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Abstract
Case-control genome-wide association studies provide a vast amount of genetic information that
may be used to investigate secondary phenotypes. We study the situation in which the primary
disease is rare and the secondary phenotype and genetic markers are dichotomous. An analysis of
the association between a genetic marker and the secondary phenotype based on controls only is
valid, whereas standard methods that also use cases result in biased estimates and highly inflated
type I error if there is an interaction between the secondary phenotype and the genetic marker on
the risk of the primary disease. Here we present an adaptively weighted method that combines the
case and control data to study the association, while reducing to the controls only analysis if there
is strong evidence of an interaction. The possibility of such an interaction and the misleading
results for standard methods, but not for the adaptively weighted or controls only approaches, are
illustrated by data from a case-control study of colorectal adenoma, in which the secondary
phenotype is smoking. Simulations and asymptotic theory indicate that the adaptively weighted
method can reduce the mean square error for estimation with a pre-specified SNP and increase the
power to discover a new association in a genome-wide study, compared to an analysis of controls
only. Further experience with genome-wide studies is needed to determine when methods that
assume no interaction and gain precision and power, thereby can be recommended, and when
methods such as the adaptively weighted or controls only approaches are needed to guard against
the possibility of non-zero interactions.
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1 INTRODUCTION
The genome-wide association study (GWAS) is a powerful tool to identify genetic
associations with a disease. A GWAS may also provide information on secondary
phenotypes that are measured for all subjects. Added value could be gained from a GWAS
by studying the association between genes and the secondary phenotypes.

When the disease in a GWAS is rare, the controls could be regarded as a random sample
from the general population, and they could be used for estimating the association with a
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secondary phenotype. However, if the disease is associated with both the SNP and the
secondary phenotype, including cases may introduce bias in the estimation of association,
even when the disease is rare.

Lin and Zeng [2009] studied a likelihood-based method that combines the cases and controls
efficiently to analyze secondary phenotypes in GWASs. This method is comprehensive
because it covers both quantitative and dichotomous secondary phenotypes and both rare
and non-rare disease. However, the maximum likelihood estimates are only unbiased and
statistically efficient under the assumption that there is no interaction between gene and
secondary phenotype effects on disease risk. In their paper, they stated that all standard
methods based on controls only, cases only, and the combination of cases and controls yield
unbiased estimates if the disease is rare. However, this is not true if there is an interaction
between gene and secondary phenotype effects on disease risk.

The purpose of this study was to develop a procedure that can use cases as well as controls
to increase efficiency without introducing bias. We focused on the important special
situation in which the original disease is rare and the secondary phenotype and genetic
marker are dichotomous. We investigated the performance of standard methods and the
maximum likelihood estimation (MLE) method discussed in Lin and Zeng [2009] while
allowing for the interaction. We found that the MLE method is equivalent to the analysis of
controls only and does not provide additional efficiency, if one includes an interaction in the
model.

We proposed an adaptively weighted method that combines the case and control data to
estimate the association with reduced mean square error, based on a balance between bias
and variance. In the presence of strong interaction, this method reduces to the controls only
analysis. Both simulated and real data examples suggest an advantage of the proposed
adaptively weighted estimator in both estimation and gene discovery. This research also
provides guidance on the validity of the various proposed approaches for analyzing
secondary phenotypes.

The paper is organized as follows. In the Methods Section, we describe the study setting and
data and present the different analytic methods, including our adaptively weighted method.
In the Results Section, we illustrate the performance of different methods on colorectal
adenoma case-control data, for which there is an interaction between gene and secondary
phenotype (smoking) on disease risk. In simulations, we evaluate the properties of estimates
and tests from the different methods. We also illustrate the promising power of the
adaptively weighted method in large-scale SNP discovery GWAS. Conclusions are in the
Discussion Section and technical details are in the Appendix .

2 METHODS
2.1 STUDY SETTING AND NOTATION

We consider the simple but important scenario of an unmatched case-control study with a
rare disease, dichotomous genetic marker G, and dichotomous secondary phenotype X. Let
D = 1 or 0 denote the diseased or non-diseased state for each individual. Let G = 1 or 0
according as an individual carries at least one SNP allele of interest or not. Let X = 1 or 0
denote whether the individual has or does not have the secondary trait. n0 and n1 are the
number of controls and cases, respectively. The data can be represented as in Table 1.

