the present study, we identified a transcriptional profile representing in vivo exposure to
estrogen in the liver of male juvenile rainbow trout. Distinct patterns of gene expression
were evident for estrogen and non-estrogen treatment groups as well as for each specific
chemical treatment. Eighteen genes were identified as robust and specific indicators of
estrogen exposure. This gene set included known targets for xenoestrogens involved in
oocyte development and reproduction (VTG1, ZRP, VEP) and transcription (ESR1, ESR2)
as well as some lesser known or novel estrogen-regulated transcripts including genes
involved in stress response (VHSV4, VHSV6), signal transduction (ikk1), protein transport
(Sec6laB), cell growth and proliferation (cd82, BMP7, BRMS1L, and Cdc2l1), nucleoside
metabolism (UrdPase 1), nitrogen metabolism (BTD), and two genes with unknown function
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(RTN9-A1, RTN9-A2). Given the rigorous criteria used to select genes as differentially
regulated by experimental treatment, it is likely that this biomarker set is quite conservative.
Though of potential biological interest, moderately responsive genes that did not meet the 2-
fold arbitrary limit established for this study would likely not be robust indicators of
Xenoestrogen exposure.

A number of other studies have employed macro- or microarray platforms to investigate the
hepatic transcriptional response to estrogen exposure in several animal models including
various fish species such as rainbow trout (Hook et al., 2006; Tilton et al., 2006), European
flounder (Williams et al., 2007), common carp (Moens et al., 2006), largemouth bass
(Larkin et al., 2002) and sheepshead minnow (Larkin et al., 2003), and rodents (Boverhof et
al., 2004; Kato et al., 2004). For studies employing fish animal models, VTG is invariably
the most responsive gene to estrogen exposure, confirming the suitability of this gene as a
sensitive biomarker of estrogen exposure (Sumpter and Jobling, 1995). Other transcripts
common to most estrogen-regulated gene lists include mMRNAs encoding other proteins
involved in oocyte development, collectively referred to as the zona radiata proteins (also
termed choriogenin and vitelline envelope proteins) (Arukwe and Goksgyr, 2003). However,
upon careful inspection of these published gene lists, it is clear that a majority of the
estrogen-regulated genes are different among these various studies. These differences may
be related to the specific chemicals, species, exposure routes, or time points studied.
Moreover, the state of genome annotation for each species studied as well as the diversity of
array platforms and sample analysis techniques used could be contributing factors to
discrepancies observed among the studies. Nonetheless, many of the biological processes
involved in the transcriptional response to estrogen are very similar among these
experiments. As one example, several studies report estrogen-induced changes in genes
involved in lipid metabolism and/or transport including fatty acid—binding protein (this
study; Hook et al., 2006; Tilton et al., 2006; Williams et al., 2007) and apolipoprotein B
(Boverhof et al., 2004; Hook et al., 2006; Larkin et al., 2002; Moens et al.,2006; Tilton et
al., 2006). Although the liver is not considered a classical estrogen-responsive tissue in
rodents, exposure of ovariectomized mice to the pharmaceutical xenoestrogen
ethynylestradiol elicited changes in transcript levels of numerous genes belonging to
functional groups similar to those identified in fish studies, notably cell growth and
proliferation, cytoskeleton and extracellular matrix, oxidative metabolism, and lipid
metabolism and transport (Boverhof et al., 2004). Although there appears to be some
conservation of the biological response to estrogen among these diverse organisms, the
applicability of a specific estrogen transcriptional fingerprint across species is uncertain.

