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Abstract

The niche model has been widely used to model the structure of complex food webs, and yet the ecological meaning of the
single niche dimension has not been explored. In the niche model, each species has three traits, niche position, diet position
and feeding range. Here, a new probabilistic niche model, which allows the maximum likelihood set of trait values to be
estimated for each species, is applied to the food web of the Benguela fishery. We also developed the allometric niche
model, in which body size is used as the niche dimension. About 80% of the links in the empirical data are predicted by the
probabilistic niche model, a significant improvement over recent models. As in the niche model, species are uniformly
distributed on the niche axis. Feeding ranges are exponentially distributed, but diet positions are not uniformly distributed
below the predator. Species traits are strongly correlated with body size, but the allometric niche model performs
significantly worse than the probabilistic niche model. The best-fit parameter set provides a significantly better model of the
structure of the Benguela food web than was previously available. The methodology allows the identification of a number
of taxa that stand out as outliers either in the model’s poor performance at predicting their predators or prey or in their
parameter values. While important, body size alone does not explain the structure of the one-dimensional niche.
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Introduction

Understanding the diversity and distribution of interspecies

interactions is a vital challenge for developing our understanding

of complex ecosystems. Ecological networks depict the complex

patterns of interactions between species and provide an important

tool for studying the diversity and complexity of ecosystems [1].

Feeding interactions, the primary mechanism by which energy

and resources are passed between organisms, are fundamental to

the functioning of ecosystems, and so networks of feeding

interactions, or food webs, have long been a central paradigm of

ecological thought [2]. The simplest representation of a food web,

in which both species and interactions between species are

represented as present or absent from the system, ignores many

details but captures the topological structure related to the energy

transfer processes occurring in the system. These binary food webs

provide a tractable representation of ecological complexity, and

their structure has important consequences for many aspects of

ecosystem function, including the relationship between network

complexity and system stability [3], their robustness and resilience

to species extinctions [4] and their resilience in the face of

environmental change [5].

One of the fundamental challenges in studies of the structure of

food webs is been determining whether there are topological

patterns that are universal across different food webs and if these

patterns exist, determining the common processes that structure

different food webs and give rise to these universal patterns. A

wide variety of approaches have been used to study the

mechanisms giving rise to regularities in complex food webs.

These include models coupling evolutionary and population time

scale [6,7], models of food web assembly [8], studies of the effects

of body size on the persistence of species in food webs [9], and

models of network topology including models grounded in

mechanistic concepts such as foraging theory [10,11], and the

stochastic structural food web models that are the focus of this

work.

Two important ideas were used in early food web studies to

interpret patterns seen in network structure. First, the idea of the

ecological niche [12], in which species consume resources which

fall within a restricted volume of a multi-dimensional space of

ecological trait values. Early food web studies [13,14] showed that

in many smaller networks, species can be ordered such that all

diets fall into a contiguous interval on a single dimension,

suggesting that niche space can often be collapsed to a single

dimension. Second, the idea that species are ordered into a

hierarchy, with predator species consuming only those prey that

are at or below the predator’s position in the hierarchy. This is the

driving principle constraining species diets in the cascade model

[15]. A one-dimensional niche with interval diets and slightly

relaxed hierarchical ordering were combined in the simple yet

successful food web niche model [16]. Together with the

important choice of the distribution of diet widths [17], these

ideas comprise the essential elements of the niche model. Several

variants of the niche model have since been proposed
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[18,19,20,21], but depending on the methods used to compare the

model and the empirical data, their performance is not very

different from that of the original niche model [18,21].

While the niche model has provided a reasonably successful

model for the structure of a range of food webs, there has been

little work exploring the ecological meaning of the single niche

dimension. Early work on understanding the role of body size in

determining species’ diets [22,23] suggested that body size

ordering, with species only consuming prey smaller than

themselves, drives the hierarchical structure that is one of the

key assumptions of the niche model. Some other traits that

potentially play a role, such as gape, mobility and range and

metabolic traits, are typically highly correlated with body size.

