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ABSTRACT

The accurate prediction of higher eukaryotic gene
structures and regulatory elements directly from
genomic sequences is an important early step in the
understanding of newly assembled contigs and
®nished genomes. As more new genomes are
sequenced, comparative approaches are becoming
increasingly practical and valuable for predicting
genes and regulatory elements. We demonstrate the
effectiveness of a comparative method called
pattern ®ltering; it utilizes synteny between two or
more genomic segments for the annotation of
genomic sequences. Pattern ®ltering optimally
detects the signatures of conserved functional
elements despite the stochastic noise inherent in
evolutionary processes, allowing more accurate
annotation of gene models. We anticipate that
pattern ®ltering will facilitate sequence annotation
and the discovery of new functional elements by the
genetics and genomics communities.

INTRODUCTION

The increasing diversity of metazoan and other eukaryotic
genomes is a major opportunity for the comparative genomics
community. Two principle approaches are used to predict
protein-coding regions in genomic sequences (1±5). Ab initio
methods analyze codon usage, potential splice site sequences,
exon length and other features to distinguish coding regions
from non-coding regions and thereby construct gene models
(6±8). Extrinsic methods compare genomic sequences with
those of known proteins at either the amino acid or nucleotide
level (9±11). Ab initio methods can detect proteins for which
there is no known homolog, while extrinsic methods cannot.
However, ab initio methods are trained on limited data sets,
making them apt to predict genes structurally resembling those
in their training sets while missing others (12).

As more genomes of closely related organisms are
sequenced (13±15), another approach is becoming increas-
ingly valuable (16,17). In this approach, long homologous
sequences, also called syntenic sequences, are compared, and
less diverged regions are assumed to be functional elements
since these elements are generally subject to signi®cant

selection. This approach identi®es not only potential coding
regions, but also non-coding regions which can regulate the
expression of genes or which serve as templates for non-
coding RNAs. In addition to the manual use of such an
approach (18±24), in the last few years several gene prediction
programs have been created to exploit these comparative
approaches (25±28).

Here, we describe the implementation of a method called
pattern ®ltering for comparative gene ®nding and demonstrate
its capacity to identify gene structures and putative regulatory
elements (29). It is based on a fundamental evolutionary
model which has two parts and has been used previously for
gene ®nding by others (30). First, coding exons are generally
more conserved than neighboring sequences. Secondly, the
®rst and second codon positions are more conserved than the
third, or wobble, position. Thirdly, regulatory elements are
also more conserved than neighboring sequences but, unlike
coding exons, they do not show the same distinctive triplet
pattern found in coding sequences.

The core of pattern ®ltering is a Wiener ®lter, or optimal
linear ®lter (31). This technique optimally separates the
signals desired from the noise which obscures them. In our
case, the signals correspond to the spatial distributions of
sequence variation, while the noise comes primarily from the
stochastic nature of a mutation corresponding to discrete
change at an alignment position. By eliminating this noise, we
generate estimates of the evolutionary distance at each site,
thereby making regions containing coding regions readily
apparent.

MATERIALS AND METHODS

Our process for annotating genetic structures and identifying
putative regulatory elements has two steps. First, from an
alignment of syntenic sequences, we compute quantities we
call the ®ltered distances and the ®ltered coding bias. Next,
gene models are constructed from the interpretation of the
®ltered distances, ®ltered coding bias, possible splice sites and
possible peptide sequences. Here we primarily illustrate these
methods for two sequences, though they are extended to more
than two.

Distance maps

In order to compute the ®ltered distances, which are measures
of sequence divergence, one ®rst needs to convert an
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alignment of symbols (A, C, G, T, ±) to a series of numbers
suitable for ®ltering. The two alternative maps that we use to
create this numeric function are called the 1-D (one-
dimensional) and 5-D (®ve-dimensional) maps.

The 1-D map is a simple distance function. Each alignment
position is given the value 0 or 1, depending on whether
homologous sites share the same or different nucleotide states,
respectively (Fig. 1a) (29). All alignment positions gapped in
the sequence we wish to annotate, which we call the reference
sequence, are omitted from the function, making the function
the same length as the reference sequence. If more than two
sequences are analyzed, then the function is typically the sum
of all pairwise distances between sequences. This function is
then ¯oated and padded with zeroes to increase the number of
points to twice the next greater power of 2 for the subsequent
fast Fourier transforms (32).