This study is the first to utilize a toxicogenomics approach to examine the hepatic
transcriptional response to a combined exposure of E2 and TAM. The first clinically
relevant SERM, TAM is a multifunctional drug with different actions at various target
tissues including agonist action in bone and liver, antagonist action in the breast and brain,
and pleiotropic activity in other tissues such as the endometrium (reviewed in Diel, 2002).
The selectivity of SERMs may occur via multiple mechanisms, including differential
binding of ER subtypes, recruitment of different coactivators or corepressors, and regulation
of upstream promoter regions of target genes (Diel, 2002; Dutertre and Smith, 2000; Shang
and Brown, 2002). This diversity of molecular mechanism of action can lead to a broad
range of transcriptional responses. In the present study, E2-induced changes in expression of
the 18 identified estrogen-responsive genes were decreased in animals co-treated with TAM,
indicating that the observed transcriptional changes likely involved interaction with the
hepatic ER. It is important to note that, in this study with a test concentration of TAM 10-
fold greater than that of E2, only a partial antagonism of the E2-induced transcriptional
profile was observed. A complete block of the E2-induced response may have been
observed if a higher concentration had been used or if TAM had been administered prior to
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the E2 treatment. Indeed, Marlatt et al. (2006) observed that a 250-fold excess concentration
of TAM was required to block completely the Vtg response to E2 in juvenile male trout. In
the present study, we also observed that in vivo exposure to TAM alone markedly increased
expression of several known estrogen target genes, including VTG1, VEP, and VHSV4.
This observation of dual, contrasting transcriptional activities is consistent with results of a
previous study in trout in which TAM elevated hepatic expression of VTG and ERa, yet
antagonized E2-induced expression of these genes (Vetillard and Bailhache, 2006).
However, plasma Vtg was not altered in juvenile trout that were exposed for 20 days to 500
ppm waterborne TAM (Marlatt et al., 2006); this difference could be related to the length or
route of exposure. One potential mechanism for dual transcriptional activities of TAM in
trout may be via interaction with different ER subtypes, of which there are two highly
expressed in trout liver (ERal and ERpB2) (Nagler et al., 2007).

Although DHEA has been reported to have weak affinity for the trout ER (Matthews et al.,
2000), the estrogenic response to DHEA was most likely due to its metabolism to estradiol,
rather than direct interaction of DHEA with the trout hepatic ER. Average blood plasma E2
concentration in trout fed DHEA was more than 200-fold higher than in control animals and
was nearly equivalent to plasma E2 levels in trout administered E2 directly. However, the
gene expression profile of DHEA exposure was quite distinct from that of E2, indicating that
DHEA may have effects on hepatic transcription independent of its E2 metabolite. Eighteen
transcripts were identified as uniquely regulated by this compound, including genes
involved in protein modification (sae2), cell growth (ccndl), metabolism (dlat), platelet
aggregation (cd9), ion binding and transport (icta and fth2), and others. In particular, DHEA
treatment markedly repressed expression of several genes belonging to the complement
pathway including C3-3, C3-4, C5, and to a lesser extent c1r/c1s. The complement system
plays a critical role in innate immunity, particularly in pathogen defense (Sunyer et al.,
2005). Perturbations of the complement system could lead to increased risk of infection and
has been associated with some diseases involving the immune system, such as asthma
(Wills-Karp and Koehl, 2005), lupus (Bao and Quigg, 2007), and HIV (Datta and
Rappaport, 2006).

Although the concentration of DES was selected based upon its reported higher affinity for
the trout ER compared to E2 (Matthews et al., 2000), results of this study suggest that the
hepatic transcriptional response to DES was generally lower in comparison to E2. Tissue
levels of the test chemicals were not measured; thus, it is possible that the reduced response
to DES could be related to the internal dose received. Another notable observation of the
present study was the general lack of a hepatic transcriptional response to DHT. Blum et al.
(2004) observed changes in expression of 11 hepatic genes in largemouth bass exposed to a
10-fold higher concentration of DHT than was administered in the present study. Although
the DHT dose chosen for this trout study was selected to match that of E2, this concentration
may have been insufficient to induce a robust transcriptional response in our animal model.

In the present study, gRT-PCR was used to quantify mRNA expression of genes selected to
represent patterns of estrogen induction, estrogen repression, and lack of response to
estrogen. In general, qRT-PCR results matched well with the microarray data. However, for
some genes such as VTG1, ctsD, and hpl, the extent of induction or repression was under-
estimated as measured by the OSUrbt array. This phenomenon has been observed in a
number of microarray studies (Boverhof et al., 2004; Hook et al., 2006) and is likely a
consequence of background and saturation signal intensity limitations. Thus, microarray
experiments are most useful for semiquantitative assessment of gene expression.