This has led to frequent speculation [11,16,18,24,25] that the

niche axis is closely or directly related to body size. Recently,

several studies have highlighted patterns in the structure of

empirical food webs that are strongly related to the body sizes of

species [25,26]. The importance of body size has also been

highlighted in several studies which show that populations in size

structured food webs are more likely to be stable or persistent

[9,27,28]. While a recent model based on the niche model

explicitly assumes that species are ordered by their body size [11],

a relationship between body size and niche model parameters has

not yet been formally demonstrated, and the extent to which body

size alone or in combination with other species traits determines

food web structure is not yet well understood. Given the success of

the niche model and its variants, determining which traits underlie

the niche axis in the family of single dimensional niche-structured

food web models remains a critical open question. Both the

placement of species on the niche axis and the rules determining

the width and placement of diets on the axis need to be better

understood.

In part, the lack of evidence about the relationship between

species’ niche parameters and their biology (whether body size or

some other aspect) reflects the way in which the niche model has

been applied. To date, the niche model has usually been employed

using what might be called a forward modelling approach: (i) the

model structure is assigned; (ii) species are assigned parameters

randomly from arbitrarily -assigned distributions; (iii) the resultant

model is used to generate artificial food webs; (iv) aggregate

features of the artificial webs are compared to data. Although this

approach has proved useful, it prevents the detailed species-by-

species analysis that is needed to uncover the biology underlying

species’ parameters. In contrast, in this study we use an inverse

modelling approach: (i) the model structure is assigned; (ii) this

structure is formally confronted with data using likelihood-based

statistics; (iii) the result is a set of estimated niche model parameters

for every species, which together describe a distribution, across all

species, of each niche model parameter; (iv) the parameters can

then be compared, species-by-species, with aspects of biology, and

the distributions of the parameters can be compared with previous

assumptions about these distributions.

To enable this inverse approach, we developed a simple

probabilistic variant of the niche model. This model, like the

original niche model, has a single niche dimension and three

parameters associated with each species: the species’ position on

the niche axis (niche position), the position of its diet on the niche

axis (diet position) and the width of its diet on the feeding axis

(feeding range). Using standard statistical techniques, we fit the

probabilistic niche model to a widely studied empirical data set

known to be reasonably well-described by the niche model, and

which has estimates of body sizes for all taxa. We then examine the

best-fit (MLE) parameter values of the model to better understand

the reasons for the successes and failures of the niche model, and

to interpret the meaning of the various species parameters,

particularly in how they relate to body sizes in the food web. We

also explore where model predictions are good or where there is a

large mismatch between model and data on a species-by-species

basis. This approach allows us to perform a much more detailed

comparison between an observed food web and a stochastic food

web model than has previously been performed.

Methods

Probabilistic Niche Model
A binary food web with S species and L links can be

represented as an S6S connection matrix where entry i,j

represents a possible link in the food web and is either 1 (species

i eats species j) or 0 (species i does not eat species j). The original

formulation of the niche model (Williams and Martinez 2000)

makes a prediction for each link i,j in the food web of either 1 or

0, depending on whether the prey species j lies within the feeding

range of the predator species i (Fig. 1). This formulation of the

model cannot readily be employed within a likelihood-based

context for three reasons. First, the formulation is only

probabilistic when an ensemble of parameter values is consid-

ered, i.e., for a particular parameter set it predicts that i eats j or

does not with certainty. Second, some links cannot be reproduced

by the niche model (their probability is zero) [18], whereas

likelihood-based statistical methods require that, for any param-

eter set, the model returns a non-zero probability that i eats j, for any

link i, j (see eq. 2 below). Third, under the original formulation,

the predictions of the model are discontinuous against the

parameters. That is, the prediction for a given link i, j, can go

through a sudden qualitative change (1 to 0, or 0 to 1) from an

infinitesimal quantitative change in the value of one or more

parameters. This occurs, for example, when the feeding range of i

is increased just enough to include the niche position of j. Such

discontinuities make parameter estimation hard in practise.