Let r0 = (r000, r001, r010, r011) and r1 = (r100, r101, r110, r111) denote the case and control
cell frequency vectors, respectively. Let p0 = (p000, p001, p010, p011), where p011 =
1−p000−p001−p010, and p1 = (p100, p101, p110, p111), where p111 = 1−p100−p101−p110,
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denote the unknown true cell probabilities in the underlying case and control populations,
respectively. The observed cell frequencies can be viewed as realizations from two
independent multinomial distributions, namely, r0 ~ Multinomial(n0,p0) and r1 ~
Multinomial(n1, p1).

One can use the logistic regression model for the dichotomous secondary phenotype

(1)

When the disease is rare, the dependency of D on G and X can be modeled as

(2)

We are interested in the inference regarding β1, which represents the log odds ratio of G and
X in the general population, namely exp(β1) = ORGX.

2.2 STANDARD METHODS
1. THE CONTROL-ONLY ESTIMATOR—The controls can be regarded as a random
sample of the general population if disease is rare, and therefore the odds ratio of G and X

among the controls estimates the odds ratio in the population, namely . The
MLE of β1 using controls only is given by

This estimator is nearly unbiased if the disease is rare. From standard asymptotic theory,

. The chi-square test of association is based on the

Wald statistic .

2. THE CASE-ONLY ESTIMATOR—The estimator of β1 using cases only is given by

This is not unbiased unless δ12 = 0 in model (2), because the odds ratio of G and X among
the cases is

(3)

The variance estimate of the case estimator is , which

can be used in the Wald statistic .

3. WEIGHTED COMBINATION OF INDEPENDENT CASE AND CONTROL
ESTIMATORS—When there is no interaction between G and X in model (2), both cases

Li et al. Page 3

Genet Epidemiol. Author manuscript; available in PMC 2010 August 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and controls can be used to estimate β1. Combining the case and control estimates by inverse
variance weighting leads to

where . By ignoring the variation in  and , we estimate

, which can be used in the Wald statistic .
Although  is more efficient than , it is only unbiased when δ12 = 0.

2.3 MAXIMUM LIKELIHOOD ESTIMATION (MLE) METHOD
Lin and Zeng [2009] used the maximum likelihood estimation method to analyze secondary
phenotype data based on the retrospective likelihood function,

(4)

Using the rare disease assumption with a dichotomous secondary phenotype, we found the
following results from this likelihood:

Result 1—Using the saturated disease model (2), the maximum likelihood estimator

, and the maximum likelihood method does not use any information from the
cases. (See Appendix for proof.)

Result 2—Lin and Zeng [2009] assumed δ12 = 0 in model (2). Under this assumption, and
for a rare disease,  has only very slightly smaller asymptotic variance than . For

example, for δ12 = 0 and β1 = 0.25, when n1 = n0 = 1, 000,  and

; when n1 = n0 = 10, 000,  and

.

2.4 ADAPTIVELY WEIGHTED METHOD

To capture some of the efficiency of  or  while avoiding the bias in these estimates
that results when δ12 ≠ 0, we proposed an estimator that down-weights the contribution from
cases as the evidence against δ12 = 0 increases.

Motivated by an empirical Bayes shrinkage estimator for gene-environment interaction
[Mukherjee and Chatterjee, 2008], we proposed the following estimate:

(5)

where  estimates the interaction.
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From (5), as , , and as , . Thus  adaptively

combines the weighted and control only estimators based on the interaction estimate .

We estimated the variance of  by rewriting (5) in term of  and  as

(6)

By noting that  and  are independent and neglecting the variability of  and ,
we obtained the following variance estimate by Taylor expansion,

This estimator is used to construct Wald statistic .

