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ABSTRACT

A method to detect DNA-binding sites on the
surface of a protein structure is important for func-
tional annotation. This work describes the analysis
of residue patches on the surface of DNA-binding
proteins and the development of a method of pre-
dicting DNA-binding sites using a single feature of
these surface patches. Surface patches and the
DNA-binding sites were initially analysed for
accessibility, electrostatic potential, residue propen-
sity, hydrophobicity and residue conservation.
From this, it was observed that the DNA-binding
sites were, in general, amongst the top 10% of
patches with the largest positive electrostatic
scores. This knowledge led to the development of a
prediction method in which patches of surface resi-
dues were selected such that they excluded
residues with negative electrostatic scores. This
method was used to make predictions for a data set
of 56 non-homologous DNA-binding proteins.
Correct predictions made for 68% of the data set.

INTRODUCTION

A method to detect DNA-binding sites on the surface of a
protein structure is important for functional annotation. In
addition, if a protein is known to bind DNA, but the site of
interaction is unknown, random mutagenesis studies are
commonly used to identify binding site residues experimen-
tally. A reliable computational method to help identify DNA-
binding sites on the protein surface would facilitate directed
mutagenesis experiments, in which speci®c residues could be
mutated and their effect on DNA binding analysed.
Previously, methods have been developed for the prediction
of protein±protein interaction sites on the surface of proteins
using patches of surface residues (1±5). In the current work,
this approach has been extended to the prediction of DNA-
binding sites on the 3D structure of proteins. A number of
physical and chemical parameters of surface residue patches
have been analysed to ®nd which one(s) are the best predictors
of DNA-binding sites. This information was then used to
develop a new method for the prediction of DNA-binding

patches on the surface of a protein. These patches are selected
on the basis of electrostatic potential. The patch with the most
positive potential is predicted as a site for DNA binding.

MATERIALS AND METHODS

Data set de®nition

427 protein±DNA complexes with a resolution better
than 3.0 AÊ were extracted from the Nucleic Acid Database
(NDB) (on-line version on 19 March 2003) (6). This list was
then clustered into homologous families (by protein chain)
based on structural similarity using the CATH Protein
Families Database (7). Multi-domain proteins were grouped
together in the same homologous family if the DNA-binding
domains were homologous (i.e. had the same CATH code). A
representative protein with the best resolution was taken from
each family to create a data set of 56 non-homologous proteins
bound to double-stranded DNA (dsDNA) (see columns 1±3 of
Table 1).

Surface accessible residue de®nition

The relative accessible surface area (ASA) of each residue in a
protein in the data set was calculated using NACCESS (8)
without the DNA molecule present (non-complexed). Hence,
non-complexed in this context refers to the protein structure
extracted alone from the PDB ®le for the protein solved with
DNA bound. Surface accessible residues were de®ned as those
residues that had a relative ASA of >5%.

DNA-binding interface de®nition

The ASA of each residue in a protein with DNA present
(complexed state) and the same protein without DNA present
(non-complexed state: the protein structure extracted alone
from the PDB ®le for the protein solved with DNA bound) was
calculated using NACCESS (8). If a residue lost more than
1 AÊ 2 ASA when going from the non-complexed to the
complexed state it was de®ned as a DNA-binding residue,
and included in a set of residues referred to as the known
DNA-binding interface. The number of residues in the known
DNA-binding interface is shown in column 6 of Table 1.

Patch de®nition for analysis

Each surface accessible residue (see above for de®nition) was
taken as the starting point for the de®nition of a patch. A patch
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was de®ned as the N nearest neighbouring residues (in terms
of distances between Ca atoms), where N was taken as the
number of residues in the known DNA-binding interface set
for each speci®c protein. If any identical patches were de®ned

from different residue start points only one was used for
the subsequent analysis. Five parameters were then calculated
for each patch on a protein and the known DNA-binding
interface.