We made minimal changes to the Williams and Martinez (2000)

formulation of the niche model to facilitate likelihood-based

analysis (Fig. 1). We used a Gaussian formulation for the

probability that species i eats species j:

P(i,j,h)~a exp {
nj{ci

ri=2

� �2
( )

ð1Þ

where P(i,j,h) is the probability that species i eats species j given a

particular parameter set h where h~ n1:::nS,c1:::cS,r1:::rSf g; the

parameter nj is the niche position of species j; the parameter ci is

the optimal diet position of species i; the parameter ri is the feeding

range of species i ; and the parameter a is the probability that i eats

j, when j is exactly on i’s feeding optimum (i.e. when nj~ci). In

principle, any unimodal function could be used in place of the

Gaussian.

Under this formulation: (i) there is always a non-zero probability

that any species i eats any species j; (ii) this probability is higher

when nj is close to ci; (iii) the rate that the probability declines as ci

gets further from nj , is set by the feeding range ri; (iv) while the

model imposes niche structure, there are no constraints on ci, so

the hierarchical structure of the niche model is not imposed. In

principle, the parameter a could take any value between 0 and 1

and could also vary from species to species; however, in the spirit

of the original niche model we set a to a value very close to 1.0 (we

used 0.9999 – a value of exactly 1.0 would have caused numerical

errors) for all species. When a was included as a free parameter

(results not shown), its estimated value was very close to 1.0

Probabilistic Niche Model
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anyway, and the qualitative conclusions were no different from

those presented here.

Given the evidence suggesting that diets are strongly

controlled by the relative body sizes of predators and prey,

we created a version of the probabilistic niche model that

we call the allometric niche model, in which niche positions ni

are not free parameters, but instead are functions of species’ body

masses. To constrain ni to range from 0 to 1, we set

ni~(log mi{log mmin)=(log mmax{log mmin) where mi is the

body mass of species i and mmin and mmax are the minimum

and maximum of these values observed within the entire set of

species. The parameters ri and ci remain free parameters as in the

probabilistic niche model, and so the allometric niche model has

the parameter set h~ c1:::cS,r1:::rSf g.
We find the maximum likelihood set of parameters for the

probabilistic and allometric niche models given the observed

feeding relationships in the data. The set of model parameter

values for a network with S species is given by h, while X is the

data, i.e., X is an S6S connection matrix containing an

observation Xij for each link i, j (Xij = 1 means i eats j; Xij = 0

means i does not eat j). We use simulated annealing [29] to find the

maximum likelihood parameter set where the log-likelihood is

defined as:

‘(XDh)~
X

i

X
j

ln
P(i,jDh) if Xij~1

1{P(i,jDh) Xij~0

� �
: ð2Þ

The end results of the analysis of the model are: (i) a single vector h
that gives the best fit to the data referred to as the maximum

likelihood (MLE) parameter estimates; (ii) a set of model

predictions (evaluated at the MLE) to compare with observations;

(iii) a measure of overall goodness-of-fit including a penalty for

extra parameters (AIC) [30] with which to select between different

models. This basic methodology, also applied in other recent food

web studies [18,31], is widely used in other areas of ecology [32].

As a simple measure of goodness of fit comparable with previous

work, we calculated the expected fraction of observed links (i.e.

those links i, j where Xij = 1 in the connection matrix) correctly

predicted by the model when realized at the MLE. The expected

number of links is very close to the observed number of links so this

serves as an easily understood measure of the overall performance

of the model [11]. Note that if the total number of links predicted

by the model is significantly different from the total number

observed, this is not a useful measure of model performance – for

example a naive model that predicts every link is present always

predicts every observed link correctly, but at the expense of

also incorrectly predicting every non-existent link. The ex-

pected number of correctly predicted links is defined as:

N1(XDh)~
P

i

P
j

XijP(i,jDh) and the expected fraction of links

predicted correctly is fL = N1/L. We also computed the fraction of

links correct for each row and column in the connection matrix in

order to compute the fractions of each species’ predators and prey

correctly predicted. The expected number of prey (resource) links

is nCi(XDh)~
P

j

XijP(i,jDh) while the expected number of predator

(consumer) links is nRi(XDh)~
P

j

XjiP(j,iDh). Then the fractions of

predator and prey links correctly predicted are fRi = nRi/Ri and

fCi = nCi/Ci respectively, where Ri and Ci are the number of

resources and consumers of species i.

The values of c and r for primary producers are fixed at c = 0

and rR0 rather than being free parameters. This forces all their

link probabilities to be very small. Similarly, the r of species that

consume a single prey are fixed – the link probabilities of a

specialist will closely follow the empirical data as long as c is equal

to the n of its prey and rR0.

Data
The study was conducted using the Benguela food web [33], a

pelagic marine food web with S = 29 taxa, which in this food web

typically represent groups of functionally similar organisms. There

are L = 203 links, therefore L/S = 7.0 links per species and directed

connectance C = L/S2 = 0.24. This food web has been widely used

in other food web model studies [11,16,18,20,24] as its structure is

known to be reasonably well-predicted by the niche model and its

variants, and estimates of average body mass are available for all

taxa [33]. Nevertheless, it suffers from some of the problems

typical of food web data [34], in particular uneven taxonomic

aggregation, with taxa quite finely resolved among the fish, but

much more coarsely resolved among other organisms.

Results

Fit to observations
On a link-by-link basis, the model reproduced the food web

topology quite well (Fig. 2). The expected total number of links

produced by the MLE parameter set of the probabilistic niche

model is 197.0, 97% of the 203 links in the empirical data set. On

average, the probabilistic niche model reproduced 79.7% of the

observed links and 90.6% of the connection matrix entries (0 or 1)

correctly. In contrast, a random model constrained to have the

same connectance as the empirical data would reproduce a

Figure 1. Diagram of original and probabilistic niche models. Diagram of the original niche model, in which species i consumes all species
within the range ri, and the probabilistic niche model, in which the probability that species i consumes species j is defined by the probability
P(nj, ri, ci).
doi:10.1371/journal.pone.0012092.g001

Probabilistic Niche Model
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fraction C (24%) of the links and 122C2C2 (63.4%) of the

connection matrix entries correctly. The maximum log-likelihood

of the probabilistic niche model ‘= 2105, and its AIC = 385,

while the maximum log-likelihood of the random model

‘~L ln pz(S2{L)ln(1{p)~{465 when p = L/S2, and its

AIC = 932. The log-likelihood of the minimum potential niche

model [18], the best-performing model to date, is ‘= 2214, and

the model has S+3 parameters, giving AIC = 493 (results are

summarized in table 1).

Visual comparison of predictions versus observations (Fig. 2) and

the species-by-species fractions of links correctly reproduced (Fig. 3)

reveals that model-data mismatch is unevenly distributed across the

connection matrix. The model falls short in its representation of the

diets of two specialist species (fR #0.65 for other pelagic and chub

mackerel), and the fraction of predators of several relatively

invulnerable species (fC #0.65 for gelatinous zooplankton, kob, bacteria,

snoek, and sharks) and one highly vulnerable species (macrozooplankton).

Prediction of the predators of gelatinous zooplankton is particularly

poor, with fC = 0.27. What these model-data mismatches share is the

non-intervality of the predator’s diets. That is, because of its structure,

the niche model is not able to reproduce the diets of predators that

consume non-interval sets of prey. The model, however, does show

that the non-intervality of predators’ diets usually occurs toward the

edges of their feeding ranges, suggesting that predators with non-

interval diets still tend to have a ‘core’ interval diet composed of prey

with nj values closer to the predator’s ci value (Fig. 2).