To construct the 5-D map, one ®rst produces a sequence of
joint probability matrices, one for each pair of homologous
sites, resulting in a three-dimensional array (Fig. 1b). Each of
the dimensions that are four long are then rearranged, creating
two dimensions that are two long, one corresponding to

purines versus pyrimidines and the other corresponding to G/C
versus A/T; this produces a 2 3 2 3 2 3 2 hypercube in place
of the joint probability matrix (Fig. 1c). These rearranged joint
probability matrices maintain information which we will later
use to construct distances at each site based on general
evolutionary models. Each of the 16-long sections of the
function are ¯oated individually, and the whole is padded as in
the 1-D map.

The 5-D map is superior for gene ®nding in gene-dense
regions, while the 1-D map is better in regions that are gene
poor. This is because the 1-D map concentrates all the signal
from the codons into one peak, making the signal easy to
identify and describe even when there is very little signal;
however, the 5-D map spreads this signal among 16 potential
peaks, making this identi®cation and description dif®cult in
gene-poor regions.

For three sequences, the 1-D map is logically extended by
taking the average of the three pair-wise distances, yielding
values of 0, 2/3 or 1. Likewise, the 5-D function is extended to
seven dimensions (7-D). Generalizations to four or more
sequences are also implemented though not demonstrated.

Figure 1. (a) The simple distance function of the 1-D map. Each alignment position is given a value of 0 or 1 depending on whether the nucleotides are
matched or mismatched, respectively. (b) The ®rst step in construction of the 5-D map. For each position of the alignment, a joint probability matrix is
constructed. These matrices are ordered by corresponding alignment position. Alignment positions gapped in the reference sequence are omitted from the
analysis. Positions gapped in the ®rst sequence are omitted only in multiples of three in order to conserve the potential coding frames; the joint probability
matrices of any remaining gapped positions are ®lled with 0s. (c) To construct the 5-D map, each of the dimensions that are four long are rearranged to create
two dimensions that are two long.
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The Wiener ®lter and pattern ®ltered distances

The resulting numeric function is ®ltered by an optimal linear
®lter, also known as a Wiener ®lter (31). In brief, spatially
varying signals will have well-de®ned frequency bands, while
stochastic noise will not; the Wiener ®lter optimally elimin-
ates most of the noise in frequency space where it is easily
recognizable, and then the result is transformed back to real
space to see the ®ltered signals. Details of the ®lter are given
below; see Lake (29) and Press et al. (32) for additional
descriptions of the Wiener ®lter.

Fourier transforms of the numeric function are performed
using a real fast Fourier transform (32,33). Power spectra are
calculated by windowing the sequence alignment positions
using a Parzen window in order to improve the estimate of the
variance and minimize leakage (32). The resulting one-sided
power spectra are between 32 and 512 long, increasing as the
length of the reference sequence increases; e.g. the ~200 kb
sequence of our test set created a power spectrum 128 long.

The noise component, |N|2, of the power spectrum is
approximated by a constant plus a sum of cosine curves ®t
through the points away from the (possible) signal peaks. The
possible signal peaks are at or near frequencies of 1/(3 bp),
1/(2 bp) and 0/(bp). To estimate the signal component, |S|2, an
extrapolation of the noise is subtracted from the power spectra.
For each peak which is present, the estimated |S|2 is ®tted
around 0/(bp) and 1/(3 bp) with a sum of either one or two
Gaussians. The sometimes present signal peak at 1/(2 bp) is
not included because it does not correlate with coding and
non-coding regions.

The formula for the Wiener ®lter is

|S|2 / (|S2| + |N|2).

The Fourier transform of the numeric function created above
is multiplied by the Wiener ®lter to separate the signal from
the noise; this product is inverse Fourier transformed, yielding
the optimal estimate of the signal. In the case of the 1-D map,
the end result is a ®ltered distance at each site. Yet in the case
of the 5-D map, this estimate is a sequence of joint probability
matrices. To more easily interpret these, paralinear, also called
LogDet, distances are then calculated from the joint probabil-
ity matrices, yielding generally additive distances which more
accurately re¯ect the extent of evolution (34,35).

The 7-D map for three sequences is also a sequence of
three-dimensional joint probabilty matrices. Columns of these
joint probability matrices are summed three times to create
three two-dimensional joint probability matrices at each
position. These are then used to calculate paralinear/LogDet
distances, and the three distances at each position are
averaged. As before, this is easily generalized to four or
more sequences.