3 RESULTS
3.1 COLORECTAL CANCER, SMOKING AND NAT2

Colorectal adenoma is a precursor of colorectal cancer. Colorectal adenoma is positively
associated with smoking and negatively associated with haplotypes of a gene NAT2 that
promotes rapid acetylation of carcinogens [Moslehi and others, 2006]. Here we code NAT2
= 1 for haplotypes corresponding to rapid acetylation and NAT2 = 0 for other haplotypes.
NAT2 is also important in the metabolism of smoking-related carcinogens. Moslehi and
others [2006] analyzed a case-control study of advanced colorectal adenoma in the Prostate,
Lung, Colorectal and Ovarian Cancer Screening Trial at the National Cancer Institute. Table
2 shows the observed cell counts for this case-control study. From marginal tables
constructed from Table 2, one sees that the odds ratios relating colorectal adenoma to NAT2
and smoking are 0.93 and 1.41 respectively, demonstrating the protective effect of the rapid
acetylator phenotype that corresponds to NAT2=1. The odds ratios relating NAT2 to
smoking are 1.85 in controls but 0.378 in cases, indicating a protective interaction between
smoking and NAT2 on the risk of colorectal adenoma. Adjusting for age and sex, we found

 with p-value= 0.0032. Ignoring this interaction will introduce bias in
analyzing the secondary phenotype, smoking. Estimates of the log odds ratio associating
NAT2 with smoking are shown for the five methods in Section 2 in Table 3. The adaptively
weighted estimate is positive and similar to the control only estimate, while the case only,
weighted and MLE estimates are negative. This example is chosen to illustrate the
possibility that interactions might exist. In this case, NAT2 rapid acetylation helps eliminate
carcinogens from smoking, thereby reducing the risk of colorectal adenoma from smoking.
Typically, there might be no or only weak interactions, but this example illustrates the need
for methods that are not misleading when interactions are present.

3.2 SIMULATIONS FOR ESTIMATES OF EFFECTS OF A PRE-SELECTED SNP
We used Monte Carlo simulation to evaluate the performance of different estimators of the
effects of a pre-selected SNP. We fixed the probabilities of carrying one or two alleles of
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interest, G, and the secondary phenotype, X, as P(G = 1) = 0.3 and P(X = 1) = 0.3. We let β1
= 0 and 0.25 under the null and alternative hypotheses, respectively. Fixing these three
values, one can determine the distribution of G and X in the population by solving three
equations. Under the rare disease assumption, this solution also approximates the control
cell probability vector p0. For the disease-risk model (2), we set μ = −10 to reflect the rare
disease and let δ1 = δ2 = 0 and δ12 vary from −2 to 2. The case cell probability vector p1 can
be determined by combining p0 with the disease risk model [Satten and Kupper, 1993]. For
each set of simulation parameters, we generated 10, 000 datasets with 1, 000 cases and 1,
000 controls from two independent multinomial distributions corresponding to the case and
control populations. We estimated β1 by the adaptively weighted (AW) method, the controls
only (CO) method, the cases only (CA) method, the weighted (W) method and the MLE
method.

Figure 1 shows the relative biases (left panels), the coverage probabilities of 95%
confidence intervals for β1 (middle panels), and mean squared errors (MSE) for the AW and
CO methods (right panels). Figure 2 displays the type I error for all methods and the power
for testing H0 : β1 = 0 against H1 : β1 = 0.25 for the CO and AW methods. All calculations
were based on n0 = n1 = 1, 000 and α = 0.05.

The AW and CO methods perform very well. Their estimates are virtually unbiased and
their confidence intervals have proper coverage probabilities (Figure 1). The AW method
has smaller MSE near δ12 = 0 than the CO method (Figure 1), but not for values of δ12 away
from 0. The CO method maintains nominal size (Figure 2). The AW method maintains near
nominal type I error, although there is a very slight increase in size above 0.05 near |δ12| =
0.4. The power of AW exceeds that of CO for δ12 > 0, but is less than that of CO for δ12 < 0
(Figure 2).

The CA, W and MLE methods, are seriously biased (Figure 1), have substantially
subnominal coverage (Figure 1), and have above nominal Type I error (Figure 2) for δ12 ≠
0.

3.3 IMPACT OF NON-ZERO δ12 ON GENE DISCOVERY
3.3.1 GENOME-WIDE SIZE AND POWER—In the previous section we studied
estimation and hypothesis testing for a single pre-specified SNP. Here we investigate the
size and power of different methods in large-scale SNP discovery GWAS.