Correlations among parameters
Analysis of parameter values reveals that n, c, and r are

positively correlated (Table 2), with the exception of a few outliers

seen in scatterplots of variable pairs (figures 4). Outliers include

benthic carnivores, hake, squid and sharks in the n vs. c plot

(Fig 4a) and sharks in the n vs. r plot (Fig. 4b). Figure 4a shows

that the model is hierarchically structured, with almost all ci,ni,

while figure 4c shows that there is an exponential relationship

between c and r.

Figure 2. Probabilistic niche model results for the Benguela food web. Feeding links in the empirical data set and feeding probabilities in
the probabilistic niche model for the maximum likelihood estimate (MLE) parameter set. On the x-axis, predators are ordered by their estimated (MLE)
ci values; on the y-axis, prey are ordered by their estimated (MLE) ni values. Model predictions, calculated at the MLE, are shown as the grey circles: the
area of each circle is proportional to P(nj, ri, ci), the probability that i eats j. Apparent missing grey circles simply correspond to very low values of P(nj,
ri, ci). Observations are shown in black: a black circle is shown for those feeding relationships that have been observed. A match between large grey
circles, and the black circles, implies a close match between model and data. Two predators with poorly predicted prey (expected fraction of prey
links #0.65), other pelagic and chub mackerel, are labelled with arrows. Six prey species with poorly predicted predators (expected fraction of predator
links #0.65) are labelled with arrows: from bottom to top, gelatinous zooplankton, bacteria, macrozooplankton, snoek, sharks and kob.
doi:10.1371/journal.pone.0012092.g002

Probabilistic Niche Model
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We found no significant correlation between the ratio x = r/n,

and n; or the ratio c9 = c/n, and n (Table 2). This suggests that the

strong correlations among n, c and r result primarily from both the

feeding range r and feeding optimum c scaling linearly with niche

position n. Both features were included as a priori assumptions in

the original niche model, but have been extracted from the data

set studied here by the inverse approach.

The correlations between the parameter pairs suggest a large

amount of redundancy in the observed web; that is, species occupy

only a subset of the possible parameter combinations, such that

much of the food web structure would be retained by a model with

fewer parameters. For example, we found that 80% of the

interspecific variation in parameters was captured by the first PCA

axis (details of PCA analysis not shown), suggesting that in

principle a model allowing only one free parameter per species

would retain most of the food web structure. We implemented a

family of model variants in which one or both of ci and ri are

functions of ni, or ri is a function of ci, leading to a significant

reduction in the number of model parameters. Linear, exponential

and power of functional forms were tried, with the best results

when a linear relationship was used for r and c vs. n, ci~c0zc1ni

and/or ri~r0zr1ni, and exponential for r vs. c, ri~r0er1ci , where

c0, c1, r0 and r1 are free parameters. This is not surprising given the

relationships apparent in figure 4. Results are given in Table 1.

The models generally performed quite well: all four restricted-

parameter models outperformed the minimum potential niche

model, and the model where ri is an exponential function of ci

slightly outperformed the fully parameterized model.

Distributions of parameters
The original niche model assumes certain distributions for n, x

and c. Here we test whether the distributions of the parameters of

the probabilistic niche model follow those assumed by the niche

model. In the original niche model, species’ niche positions are

assumed to be uniformly distributed between 0 and 1; the

distribution of n of the probabilistic niche model is well-explained

by a uniform distribution (K-S test, p = 0.18). The original niche

model sets ri = xini where xi is drawn from a beta distribution with a

mean of 2C. In the probabilistic niche model, the upper limit of r is

not constrained and the distribution of ri is well-explained by an

exponential distribution (distribution scale b = 0.73, K-S test

p = 0.31). An exponential distribution of x in the original niche

model has previously been shown to be vital for reproducing many

features of empirical food webs [17]. The original niche model also

constrains ci to values less than ni, and draws ci from a uniform

distribution across its range of possible values. We therefore tested

the distribution of c9, and after excluding the three species with

c9.1, (gelatinous zooplankton, bacteria and hake), found that the

distribution of c9 is not well-explained by a uniform distribution

(K-S test p = 0.004).