Coding bias

In addition to ®ltered distance, we also use a ®ltered single-
sequence content measure which we call the coding bias to
additionally aid in the identi®cation of coding regions. In order
to calculate the coding bias, we ®rst classify hexamers from
the May 19, 2000 Sanger Center human chromosome 22
sequence into coding and non-coding according to the
annotation at the time [(36) http://www.sanger.ac.uk/HGP/
Chr22a]; from the analysis, we omitted hexamers overlying

coding±non-coding boundaries, lying in partial genes or
ambiguously annotated segments, or containing ambiguous
nucleotides.

Next we constructed a set of 2 3 2080 = 4160 hexamer bins.
The 2 comes from the two possible states, coding and non-
coding, and 2080 is the number of possible unique hexamers
when the reverse complement is considered [2080 = (46 ± 43

palindromes)/2 + 43 palindromes]. We next sort each of the
406 041 coding hexamers and 32 877 917 non-coding
hexamers into these bins according to their sequences and
coding status. We calculate the coding bias by the formula:

[NonCodingBinn / (80 3 CodingBinn + NonCodingBinn)]

Values appreciably less than 0.5 represent hexanucleotides
that are systematically favored for coding, while those above
are unfavored.

The distribution of values for the hexanucleotide bias is
wide, robust and statistically meaningful. The minimum and
maximum values are 0.0585 and 0.9711. No bin has too few
counts, since the minimum number of counts in any bin is 8.
The standard deviation of the coding bias of the bins is 0.1895.
To test whether this is statistically different from random, we
performed 1000 simulations with the same hexanucleotide
distribution, but now randomly distributed into exon and
intron bins. The standard deviations of these simulations were
approximately normally distributed, with a mean of 0.0291
and standard deviation of s = 0.0011. Since the standard
deviation of the coding bias of the bins is 141s from the mean
standard deviation, it is clearly statistically different from
random.

To calculate the coding bias function of an alignment, we
®rst take the coding bias of each hexanucleotide of both
sequences and average the results; if gaps are present, only one
hexanucleotide bias is used. The resulting function is
subjected to a Wiener ®lter analysis as in the 1-D map
above but with any peak at the frequency 1/(3 bp) ignored.

Annotation

The annotation is done by the user with the GeneGrabber
program, a viewer which displays the ®ltered distances,
®ltered coding bias, possible splice sites and potential peptide
sequences. New exons are included by a combination of seven
criteria: (i) the overall conservation of a segment; (ii) the
presence of a pattern where every third position is appreciably
less well conserved than the others; (iii) a ®ltered coding bias
favoring coding; (iv) no stop codons in the favored reading
frames; (v) the presence of strong ¯anking splice sites or in-
frame start or stop codons; (vi) the agreement of the frames of
adjacent exons; and (vii) previously described length distri-
butions of introns, exons and genes. By clicking near putative
exon ends and choosing a gene model, one inserts an exon into
that gene model. The sequences and structures of gene models
as well as the sequence of interesting conserved regions can be
saved to ®les.

Regulatory regions are identi®ed as highly conserved
regions where all three possible codon positions are approxi-
mately equally conserved; for our purposes, `highly con-
served' is de®ned as a segment of 30 or more nucleotides with
®ltered distances below 0.20. Their positions and sequences
can also be saved to ®les.
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Potential 3¢ splice sites are scored by a weight matrix based
on the results of Senapathy et al. (37). 5¢ Splice sites are
predicted either by a similar metric or by the maximal
dependence decomposition method (6).

The black traces in GeneGrabber plots are the ®ltered
distances averaged over a 3 bp window, which are calculated
by the formula Dn = (dn ± i + dn + dn + i)/3, where di is ®ltered
distance at position i. The multicolored trace shows the
relative differences between the ®ltered distances and these
averages, which are calculated by the formula (dn ± Dn)/Dn.
Positions 0 modulo 3 are red, positions 1 modulo 3 are green,
and positions 2 modulo 3 are colored blue to show frameshifts.