By replacing the {r0, r1} in the different methods with the expected cell counts {n0p0,
n1p1}, we obtained the asymptotic mean and variance for each estimate and hence the non-
centrality, λ, of the corresponding one degree freedom chi-squared distribution for the Wald

statistic, denoted as . Under the null hypothesis, when δ12 = 0, each method has λ = 0;
when δ12 ≠ 0, every method has nonzero λ except the control only method. Under the
alternative, all the λs are non-zero. We can compute the asymptotic size and power for

testing one given SNP from the formula:  with the corresponding λ under
the null and alternative hypothesis for each method respectively and  being the
quantile of the central chi-square distribution, .

Assuming there were N = 500, 000 independent SNP genetic markers, we controlled the
experimentwise significance by setting α = 0.05/(5 × 105) = 10−7. It may be reasonable to
suppose that δ12 = 0 for a large proportion of SNPs. We assume 99% of SNPs have δ12 = 0,
and 1% of δ12 are independently distributed as N(0, (log(2)/2)2), which implies that about
95% of nonzero δ12 values reside in [−log(2), log(2)]. We evaluated the genome-wide type I
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error and power of the various Wald tests averaged over the mixture distribution of δ12. For
each method we estimated the genome-wide type I error under the null from the formula

(7)

and the power under the alternative β1 = 0.25 can be calculated from

(8)

where f(x) is the normal density N[0, {log(2)/2}2]. The integrals in equations (7) and (8) are
approximated by drawing 100,000 δ12 from N[0, {log(2)/2}2] and averaging the

corresponding values of  for equation (7) and of 
for equation (8). The non-centrality λ depends on δ12 and are recomputed for each
realization.

The genome-wide type I error and power for different methods are presented in Table 4 for
numbers of cases and controls n = 1000, n = 5000 and n = 10,000. The genome-wide type I
error is 1.0 for WCA, WW, and WMLE, indicating that these tests should not be used even if
only a small proportion of SNPs have δ12 ≠ 0. Both WCO and WAW statistics have near
nominal genome-wide type I error. However, for sample size n1 = n0 = 5, 000 or 10, 000, the
power of WAW greatly exceeds that for WCO. For example, when n0 = n1 = 10,000, the
power of WAW is almost 98%, while that of WCO is only 50%. Thus, substantial power gains
can be achieved with WAW. Unreported simulations from a mixture distribution with 20%
non-zero δ12s also show that WAW has greater power than CO but a very slight excess in
size (e.g. size= 0.053) was observed for WAW.

3.3.2 GENOME-WIDE DETECTION PROBABILITY—Instead of setting fixed critical
values for declaring an association statistically significant, one can rank p-values or chi-
square statistics to select promising SNPs [Gail et. al., 2008]. In this section, we study the
detection probability which is the probability that the test statistic for a specified disease-
associated SNP will be among the top T chi-square values for all SNPs. We estimated the
detection probability with 1, 000 simulated replicates. In each replicate, we generated data
for N = 500, 000 SNPs with the same parameters used in Section 3.2, except that 10 disease-
associated SNPs had nonzero β1, whereas the 499,990 remaining null SNPs had βi = 0. All
SNPs had interactions δ12 drawn from a mixture distribution in which 99% of SNPs have
δ12 = 0, and 1% of δ12 are independently distributed as N(0,σ2). We conducted four
independent simulations for the combinations of β1 = {0.25, 0.69} and σ2 = {(log(2)/2)2,
(log(2))2}.

When the associated SNPs have small log odds ratios with the secondary phenotype, i.e. β1
= 0.25 (upper portion of Table 5), all the methods have low detection probabilities for T ≤
100.. When T ≤ 100 and the variability of δ12 is large, the W and MLE methods have
detection probabilities near zero, because some of the SNPs with interactions have large chi-
square values than the disease-associated SNPs. The CO and AW methods perform slightly
better. When T is 10, 000, (2% of the total SNPs), the detection probabilities of all methods
increase and the W and MLE methods outperform the CO and AW methods. When the
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associated SNPs have a stronger association with the secondary phenotype, i.e. β1 = 0.69
(lower portion of Table 5), and with σ2 = {log(2)/2}2, W and MLE have smaller detection
probabilities than CO and AW for T = 10, but for T = 100 or 10, 000, the detection
probabilities of W and MLE exceed those of CO and AW. When the variability of δ12 is
larger, with σ2 = {log(2)}2, the W and MLE methods have smaller detection probabilities
than CO and AW, especially for T = 10 and 100. The CA method always has the lowest
detection probability. As expected, CO is not affected by increasing variability of δ12; AW is
also robust to increasing variability of δ12.