Table 1. DNA-binding site prediction results for the data set of 56 protein±dsDNA complexes

PDB code Protein name Resolution Residue overlap
patch ranked 1

Random
prediction value

Number of residues in
DNA-binding interface

1qnaA Transcription initiator factor TFIID-1 1.80 10 0.04 42
1mjoB Methionine repressor 2.10 10 0.09 17
1d02A Restriction endonuclease MUNI 1.70 10 0.10 27
1bg1A STAT3b 2.25 10 0.03 23
1gdtA Gamma-delta resolvase 3.00 10 0.15 33
1hcrA HIN recombinase 1.80 10 0.40 26
1ewnA AAG DNA repair glycosylase 2.10 9 0.06 25
1qpzA Purine repressor 2.50 9 0.06 29
1fokA Restriction endonuclease FOKI 2.80 9 0.09 67
1am9A Sterol regulatory element binding protein 1A 2.30 9 0.11 17
1azpA SAC7D 1.60 9 0.14 20
1dp7P RFX-DBD 1.50 9 0.14 21
1a73A Endonuclease I 1.80 9 0.15 36
1dctA DNA (cytosine-5) methylase 2.80 9 0.15 46
1dmuA Restriction endonuclease BGLI 2.20 9 0.15 50
1vasA Endonuclease V 2.75 9 0.16 43
1bp7A Endonuclease I-CREI 3.00 9 0.21 47
1tupB Tumour supressor P53 2.20 8 0.06 18
2bop E2 DNA-binding domain 1.70 8 0.08 23
1crxA Cre recombinase 2.40 8 0.10 65
1dfmA Restriction endonuclease BGII 1.50 8 0.14 45
3htsB Heat shock transcription factor 1.75 8 0.14 21
1gd2E BZIP transcription factor RAPI 2.00 8 0.15 15
1qpiA Tetracycline repressor 2.50 7 0.02 23
1eqzA Histone H2A 2.50 7 0.03 27
1emhA Uracil-DNA glycosylase 1.80 7 0.06 20
1qrvA Endonulcease V 2.20 7 0.06 27
2irfJ Interferon regulatory factor-2 2.20 7 0.10 24
6mhtA HHAI methyltransferase 2.05 7 0.10 40
3pviA Endonulcease PVUII 1.59 7 0.12 33
1bdtA Arc transcription regulator 2.50 7 0.14 15
1ecrA Replication terminator protein (TUS) 2.70 7 0.15 69
1pdnC PRD paired domain 2.50 7 0.15 36
1b3tA EBNA-1 nuclear protein 2.20 7 0.19 34
1ignA RAP1 2.25 7 0.19 56
1au7A PIT-1 POU domain 2.30 7 0.22 44
1sknP SKN-1 transcription factor 2.50 7 0.25 21
1a1hA QGSR zinc ®nger 1.60 7 0.30 36
1hwtC HAP1 2.50 6 0.00 13
1dizA 3-Methladenine DNA glycosylase 2.50 6 0.03 27
1a36A DNA topisomerase 2.80 5 0.01 71
1qumA Endonuclease IV 1.55 5 0.02 31
2cgpA Catabolic gene activator protein 2.20 5 0.02 17
2hmi HIV-1 reverse transcriptase 2.80 5 0.02 59
1xbrA Transcription factor T domain 2.50 5 0.03 30
1eonA Type II restriction enzyme ECORV 1.60 5 0.07 37
1a3qA NF-KAPPA-B 2.10 4 0.00 21
1c9bA Transcription factor IIB 2.65 4 0.02 22
1mhdA SMAD MH1 domain 2.80 4 0.02 17
2bdpA DNA polymerase I 1.80 4 0.04 65
1ihfA Integration host factor 2.50 4 0.07 30
6croA Lambda CRO 3.00 4 0.35 20
1lmb3 Lambda repressor 1.80 1 0.07 23
1tauA DNA polymerase 3.00 0 0.02 46
1zqfA DNA polymerase b 2.90 0 0.02 28
2dnjA Deoxyribonuclease 1 2.00 0 0.02 22