RESULTS

We aligned the syntenic sequences of the CD4 region of
mouse and human (NCBI accession numbers AC002397 and
U46924) (19,38) with the set of programs PickAl and
COMGAP (unpublished); other genomic length alignment
algorithms could also be used (39,40). We then calculated the
®ltered coding bias, and the ®ltered evolutionary distances
from both the 1-D and 5-D maps. The intermediate power
spectra are shown in Figure 2.

Though not utilized in subsequent analyses because of the
superior quality of the 5-D results, the power spectra of the
1-D map best illustrate the stochastic noise and the two signal
peaks (Fig. 2A). The relatively ¯at portion extending across
most of the plot comes from stochastic noise. The peak at very
low frequency corresponds to long alternating conserved and
non-conserved structures, such as entire exons and introns as
well as genic and intergenic regions. The peak at the 1/(3 bp),
henceforth called the triplet peak, comes from the codons of
the coding regions. The ®rst and second positions of codons
tend to be conserved, since changing them will usually change
the amino acids which are coded, and the third positions tend
to be more divergent, since changing them usually will not
change the amino acids coded or will minimally impact
function. This alternating conserved±conserved±divergent
pattern creates waves of period three nucleotides, resulting
in the triplet peak. The small size of this peak is due to the
small fraction of overall sequence which is coding; very gene-
sparse data sets, such as the piebald region (24), have very
small triplet peaks, while those of very gene-dense regions,
such as mitochondrial genomes, rival the low frequency peak
in size. Most of the 16 one-dimensional segments of the 5-D
map's power spectrum show the same structure (Fig. 2B).

Figure 2. (a) The one-sided power spectrum resulting from the 1-D map of the alignment between the human and mouse CD4 regions. Note the non-zero
¯oor of the trace stemming from the noise in the data, and the two signal peaks near frequencies of 0/(bp) and 1/(3 bp) corresponding to alternating long
conserved and unconserved elements and to the codon triplets of coding regions, respectively. The peak at 1/(3 bp) and the region around it are magni®ed in
the inset. (b) The power spectrum from the 5-D map of the same alignment. The left and right ends of each of the 16 1-D segments correspond to frequencies
of 0/(bp) and 1/(2 bp), respectively. The arrows show the frequency 1/(3 bp). Each gray line indicates a spectral density of 0 for the four traces immediately
above it. The abbreviations are as follows: R = (A or G), Y = (C or T), S = (G or C), W = (A or T), K = (A or C), M = (G or T). Subscripts indicate the ®rst
(human) or second (mouse) sequence. The plot can be divided into four conceptual regions: the trace in the bottom left corner, the remaining traces in the left
column, the remaining traces in the bottom row, and the other nine traces. The bottom left corner trace tells us only about the distribution of gaps in the
alignment and nothing about the sequences' compositions or comparative relationship. Unsurprisingly, there is little high-frequency information in this trace,
indicating that most gaps are relatively long. The remaining traces in the left column tell us only about the composition of the mouse sequence, and nothing
about the human sequence or their comparative relationship; if the mouse sequence were aligned to any sequence, these three traces would be the same. The
all1´RY2 trace describes how the mouse purines and pyrimidines are distributed relative to random. The large low-frequency peak indicates there are long
relatively purine-rich regions and long relatively pyrimidine-rich regions. The peak at 1/(2 bp) shows the tendency of a purine to be followed by a pyrimidine,
and vice versa. Purine±pyrimidine patterns of length three generate the triplet peak. Finally, note the general upward slope of the remainder, showing that
once large-scale purine±pyrimidine composition effects are taken into account, a DNA segment tends to be more mixed than one would expect at random.
The all1´SW2 trace describes how Gs and Cs are distributed relative to As and Ts. Note that this trace has the same peaks as the all1´RY2 trace, but now the
remainder slopes downward, indicating that once the effects from the peaks are accounted for, Gs and Cs tend to be more clustered than one would expect at
random. The all1´KM2 trace describes how the remaining pair of pairs, AC and GT, are distributed. The remaining traces in the bottom row are identical to
those in the left column except that these describe the composition of the human sequence. The other nine traces tell us how the sequences relate to one an-
other. For example, the RY1´RY2 trace tells us about the distribution of purine±pyrimidine conservation. It has a low-frequency peak indicating that there are
long regions where purines and pyrimidines are more conserved and long regions where they are less conserved. Purine±pyrimidine conservation patterns of
length three, which come largely from the coding regions, create the triplet peak. Finally, the very ¯at remainder indicates that all other perceived
purine±pyrimidine conservation patterns stem from randomness or are a very small effect. One can interpret the other eight traces in a similar fashion.
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Using only GeneGrabber with the 5-D ®ltered distances, we
annotated the mouse sequence. Mouse was chosen because
Ansari-Lari et al. (19) originally annotated it with the
assistance of the human sequence and cDNAs, while the
human sequence's original annotation did not have the bene®t
of the mouse. To serve as a comparison, both sequences were
separately analyzed using the GENSCAN web server at http://
genes.mit.edu/GENSCAN.html (6). [We attempted compari-
sons with other programs, but technical errors or limitations of
the length of the sequence allowed to be analyzed prohibited
these attempts; note that our methods analyze the sequences of
Peterson et al. (24), which exceed 4 Mb.]