4 DISCUSSION
For a rare disease and dichotomous secondary endpoint and genetic marker, we have
investigated whether and how to use data from diseased subjects to study the association
between a genetic marker and secondary phenotype. We considered both estimating and
testing the null hypothesis of no association for a pre-specified SNP, and for discovering an
association in a GWAS with either hypothesis testing approaches or approaches based on
ranking the chi-square statistics. In the absence of an interaction δ12 in model (2), each of
the five methods we considered leads to valid inference, and the W and MLE methods are
particularly efficient. In the presence of interaction (δ12 ≠ 0), the CO method controls the
type I error perfectly, and the AW has proper size for rare interactions (1%) and only
modestly supra-nominal type I error for common interactions (20%). The CA, W and MLE
methods do not control type I error and cannot be recommended if it is plausible that δ12 ≠
0. The AW method has lower MSE for a pre-selected SNP and greater power than the CO
method, which is achieved at the cost of a slight increase in type I error. We showed that the
MLE method reduces to the CO method if the model allows for non-null δ12.

Under the assumption of rare disease and dichotomous genetic marker and phenotype, the
CO method is robust in that it maintains the unbiasedness and nominal type I error despite
any interaction effect. The W and MLE methods fully utilize both controls and cases and are
most efficient for estimation. When there is no interaction effect, both weighted and MLE
are almost twice as efficient as the control only method in estimation and have around 70%
more power than the control only method. We prefer the weighted method because it is
nearly fully efficient and its estimator is non-iterative. Thus, there are no problems of
convergence as can arise with the MLE method. However, even a small interaction effect
causes large bias and highly inflated type I error for the CA, W, and MLE methods. The AW
method strikes a balance between the robust CO method and the W method. It maintains the
unbiasedness and near nominal type I error across most values of δ12, although it has
moderately inflated type I error when δ12 is not far from zero. If δ12 is near zero, estimates
based on AW have smaller MSE than those from CO for a prespecified SNP. Under a
mixture distribution for δ12 which was chosen to allow most δ12 values to be zero, the AW
method achieved an important gain in power compared to CO. The detection probabilities of
the W and MLE methods degrade when ranking SNPs in the presence of increasing
variability of δ12. However, CO and AW methods maintain their detection probabilities and
are robust to increasing variable δ12.

Jiang, Scott and Wild [2006] discussed methods for analyzing secondary phenotypes in
case-control studies. Their fully non-parametric approach (SPML1) corresponds to MLE
under our model (2) with δ12 included, which is equivalent to the CO method for inference
on β1. Assuming δ12 = 0 corresponds to possibly misspecified parametric modeling
(SPML2) in their notation. MLE under SPML2 was described by Lin and Zeng [2009], who
also covered non rare diseases and both dichotomous and continuous secondary phenotypes.
If δ12 ≠ 0, the MLE method of Lin and Zeng does not control the type I error, as indicated
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by our results in Section 3.2 and 3.3 and in the discussion of model misspecification for
SPML2 by Jiang et al. [2006].

In unreported analysis, we evaluated the performance of the various methods using prostate
cancer data from the Cancer Genetic Markers of Susceptibility (CGEMS) study. We
conducted a genome-wide scan on the association between the secondary phenotype, body
mass index BMI (1, if BMI≤ 25; 0, else), and the 516,564 SNPs from 22 autosomal
chromosomes. We estimated the distribution of δ12, and found no evidence that the variance
of  across SNPs exceeded that which would be expected from the multinomial sampling
error alone. Thus, we did not find evidence that δ12 ≠ 0 for some SNPs. Under such
situation, W and MLE are two most efficient methods, and both identified SNP rs7575639
with a genome-wide significant p < 10−7. The 20 SNPs with smallest p-values selected by
the W and MLE methods were identical, with only slight differences in ranking. For 11
SNPs, spurious results resulted from convergence problems for MLE. Only careful scrutiny
of the extreme values for these SNPs revealed the problem with MLE. For this reason, we
recommend the numerically stable W method instead of MLE.