Body mass
All three parameters were positively correlated with body mass

(Fig 5, Table 2), such that larger species tend to have higher n,

higher c, and higher r values. Exceptions to this pattern (Fig 5)

include gelatinous zooplankton and benthic filter feeders for n vs.

body mass, and benthic carnivores for c vs. body mass. A log-log

plot (figure 5a) clearly shows that apart from the two outliers, the

relationship between n and body mass closely follows a power law.

The strong correlations between the parameters and body mass

motivated the development of the allometric niche model, which

successfully predicted 68% of the links in the network and had

AIC = 535 compared to AIC = 385 for the probabilistic niche

model. The lower AIC of the probabilistic niche model shows that

the added freedom in ni values in this model significantly enhances

its ability to reproduce the empirical food web studied here

compared to the allometric niche model, which has niche position

equal to log of body mass.

Discussion
The overall fit of the probabilistic niche model to the Benguela

food web is significantly better than that of any of the models

tested in two recent studies that computed the likelihoods of

various food web models, including the best-performing model to

date [18,31]. This improved performance occurs because the way

in which the probabilistic niche model allows gaps in the exactly

interval diets of the original niche model more closely mirrors the

niche structure of the empirical data than the non-interval niches

used in the minimum potential niche model or other niche model

variants. In particular, the probabilistic niche model produces

niches that are high probability and therefore highly contiguous in

the centre of the niche and low probability and therefore more

fragmented toward their margins, rather than being of uniformly

lower probability throughout their range [18,21]. In addition,

outside the high-probability centre of the niche, feeding probabil-

ities in the probabilistic niche model decline continuously with

distance from the feeding range centre. This is unlike feeding

probabilities in the generalized niche model [20] or in a niche

model with randomly placed non-interval links [18], which remain

constant even for species far from a predator’s high-probability

niche centre.

The original niche model places three important constraints on

species diets – (1) they lie on a single-dimensional niche; (2) they fall

in a contiguous range of that niche dimension and (3) species are

hierarchically ordered, so there is an arrangement of species where

all diet centres fall below their position on the niche axis. The model

has also assumed specific probability distributions for feeding ranges

and for diet positions on the niche axis. The probabilistic niche

model similarly assumes one dimensional, near-contiguous diets,

and the best fit model parameters nearly have the hierarchical

structure of the niche model, with only the three lowest-n species

having c.n, and one higher-n species (hakes) having c slightly larger

than n. The probabilistic niche model separates the assumptions of

niche and hierarchy, rooted in ecological principles, from the

assumptions of the probability distributions of the species’

parameters. For the Benguela data set, the distribution of n is

Table 1. Comparative performance of models.

Model Params ‘ AIC Links Entries

PNM 87 2105 385 0.797 0.906

n, c free; r = f(c) 60 2141 402 0.734 0.883

n, c free; r = f(n) 60 2151 421 0.734 0.880

n, r free, c = f(n) 60 2174 469 0.754 0.875

n free, c = f(n),
r = g(n)

33 2205 475 0.712 0.855

ANM 58 2209 535 0.681 0.845

MPNM 32 2214 493

Params is the number of model parameters; ‘ is maximum log-likelihood; Links
is the fraction of links reproduced by the model; Entries is the expected fraction
of connection matrix entries reproduced by the model. PNM is probabilistic
niche model with ni, ci and ri all free parameters. ANM is the allometric niche
model. MPNM is the minimum potential niche model [18]. Other models are
variants of the PNM with one or two parameters a linear function of another
parameter.
doi:10.1371/journal.pone.0012092.t001

Probabilistic Niche Model
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well-fitted by a uniform distribution and the distribution of x = r/n is

well-explained by an exponential distribution [17] but the

distribution of c9 = c/n is not well-fitted by the uniform distribution

assumed in the original niche model. In future studies, it will be

interesting to test whether some data sets that are not well-explained

by the original niche model are well-explained by the probabilistic

niche model, and so are still constrained by niche and hierarchy but

have trait distributions very different from those assumed in the

original niche model.