As one can see from Figure 3 and Table 1, our methods
perform well in all measures of prediction accuracy, and
appreciably surpass the predictions of GENSCAN. Two

statistics are particularly noteworthy. Note how close the
sensitivities and speci®cities are to 1.0 for pattern ®ltering and
GeneGrabber. Secondly, there are no wrong exons, i.e. exons
predicted that do not overlap part of an existing exon.

One could imagine attributing the success of pattern
®ltering to simply the inclusion of two sequences in the
analysis. In order to test this possibility, we performed two
combination analyses using GENSCAN. In the ®rst, called
GENSCAN or'd, a mouse nucleotide is considered coding if
either it or the human nucleotide to which it is aligned is
predicted to be coding. In GENSCAN and'd, a mouse
nucleotide is considered coding if both it and the human
nucleotide to which it is aligned are predicted to be coding; if a
mouse nucleotide is aligned with a gap, the decision is based
only on the designation of the mouse nucleotide.

Figure 3. Accuracy measures comparing pattern ®ltering with GENSCAN for each of the sequences. Sn/nuc, sensitivity per nucleotide; Sp/nuc, speci®city per
nucleotide; Sn/exon, sensitivity per exon; Sp/exon, speci®city per exon. For explanations of these measures, see Table 1. Note the better performance in all
statistics for pattern ®ltering, in particular that the sensitivities and speci®cities per nucleotide are very close to 1.0 and also that the fraction of wrong exons
is 0.

Table 1. Accuracy statistics for pattern ®ltering and for GENSCAN (6) analyzing the mouse and human sequences of Ansari-Lari et al. (19,38)

Method, sequence Sensitivity/
nucleotide

Speci®city/
nucleotide

Correlation
coef®cient

Sensitivity/
exon

Speci®city/
exon

Missing
exons

Wrong
exons

Pattern ®ltering 0.986 0.989 0.986 0.874 0.912 0.042 0.000
GENSCAN, mouse 0.874 0.920 0.885 0.783 0.800 0.126 0.093
GENSCAN, human 0.943 0.900 0.910 0.811 0.806 0.070 0.069
GENSCAN, or'd 0.954 0.850 0.885 0.832 0.753 0.056 0.139
GENSCAN, and'd 0.863 0.986 0.914 0.762 0.865 0.140 0.008

The total number of nucleotides analyzed is ~200 000, the number of actual coding regions is 143, and the number of genes is 16. GENSCAN or'd is an
analysis designed to utilize GENSCAN predictions from both sequences, maximize the sensitivities and minimize the missing exons; GENSCAN and'd is the
same, but designed to maximize speci®city and minimize wrong exons. Note that pattern ®ltering predicts exons better than even these measures. All
accuracy statistics are calculated as in Burset and GuigoÂ (12). Speci®city per nucleotide is the fraction of actual coding nucleotides which are predicted to be
coding; sensitivity per nucleotide is the fraction of nucleotides predicted to be coding which are actually coding. The correlation coef®cient simultaneously
measures both sensitivity and speci®city per nucleotide. Sensitivity per exon is the fraction of coding regions for which both ends are correctly predicted.
Speci®city per exon is the portion of true exons correctly predicted at both ends, while sensitivity per exon is the portion of predicted exons which correctly
match a true exon at both ends. The fraction of true exons without overlap to predicted exons is called missing exons and, conversely, the fraction of
predicted exons without overlap to true exons is called wrong exons.