The protein name as it appears annotated in the PDB ®le is shown column 2 and the resolution of the structure is in column 3. The number of residues in the top
ranked patch that overlap with the known DNA-binding interface is shown in column 4. The proteins in the table have been ordered by this value. The maximum
value is 10 as this is the maximum size of the patches used. The random prediction value (RPV) is the probability of selecting a patch with >70% overlap with the
known DNA-binding site by chance. The number of residues in the known DNA-binding interface is shown in column 6 (see Materials and Methods).
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De®nition of patch parameters

Accessible surface area. The absolute ASA value assigned to
each residue was summed for all residues in the patch. All
subsequent patch parameter values were normalized for the
ASA of the patch. This insured that although the generated
patches and the known DNA-binding interface might not have
comparable shapes, the patch parameter calculated for each
were comparable in terms of ASA.

Electrostatic potential. The electrostatic potential is computed
using the software package Delphi (9). The potential is
computed for individual protein chains, with the DNA
removed. The potential is computed on a discrete cubic grid,
with 101 points in the x, y and z directions, de®ned such that
the protein ®lls 30% of the total volume of the cubic grid.
Debye-Huckel boundary conditions were employed (the
default for this package) and a simpli®ed charge set de®ned
from the molecular dynamics package CHARMM (10) was
used (Table 2).

The radius for each atom is de®ned using the default values
from the visualization package GRASP (11). The dielectric
constant is taken to be 4 within the protein and 80 outside. The
ion concentration was taken to be 0.5 M with an exclusion
layer radius of 2 AÊ . The maximum change in the ion
concentration was 100 mM and the calculation was carried out
with 200 non-linear iterations. The potential at all points in the
neighborhood of the protein is derived from those values
calculated on the grid points using linear interpolation.

An electrostatic score DQi for the ith surface atom is de®ned
using the following equation:

DQi � 1

DSi

�
DSi

F�r�dA�r�

where F(r) is the potential at a point r. The area DSi is de®ned
by placing spheres of radius 7 AÊ around each surface
accessible atom, with DSi being the area of the sphere around
the ithatom which does not intersect with any other equivalent
sphere centered around each atom. The integration and
average in the above equation is computed by randomly
sampling the potential on DSi 1000 times and averaging the
result. There is a statistical error associated with this random
sampling procedure. In order to estimate this, the electrostatic
score for a single protein from the data set was calculated
using 100 and 1000 samples. From these two calculations, the
sum of the electrostatic scores varied by <3% and the average
difference was ~4%, indicating there was little difference
between the two sampling multiples. Hence, sampling was
conducted 1000 times.

In this way, an electrostatic score is assigned to each atom
on the protein surface. If DSi is too small (i.e. random sampling
cannot locate the region satisfying the above criteria) then the
electrostatic score is set to zero. A single electrostatic score
was then assigned to each residue (residue electrostatic score)
by summing the score of all atoms in the residue and dividing
by the number of atoms in that residue.

Residue interface propensity. The relative frequencies of
amino acids in known DNA-binding interfaces were used to

derive residue interface propensities. Propensities were cal-
culated for each of the 20 amino acids from the data set of 56
protein±dsDNA complexes. Propensities were calculated for
each amino acid (AAj) as the fraction of ASA that AAj
contributed to the known DNA-binding interface compared
with the fraction of ASA that AAj contributed to the protein
surface as a whole, as described previously (12,13). The
propensities and their natural logarithms (ln) are shown in
Table 3. A positive logarithmic propensity indicates that a
residue occurs more frequently in a DNA-binding interface
than on the protein surface. The propensities show similar
trends to those calculated previously for a smaller data set
(13). The positively charged arginine, and polar serine and
tyrosine show the most af®nity for DNA-binding interfaces.
This is expected as a protein interface has to complement the
negative charge on the surface of the DNA molecule bound.

Table 3 shows the propensities calculated over the complete
data set of 56 proteins. A jack-knifed (14) set of propensities
was also created for use with each protein. Hence, 56 sets of
propensities were created, each calculated with one protein
removed from the data set. When propensities were used in the
analysis of surface patches for one protein, the set created with
that one protein removed was used for the calculation to avoid
bias. The standard deviations of the propensities for each of
the 56 `jack-knifed' data sets are shown for each residue type
in Table 3.