One noticeable inconsistency in the validation of our microarray results by PCR was for the
ESR2 gene. The 70-mer oligonucleotide sequence for this array feature aligned very near the
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3’ end of the sequence for ESR2 (accession AJ289883). Because a useful primer pair
surrounding this aligned sequence could not be designed, a previously published primer pair
targeting a different region of this gene was used for validation. Thus, the gRT-PCR assay
utilized in this study did not truly mimic the OSUrbt array measurement of ESR2 gene
expression. Moreover, it is possible that DNA for similar genes, such as one of the other ER
isoforms (Nagler et al., 2007) or a splice variant of the rtERa (Pakdel et al., 2000),
significantly cross-hybridized to this array feature. Hook et al. (2006) also had difficulty
reproducing microarray expression data for rainbow trout ER by qRT-PCR, which they
attributed to high affinity of the array sequence to a different ER isoform. The lack of
perfect correlation between microarray and gRT-PCR methodologies could present a
problem for experiments designed to identify novel genes in biological processes or for
hypothesis generation. However, when employed in risk assessment or environmental
monitoring studies, the overall pattern of gene expression corresponding to a particular
chemical class is of greater importance than the specific identity of each differentially
regulated feature.

The transcriptional profile identified for estrogen exposure in the present study can serve as
a biomarker of environmental exposure to xenoestrogens. The identification of 18 genes
commonly regulated by estrogens that represent a number of biological functions
demonstrates that a toxicogenomics approach to chemical evaluation can provide more
information about the potential mechanism of action of an unknown chemical exposure
compared to traditional single endpoint biomarkers. While a complete genome array may be
preferred in experiments designed for hypothesis generation, this economical, targeted
microarray allows for large-scale studies utilizing tens to hundreds of arrays and increases
the practical sample size of treatment groups allowing for more statistically robust
experiments. In future research, this targeted array and the transcription profile of estrogen
exposure obtained in this study will be used to categorize chemicals with unknown mode of
action and to address the issue of predictive utility of transcriptional fingerprints in animals
with unknown exposures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1.

Venn diagrams depicting overlap of differentially regulated genes among the experimental
treatments, which are grouped to compare E2-induced changes in hepatic gene expression to
genes regulated by (A) DES and DHEA treatments, (B) TAM and E2 + TAM and (C) DHT
and CORT. Numbers of genes that were significantly induced or repressed (underlined) by
experimental treatments are indicated.
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Pairwise correlation of E2-induced hepatic gene expression compared to (A) TAM, (B) E2 +
TAM, (C) DES, (D) DHEA, (E) DHT, and (F) CORT. Values are the geometric mean of
fold change (logy) compared to the control reference pool for each array feature (n = 3). All
array features are plotted pairwise between E2 and each experimental treatment to generate

correlation graphs. Pearson correlation (r) values are indicated for each comparison.

Toxicol Sci. Author manuscript; available in PMC 2010 August 9.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Benninghoff and Williams Page 18

| bl

= 1

DHEA E2 DES £#m TAM DHT CORT CON

VTG (X92804)
VTG1 (X92804)
VTG1 (X92804)
VTG1 (X92804)
VEP (AF231708)
ZRP (AF407574)

VHSV4 (AF483530)
|kk1 (BC051614)

TM4SF (AF281357)

tubb (AF255554)

thp (AY168633)

cd82 (CR760215)

KIf9 (XM_681155)
Sec61alphaB (AF346601)
UrdPase1 (XM_685152)
RTN9-A2 (BK005094)
RTN9-A1 (BK005095)
sarp (AF281358)

MHC1 (AF318187)

tram (BC063238)

calrl (DQ535486)

HSP47 (ABIQNGS)

GH1 (M22731)
Sec61alphaA (AF346600)

Syn2B (AY157995)
dmrts (DQ335470)
ESR1 (AJ242740)
ESR1 (AJ242740)
mbl (AM041212)
sdha (BC045885)
ctsD (US0321)
Sec61alphaB (AF346601)
Vig? (AF076620)
sdf2i1 (BC078401)
GP96 (BC063951)
pabpcia (BC099992)
sdha (AY391458)

mN3 (AF361366)
creld2 (BC055626)
CHTRI (AY550949)
CHTRII (AY550949)
D 92

galé (DQ317974)
hp (AF271114)

hp (AF271114)

hp2 (AF281330)