The strong correlations between the parameters of the

probabilistic niche model and species’ body size (Fig. 5) and the

relative success of the allometric niche model provide a biological

explanation for the fact that the three parameters are so closely

correlated among species (Fig 4) and for the hierarchical nature of

the food web (Fig. 4 top). They show that in this food web, body

size or other traits highly correlated with body size strongly

constrain species’ diets and that the frequent conjecture that the

axis of the niche model maps onto body size is largely justified for

this data set. Recent results [11] suggest that while body size plays

an important role in determining the niche structure of some food

webs, including the Benguela web studied here, it plays a much

less important role in other food webs. In those food webs, we

Figure 3. Fraction of links reproduced correctly for each species. (a) Number of prey versus fR, the expected fraction of prey links reproduced
correctly and (b) Number of predators versus fC, the expected fraction of predator links reproduced correctly.
doi:10.1371/journal.pone.0012092.g003

Probabilistic Niche Model
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would not expect body size to be so strongly correlated with niche

model parameters. It is likely that this hierarchical relationship

occurs in part because the Benguela food web lacks parasites,

which would break up the consistent pattern of large taxa

consuming smaller taxa.

The significantly worse performance of the allometric niche

model compared to the probabilistic niche model shows that body

size, while very important in determining food web structure, is

not the only species trait determining the structure of feeding

niches. The non-interval nature of diets at the margins of their

feeding ranges suggests that either a small number of additional

trait dimensions [18,35] or stochasticity (effectively very high

dimensionality) is needed to capture species’ diets more accurately.

The recent allometric diet breadth model (ADBM) [11] assumes

that species lie on a one dimensional niche (as in the niche model)

and that this niche dimension maps onto body size. For the

Benguela food web, the best-performing version of the ADBM,

with a ratio handling time function, successfully predicted 57% of

the links in the food web. In contrast, the probabilistic niche model

predicted 80% of the links and the allometric niche model

predicted 68% of the links. Like the two models presented here,

the ADBM assumes a hierarchically organized, single dimensional

niche with near-contiguous diets. The ability of the probabilistic

and allometric niche models to correctly represent a much larger

fraction of links than the ADBM suggests that the various

assumptions and scaling approximations used to determine

foraging parameters in the ADBM are not optimal. In contrast,

a best-fit ADBM, derived using the inverse approach employed

here, could provide insight into the empirical relationship between

body mass and foraging parameters.

The probabilistic niche model produces species-by-species

estimates of parameters, which allows for a fine-grained

analysis of the network. A number of taxa stand out as outliers

either in the model’s poor performance at predicting their

predators or prey (figures 2 and 3) or in their best-fit model

parameter values (figures 4 and 5). Species with parameter

values that are outliers are not necessarily poorly predicted by

the model, but parameter value outliers do make difficult the

creation of accurate, less parameter-rich models in which one

parameter is a simple function of other parameter values. The

results for the less-parameterized models in table 2 show the

importance to overall model performance of the outlier

species. The sharks, hake and squid are outliers in the ni vs. ci

plot (Fig 4a) and this lead to the worse performance of the

model with ni and ri free and ci a linear function of ni. Similarly,

sharks are outliers in the ni vs. ri plot (Fig. 4b) and this lead to

the worse performance of the model with ni and ci free and ri a

linear function of ni.

Table 2. MLE parameter Spearman rank correlations and p
values.