Hydrophobicity. The experimentally derived amino acid
hydrophobicity scale of Fauchere and Pliska (15) was used to
assign a hydrophobicity value to each surface patch. The value
assigned to each residue in the scale was summed for all
residues in the patch.

Conservation. A conservation score for each patch was
calculated using Scorecons, a tool for scoring residue conser-
vation in multiple alignments (16). The protein sequence for
each member of the data set was extracted from its PDB ®le.
BLAST was then used to ®nd close sequence homologs in a
non-redundant set of GenBank (17) sequences, using an E-
value threshold of 0.001. The multiple alignments from the
BLAST searches were used as input to Scorecons (16). This
tool calculates a score for each residue in a protein sequence

Table 2. The simpli®ed relative charge set de®ned from CHARMM (10)
used in the calculation of the electrostatic potential of atoms in the DNA-
binding proteins

Atom type (PDB entry) Residue Relative charge

NZ Lys 1.00
NH1 Arg 0.50
NH2 Arg 0.50
OE1 Glu ±0.50
OE2 Glu ±0.50
OD1 Asp ±0.50
OD2 Asp ±0.50
OXT All residues ±1.00
N All residues ±0.10
CA All residues 0.10
C All residues 0.55
O All residues ±0.55
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that measures the degree to which it is conserved in evolution
as inferred from the multiple alignment. Thus, each residue in
a protein is assigned a single conservation score. The
conservation score for a patch is the sum of the constituent
residue conservation scores. For one protein (1dmuA), the
lack of suf®ciently diverse sequence homologs meant a valid
conservation score could not be calculated and this protein
was excluded from the analysis of parameter ranks for
conservation.

Calculating parameter and rank distributions

A frequency distribution for all surface patches for each
parameter was then calculated. Each parameter was divided
into 10 equal-sized bins and the position of the parameter
value of the known DNA-binding interface calculated within
each protein's distribution. An example of all ®ve parameter
distributions for the structure of methionine repressor (PDB
code 1mjoB) is shown in Figure 1.

The position of the parameter value for the known DNA-
binding interface within each distribution was recorded as a
rank between 1 and 10, dependent upon its position in the
distribution. For the example shown in Figure 1b, the DNA-
binding interface has an electrostatic score that is assigned to
bin 1 of this protein's electrostatic score distribution. In this
protein, the known DNA-binding interface has the highest
electrostatic score of all surface patches and is hence given a
rank of 1. In Figure 1d, the known interface is assigned to bin 4
of the hydrophobicity distribution, and hence for this protein
the known interface is ranked as 4 for this parameter. The

distribution of these rank values for each parameter over the
complete data set of 56 proteins is shown in Figure 2.

Patch de®nition for prediction

The above analysis showed that the electrostatic score of the
surface patches was the best predictor of a DNA-binding site
(see Results). This knowledge led to a new surface patch
de®nition for the prediction phase of the work.

As described above, each surface accessible residue of a
protein is assigned an electrostatic score. If a residue has a
positive electrostatic score it is used as a starting point (residue
A) for the de®nition of a patch for prediction. The closest
neighboring residue (in terms of distance between Ca atoms)
to residue A is calculated (residue B). If residue B has an
electrostatic score that is either positive or zero it is included
as the next residue in the patch. [If residue B has a negative
score then it is discarded and the next nearest positive or
neutral neighbour residue (residue C) is selected.] The nearest
neighbour to residue B is then selected, and the same process
of electrostatic score evaluation was conducted. Any residues
that had a negative electrostatic score, were always discarded,
and the next nearest neighbour selected and tested.

In this way a surface patch was selected like an amoeba,
with the patch only `extending' in the direction of residues
with positive or zero electrostatic scores. The maximum
number of residues selected was de®ned as 10. Patches were
de®ned with each surface accessible residue taken as a starting
point. If residue selection from different start points resulted in
the same patch being de®ned (i.e. two patches with exactly
the same residues included) then only one was used for the
subsequent ranking procedure.