Nucleic Acids Research, 2003, Vol. 31, No. 24 7275



GENSCAN or'd should have a greater sensitivity relative to
the single-sequence analyses, since it now has two opportun-
ities to predict a nucleotide or exon as coding. Likewise,
GENSCAN and'd should have a greater speci®city, since it
requires a predicted coding sequence in both cases. Both of
these hold true, but pattern ®ltering still outperforms each
method in both statistics (Table 1). Therefore, the success of
pattern ®ltering comes not just from the use of multiple
sequences, but also from the noise-®ltered comparison of these
sequences.

These statistics also surpass the published accuracies of
ROSETTA, TWINSCAN and DOUBLESCAN, other pro-
grams that also exploit homology between two genomes.
Direct comparisons between these are not possible since the
sequences analyzed are different (25,27,28); however, note
that only Korf et. al. (27) also analyzed sequences containing
more than one gene.

We also documented 41 conserved regions that did not ®t
the coding region model. We learned from the cDNA

annotations that 11 of these largely overlap either the 3¢- or
5¢-untranslated regions, leaving 30 putative regulatory elem-
ents. Eighteen of these lie between 2.5 kb upstream and 0.5 kb
downstream of a gene's transcription start site, seven others lie
within introns, and ®ve lie outside of these regions altogether.
(Four of these ®ve lie clustered within a single 2 kb region.)
The distribution of these 30 putative regulatory elements
suggests that most of them are indeed transcriptional or
splicing regulatory elements.

The ®ltered distances can also reveal some sequencing
errors, and the discovery of a particular error allowed us to
substantially correct the previously published biological
annotation. In Figure 4a, the long region between positions
39 200 and 39 660 of the mouse CD4 region strongly
resembles a coding region, except that around 39 590, two
codon positions cross in the conservation plot. Observing that
this apparent frameshift could result from a sequencing error
and that 45 out of the 50 nearest positions are G or C, making
such an error very possible, we submitted the region to various

Figure 4. (a) A 1 kb region with a con®rmed sequencing error, as it would be seen in the GeneGrabber viewer. The horizontal axis represents the position in
the mouse sequence (19). The vertical axis of the graph represents the relative ®ltered distance averaged across a three-nucleotide window (black trace), the
relative difference between the ®ltered distances and these averages (the trace that alternates red, green and blue), and the ®ltered hexanucleotide bias (teal
trace). Note that the black trace results primarily from the low-frequency peaks, while the multicolored trace stems primarily from the triplet peaks. Below
the plot is a symbolic diagram of the two preferred peptide translations, where stop codons are indicated by breaks in the continuity; the preferred frames are
determined by assuming that the fastest evolving position of a putative codon is the third. Below this diagram is another indicating potential slice sites
(triangles), and start and stop codons (Ts) with the ones above the gray line in the human sequence and the ones below in the mouse. The left±right mirror
symmetry of the symbols is designed so that sites that could delimit a coding region will point toward one another, e.g. the putative 3¢ splice sites in the
forward direction point right, and their putative 5¢ counterparts point left. In order to simplify the plot, sites in the reverse direction are not shown. (b) A view
of the same 1 kb region, with the sequencing error corrected. Note how the crossing that originally occurred at approximately sequence postion 39 590 has
now disappeared, making that region resemble a typical, though long, exon. (c) The same 1 kb region plus an adjacent 3 kb. The additional 3 kb is shown to
provide examples of what typical exons look like. The bars at the top of the plot indicate the coding regions as annotated by the following techniques: purple,
cDNA by Ansari-Lari et al. (19); green, pattern ®ltering and GeneGrabber; red, GENSCAN using the human sequence; and blue, GENSCAN using the mouse
sequence. All annotations of this gene continue to the right; only the GENSCAN annotation using the mouse sequence continues to the left, including a
segment not in the cDNA used for annotation by Ansari-Lari et al. (19).
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NCBI databases and the Celera human database looking for
near matches. We found ®ve matches spanning the whole
region without gaps, three of which are from the original
papers supplying the genomic sequence and its annotation
(19,38). Yet, we also found 15 mammalian matches spanning
the whole region with only one gap from a G inserted at
position 39 593 (Table 2). The P-value for this distribution is
0.021 calculated by the binomial distribution, implying that it
is signi®cantly more likely that the sequence with the inserted
G is correct.