Kraft [2007] argued that it is unlikely for both the secondary phenotype and genetic marker
to affect the original case-control disease risk, let alone for there to be an interaction. In
terms of equation (2), he suggested that either δ1 or δ2 would usually be zero and implicitly
that δ12 would be zero. If this is so, one could use the W method and gain precision and
power thereby. More experience is needed with GWASs to see if the W or MLE methods
yield many false positive results as a consequence of δ12 ≠ 0, or if their detection
probabilities for ranking promising SNPs are degraded by the presence of interaction effects.
Our work makes it clear that spurious positive findings may result from such an interaction,
and that one can protect against such findings by using the control only or adaptively
weighted approaches.
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6 APPENDIX. DERIVATION OF OF β^1MLE USING DISEASE MODEL (2)
WITH AND WITHOUT INTERACTION TERM

Start from the retrospective likelihood function,

1. Using the saturated disease model  and notations
in Table 1, we obtained the log-likelihood function,
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(9)

where P0 = P(X = 0). In this log-likelihood function, there are six unknown parameters {β0,
β1, P0, δ1, δ2, δ12}. By differentiating (9) with respect to each parameter and setting the
derivatives to zero, we obtain six equations. Solving them, we obtained the following

analytic solutions: , , ,

, , and . Thus ,
proving the assertion in Section 2.3.

2. Using the reduced disease model  with δ12 = 0, we have
the following log-likelihood function:

(10)

In this loglikelihood function, there are five unknown parameters {β0, β1, P0, δ1 , δ2}. By
differentiating (10) with respect to each parameter and setting the derivatives to zero, we
obtain five equations. There are no explicit solutions for these parameters, except for P0.
Before solving them numerically, we simplified them to:

(11)
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(12)

(13)

(14)

(15)

Equations (11) - (13) depend on {β0, β1, δ1} only. Using SAS PROC MODEL, we obtained

. Substituting these values and  from (15) into (14), we solved for

. Using these solutions we can estimate the variance of  from the observed matrix
of second derivatives of the log likelihood and compare them with corresponding estimates
from the log likelihood (9).

References
[1]. Jiang Y, Scott AJ, Wild CJ. Secondary analysis of case-control data. Stat Med 2006;25:1323–

1339. [PubMed: 16220494]
[2]. Gail MH, Pfeiffer RM, Wheeler W, Pee D. Probability of detecting disease-associated single

nucleotide polymorphisms in case-control genome-wide association studies. Biostatistics
(Oxford, England) 2008;9(2):201–15.

[3]. Kraft P. Analyses of genome-wide association scans for additional outcomes. Epidemiology
2007;18:838. [PubMed: 18049198]

[4]. Lin DY, Zeng D. Proper analysis of secondary phenotype data in case-control association studies.
Genet Epidemiol 2009;33:256–265. [PubMed: 19051285]

[5]. Moslehi R, Chatterjee N, Church TR, Chen J, Yeager M, Weissfield J, Hein DW, Hayes RB.
Cigarette smoking n-acetyltransferase genes and the risk of advanced colorectal adenoma.
Pharmacogenomics 2006;7:819–829. [PubMed: 16981843]

[6]. Mukherjee B, Chatterjee N. Exploiting gene-environment independence for analysis of casecontrol
studies: an empirical bayes-type shrinkage estimator to trade-off between bias and efficiency.
Biometrics 2008;64(3):685–94. [PubMed: 18162111]

[7]. Mukherjee B, Ahn J, Gruber S, Rennert G, Moreno V, Chatterjee N. Tests for gene-enviroment
interaction from case-control data: a novel study of type I error, power and designs. Genet
Epidemiol 2008;32:615–626. [PubMed: 18473390]

[8]. Satten GA, Kupper LL. Inferences about exposure-disease associations using probability-of-
exposure information. J Am Sta Assoc 1993;88:200–208.

Li et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2010 August 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Relative biases (RBias), coverage probabilities (CP) of 95% confidence intervals and mean
squared errors (MSE) for different estimators for two values of β1:(1) β1 = 0; (2) β2 = 0.25.
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Figure 2.
Type I error rates and power of association tests at the 5% nominal significance level.
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Table 3

Odds ratio estimates associating NAT2 with smoking in the colorectal adenoma case-control study

log(Odds Ratio) s.d.

Control only 0.615 0.39

Case only −0.972 0.27

Weighted −0.207 0.27

Adaptively weighted 0.569 0.40

MLE −0.172 0.26
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