Ranking of patches for prediction

In this way multiple surface patches with positive electrostatic
scores were de®ned on each protein. The patches were then
ranked according to their electrostatic score. The patch with
the largest positive score was given a rank of 1, the patch
with the next largest positive score a rank of 2, etc. The patch
with the lowest score had a rank equal to the total number of
different patches de®ned on the protein.

The overlap between a patch and the known DNA-binding
interface was calculated. The relationship between the
electrostatic score of a patch and the number of residues that
overlapped with the known interface was analysed (Fig. 3).
The number of residues, out of a maximum of 10, that
overlapped with the known DNA-binding interface for the top
ranked patch (rank 1) for each protein are shown in Table 1.
Examples of top ranking patches are shown with the known
DNA-binding interface residues for four proteins [1mjo, 1d02
(18), 1qna (19) and 1lmb (20)] in Figure 4. A correct
prediction was de®ned as one where a protein had a predicted
patch ranked 1 that had at least 70% of residues overlapping
with the known DNA-binding interface.

Calculating a random prediction value for comparison

The total number of patches that had >70% of residues
overlapping with the known DNA-binding interface was also
calculated for patches de®ned without using the criteria of
positive or neutral electrostatic score selection. Hence, each
surface residue was used as a start point as before, but every
residue selected as a nearest neighbor was included in the

Table 3. The natural logarithms (ln) of the residue interface propensities
for the 20 standard amino acids derived from the complete data set of 56
protein±dsDNA complexes

Amino acid ln residue
interface
propensity

SD of propensities
for 56 `jack-knifed'
data sets

Arg 0.53 0.01
Ser 0.44 0.01
Tyr 0.41 0.02
Thr 0.33 0.02
Asn 0.26 0.02
Met 0.19 0.05
Lys 0.19 0.01
Phe 0.06 0.03
Gly 0.03 0.02
Cys 0.02 0.04
Ala 0.02 0.02
Gln ±0.08 0.02
Ile ±0.20 0.03
His ±0.23 0.02
Leu ±0.29 0.04
Val ±0.38 0.03
Trp ±0.39 0.03
Pro ±0.62 0.03
Asp ±1.38 0.03
Glu ±1.54 0.02

The amino acids are shown in descending order by propensity. A positive
propensity indicates that a residue occurs more frequently in the interface
than on the protein surface. The standard deviations (SD) for each
propensity over the 56 `jack knifed' data sets are shown in the last column
of the table.
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patch regardless of its electrostatic score. These are referred to
as random patches. The `number of random patches that had
>70% of residues overlapping with the known DNA-binding
divided by the total number of patches' was de®ned as the
`random prediction value' (RPV). This value gave a reference
point by which to assess the predictions. A large RPV would
indicate a high probability of selecting a patch containing
>70% DNA-binding interface residues just by chance. The
RPV for each protein is shown in Table 1.

RESULTS

Analysis of surface patch parameters

Our analysis has showed that DNA-binding sites on proteins
are amongst the patches with the most positive electrostatic
score. From the rank distributions in Figure 2b it is seen that
for ~70% of the data set the known DNA-binding sites
are amongst the surface patches with the most positive

Figure 1. Distribution of parameters for all patches in methionine holorepressor (PDB code 1mjo). Distributions shown are for (a) accessible surface area
(ASA), (b) electrostatic score, (c) residue interface propensity, (d) hydrophobicity and (e) residue conservation. On each graph all the surface patches are rep-
resented in white and the known DNA-binding sites in black. Relative rankings (on a scale of 1±10) were calculated from each distribution and are shown on
each graph.
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electrostatic scores. This con®rms the results obtained by
Stawiski et al. (21), and the observation that the positively
charged residues lysine and arginine occur more frequently in
DNA-binding interfaces than on the protein surface as a whole
(13,22).