PGDS (AF281353)

fabp (AF281344)
h-fabp (U95296)
VHSV7 (AF396869)
wars (BC049526)

NDK (AF350241)
GTbalphaB (AF082027)
sultists (BCO75996)
gstt1 (BC056725)

C )
2gc:84202 (BCUST7441)
G5 (NM_001046552)
F281353)

PGDS (AF281353)
EPD-1 (M93697)
chmtxn (AF271114)
CYP2KS5 (AF151524)
tcpbp (AF281345)
tcpbp (AF281345)
C5 (AF349001)
dlat (AY188775)
dmrt2 (AF209096 )
Cdc2l1 (BC051012)
mmp (AB043536)
BMP7 (AY928083)
BRMS1L (BC097187)
BTD (AF527754)
MHC1 (AF2%356)
G4 (AF54
MGC86242 (XM 68391 3)
cd80 (XM_680491)
cat (BC051626)
fth3 (D86626)
ctsS (AY950578)
cirlcts (AJ519930)
CPSaselll (U65893)
coxBA1 (UB3980)
sae2 (BC055614)
cendd (BCO75743)
C3-4 (AF271080)

3.3 (U1753)

#f (AJ295167)

TRAF2 (AJ548839 )
-3.0 0.0 3.0 ang (XM_001339184)

Unsupervised cluster analyses of estrogen and non-estrogen-induced changes in hepatic
gene expression. Bidirectional hierarchical clustering analyses were performed using sample
data for either (A) all array features or (B) a subgroup of genes that were significantly
regulated in at least one treatment. Patterns of gene expression were clustered in two
directions, by gene (left tree) and treatment (top tree), using the Euclidean distance method
with average linkage. Log, fold change expression values are shown for each biological
replicate (n = 3) in panel A, and the mean log, fold change is shown in panel B. Expression
values are colored according to the indicated scale: red, up-regulation; green, down-
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regulation; black, unchanged expression. Abbreviations and GenBank accession numbers
are indicated for each gene in panel B.
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FIG. 4.

Principal components analysis was performed for all experimental treatments. PC1 and PC2
are shown and account for 84.2 and 3.2% of experiment variance, respectively. A group of
symbols representing non-estrogen treatments is indicated by a hatched gray circle, and a
group of estrogen treatments is indicated by a solid gray circle.
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FIG. 5.

Validation of treatment-induced changes in hepatic gene expression determined by
microarray analysis using qRT-PCR. Values from gRT-PCR (solid squares) are expressed as
mean fold change (log,) normalized to ACT and GAPDH and values from the OSUrbt
microarray (open squares) are expressed as mean fold change (log,) compared to the control
reference pool + SEM (n = 3) for select genes including (A) VTG1, (B) ctsD, (C) ESR1, (D)
ESR2, (E) CYP2KS5, (F) tcpbp, (G) C5, (H) hpl, (1) PGDS and (J) CYP1A. gRT-PCR and
array expression levels of the normalization genes are also shown in (K) ACT and (L)
GADPH. *indicates that the gRT-PCR expression value is significantly different ( p < 0.05)
from control as determined by a one-way ANOVA with Dunnett’s test for multiple
comparisons. Results of statistical analyses of microarray data are summarized in Tables 3—
5, and p values are provided in Supplementary Tables 2 and 3.
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Comparison of hepatic Vtg mRNA expression to blood plasma Vtg protein levels. (A)
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Hepatic Vtg gene expression was measured using the OSUrbt microarray. Values are mean
fold change (logy) compared to the reference pool + SEM (n = 3). (B) Blood plasma Vtg
protein levels are shown as mean fold change (log,) compared to control + SEM (n = 3);
equal volumes of blood plasma from four males from each of three tanks were pooled, as

was done for the liver samples in the microarray experiment. Actual Vtg plasma levels

ranged from 2.16 x 102 to 1.03 x 107 ng/ml (for CON and DHEA treatments, respectively).
Different letters indicate that treatments are significantly different from each other (p <

0.05) as determined by one-way ANOVA with Tukey’s test for multiple comparisons.
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