Assuming that the missing G was a sequencing error, we
inserted the G into Ansari-Lari et al.'s human and mouse
sequences (19,38) and input this new alignment into pattern
®ltering, which leads to Figure 4b. The troublesome event

around 39 590 has now gone away, and we annotate the gene
as indicated by the green row of bars at the top of Figure 4c.
This is the same annotation that GENSCAN produces from the
human sequence (the red row of bars in the ®gure).

The original annotation of the sequence by Ansari-Lari et al.
(19) is indicated by the purple row of bars. Their original cDNA
data showed a spliced intron between nucleotides 39 671 and
40 771, the same as we predicted. We presume that the
sequencing error at position 39 593 led them to conclude its
segment was part of a 5¢-untranslated region, since predicting
the translation start site at 39 181 would have resulted in a stop
codon shortly after the 39 593 sequencing error. This same
crossing of codon traces should also be observed when
comparing sequences that undergo translational frameshift (41).

Table 2. The sequences obtained from database searches which aligned 20 bases on either side of the
sequencing error without any gaps

Source Database CGC sequence (error) CGGC sequence (correct)

NCBI Non-redundant 3a 4
Human EST 1 6
Mouse EST 0 2
High-throughput genome sequence 1b 2c

Celera Human genome 0 1
Totals 5 15

The database searched and its source are listed along with the number of mammalian matches containing each
subsequence. All sequences are either human or mouse, unless otherwise indicated.
aAll three from Ansari-Lari et al. (19,38).
bFrom Pan troglodytes.
cBoth from Rattus norvegicus.

Figure 5. Views of a 1 kb region containing exons 9 and 10 of the gene PTPN6. The axes and plots are as in Figure 4. The left plot shows the ®ltered
distances resulting from the human and mouse sequences using the 5-D map; the right plot shows the same distances but from the human, rat and mouse
sequences using the 7-D map. Note how the characteristic splitting pattern is substandard for the ®rst exon in the left plot. As shown in the right plot, the
addition of the third sequence recti®es this situation.
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Additional power in such analyses can be gained by using
more than two syntenic sequences. In order to demonstrate
this, we aligned the human, rat (contig NW_043769.1) and
mouse CD4 segments. From this alignment, we calculated the
®ltered coding bias, and the ®ltered evolutionary distances
from the 7-D map. Since mouse and rat are such evolutionarily
close relatives, we did not expect an enormous change in the
resulting GeneGrabber plots. However, somewhat dif®cult
segments of the plots became signi®cantly easier to interpret
(Figure 5). We anticipate that the inclusion of a sequence from
a different mammalian order would greatly enhance this
approach.

DISCUSSION

Our analysis demonstrates that pattern ®ltering is an effective
and accurate comparative method for the annotation and
prediction of coding genes in syntenic DNA segments. In
addition, pattern ®ltering identi®es conserved non-coding
sequence elements. The results are straightforward for a user
to interpret, and our approach allows valuable ¯exibility when
faced with more challenging aspects of annotation such as the
detection of sequencing errors like the example above,
alternative splice models, overlapping genes and dif®cult to
detect exons which can precipitate a cascade of errors as a
gene ®nder attempts to construct a full gene model (8).

The mathematics behind pattern ®ltering is well grounded
in its proof, and decades of empirical experience have
demonstrated the mathematics' power; to our knowledge, it
is only the second gene ®nding approach to use spectral
analysis, and the ®rst of these to utilize ®ltering or to use
comparative information (42). Pattern ®ltering's utilization of
the three-nucleotide conserved pattern within codons is nearly
unique among gene ®nders (30). Additionally, pattern ®ltering
effectively uses the comparative information from two or
more sequences. These are the three greatest strengths of
pattern ®ltering.

Many closely related eukaryotic genomes are presently
being sequenced, or their sequencing is being planned. These
include human, mouse, cow, rat, dog, cat and other upcoming
vertebrate genomes, as well as multiple angiosperm and insect
genomes (43). Not only will this provide a greater quantity of
sequence for comparative analyses, but it should also lead to a
higher quality of comparisons, since the optimal evolutionary
distance differs depending on the task at hand (44). Because of
this, methods such as the one described here for the analysis of
syntenic segments will become increasingly important and
more powerful in the annotation of genomes and the discovery
of new genes and regulatory elements.

Availability

To aid in its distribution and widespread use, we are making
applications, manuals and examples available at http://
genomics.ucla.edu/pat®lt/.
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