Parameters and variables Correlation p

n, c 0.872* 6.89610210

n, r 0.755* 2.1761026

c, r 0.843* 9.3561029

n, body mass 0.883* 2.23610210

c, body mass 0.862* 1.8061029

r, body mass 0.826* 3.4861028

n, x 0.166 0.388

x, body mass 0.288 0.130

n, c9 20.137 0.477

c9, body mass 20.000739 0.997

Entries marked with * have significant correlation (p,0.001) while all other
entries have p.0.05 when corrected using false discovery rate control ([36]).
doi:10.1371/journal.pone.0012092.t002

Figure 4. Relationships between maximum likelihood param-
eters. (a) Feeding range ri and (b) centre of feeding range ci versus
niche position ni and (c) ri versus ci for the MLE parameter set of the
probabilistic niche model.
doi:10.1371/journal.pone.0012092.g004
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These outliers can be understood as occurring either due to

their unique biology or limitations in the data. For example,

sharks consistently stand out as exceptional consumers. They

are highly general and so have an unusually broad feeding

range r, placed relatively high on the niche axis (large c)

(figure 4a and b). However, despite their unusual niche range

and position relative to their location on the niche axis, their

range and position fall within the exponential c-r relationship

shown in figure 4c. Thus, while its parameter values are

outliers, the sharks’ diet, given those parameters, is reasonably

well-predicted by the model. An important question for future

studies is whether sharks stand out as outliers in terms of their

parameter values or generality in other food webs.

The diet of chub mackerel is poorly predicted largely because there

are gaps in its diet that are not present in the diets of other species

(figure 2, fR = 0.65 in figure 3a). These gaps occur because, unlike

several other predatory fish in this food web, it consumes round

herring and anchovy but not lightfish and hake. This contrasts with the

diet of the similar- sized horse mackerel (the taxon to the left in

figure 2), which does not consume either round herring and anchovy. A

check of online resources (fishbase) shows both mackerel listed as

having similar diets, so it is not clear why they have different diets

here, especially since taxa in this food web are generally broadly

aggregated groups of organisms. It is beyond the scope of this work

to further determine whether the poorly-determined diet of round

herring is due to limitations in the data set or specific features of its

biology.

The benthic carnivores taxon stands out by having a low niche

position relative to its niche value and body size (figure 4a and 5b)

and a narrow feeding range relative to its size (figure 5c). It is also

an outlier in terms of its role in the food web. It only consumes the

filter feeder taxon, which has a low niche value relative to its body

size (figure 5a), and the filter feeder taxon is a basal species in this

food web, with no diet specified, despite their role in the ecosystem

as a consumer. The unusual niche values associated with both taxa

likely occur in part because these taxa are particularly highly

aggregated and have poorly resolved diets. Habitat heterogeneity

is also potentially driving these taxa’s niche values - they are the

only benthic taxa in an otherwise pelagic food web. Other taxa

that stand out as outliers are gelantinous zooplankton and macro-

zooplankton. Gelatinous zooplankton stands out as a taxon whose prey is

poorly predicted by the model (figure 2 and 3); it also has a very

low niche value n relative to its body mass (figure 5a).

Macrozooplankton stands out as a taxon whose prey and predators

are both poorly predicted by the model (figure 2 and 3). Of the

relatively vulnerable taxa (those with number of predators greater

than L/S), its predators are most poorly predicted by the model.

The probabilistic niche model, combined with inverse methods

for comparing model and data, allows far more detailed

comparisons between the model and the empirical data than

has been possible before. The best-fit parameter set provides a

significantly better model of the structure of the Benguela food

web than previously available. Since parameters are estimated for

each species, it is possible to identify specific species whose diets

and consumers are well-predicted by the model and ones that are

not as well-predicted, and connect those to details of the biology

or idiosyncrasies of the data set. It is also possible to extract

parameter distributions that best-fit the data, rather than

assuming them a priori, as has been done in most previous

structural food web models. This level of insight into food web

structure is novel and allows the abstractions of the model and

ecological details of empirical data to be drawn closer together

than before.
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Figure 5. Relationships between maximum likelihood param-
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parameter set of the probabilistic niche model.
doi:10.1371/journal.pone.0012092.g005
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