The known DNA-binding sites are also amongst the patches
with the highest interface residue propensities. In Figure 2c,
61% of proteins are observed to have known DNA-binding
sites amongst the 10% of surface patches with the highest
propensity scores. From Table 3, it appears that the residue

propensities are approximately correlated with residue charge.
For example, the negatively charged residues aspartic acid and
glutamic acid have the most negative propensities, whilst the
positively charged arginine residue has the highest positive
propensity. To test if the propensity values for a patch were
correlated to the electrostatic score of a patch, values for each
parameter were plotted for the 9778 patches generated for the
56 proteins (Fig. 5). The correlation coef®cient (r) of a trend
line ®tted to this data is 0.61 showing that the two parameters
are correlated to some degree.

Figure 2. Patch analysis distributions for 56 proteins bound to dsDNA, showing the rank ordering (on a scale of 1±10) of known DNA-binding sites relative
to other patches on the surface of the protein. The 56 observations were combined for each parameter separately: (a) ASA, (b) electrostatic score, (c) residue
interface propensity, (d) hydrophobicity and (e) residue conservation.

7194 Nucleic Acids Research, 2003, Vol. 31, No. 24



The other three parameters (ASA, hydrophobicity and
conservation) showed no discriminatory power, with the
known DNA-binding interfaces lying anywhere within the
parameter distributions for all surface patches (Fig. 2a, d and
e).

Amino acid conservation in DNA-binding sites presents a
complex picture. In a recent analysis of 21 protein families
(23), it was found that, in general, residues that make contacts
to the DNA backbone are conserved, but conservation of
residues that make contacts to DNA bases varies depending on
the binding speci®city of the complex in question. The current
data set of 56 complexes contains proteins in all three of the

speci®city classes de®ned by Luscombe and Thornton (23),
namely non-speci®c, highly speci®c and multi-speci®c. It was
expected that for the highly speci®c proteins (that have
conserved backbone and base contacting residues) the DNA-
binding sites would be more conserved than other patches on
the surface. This was observed for some proteins (e.g. 1qnaA
has a DNA-binding site ranked as 1, i.e. amongst the most
conserved) but the trend was not apparent for other proteins in
the data set classi®ed as highly speci®c. However, these
proteins belong to families that include many paralogs that
have evolved to recognize different target DNA sequences.
For proteins not in this class it was not expected that the

Figure 4. DNA-binding site predictions for four proteins in the data set. In each diagram the protein is shown in CPK format with the residues in the known
DNA-binding interface shown in pale blue on the left and the 10 residues in the top ranking patch shown in green on the right. The diagrams are images from
Rasmol (32): (a) methionine repressor (PDB code 1mjo), (b) restriction endonuclease MUNI (PDB code 1d02) (18), (c) transcription initiator factor TFIID-1
(PDB code 1qna) (19) and (d) lambda repressor (PDB code 1lmb) (20). The proteins shown in (a), (b) and (c) have a top ranking patch in which all 10 residues
occur in the known DNA-binding interface and are classi®ed as correct predictions. In (d), only one residue in the top ranking patch overlaps with the known
interface and this is an incorrect prediction.

Figure 3. The relationship between the electrostatic score of a surface patch and the overlap (in terms of the number of residues) of a patch with the known
DNA-binding sites. Each patch is 10 residues and hence the maximum overlap is 10. Data is shown for three proteins: (a) methionine holorepressor (PDB
code 1mjo), (b) zinc-®nger ZIF268 (PDB code 1a1h) and (c) lambda repressor (PDB code 1lmb).
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binding sites would be more conserved as the surface patches
de®ned potentially comprise residues that make both back-
bone and base contacts. In addition, it is possible that the
results are further confused by the presence of other binding
sites on the protein surface that might also show residue
conservation.

From this analysis, the electrostatic score (which showed
the best discriminatory power and was correlated with
interface residue propensity) was chosen as the parameter on
which to base the DNA-binding site predictions.

DNA-binding site predictions

A correct prediction was evaluated in a similar way to our
previous patch prediction method for protein±protein inter-
action sites (2). If a protein had a predicted patch ranked 1 that
had >70% of residues overlapping with the known DNA-
binding interface the prediction for that protein was de®ned as
correct. Using this assessment criteria, 68% (38/56) of the
predictions are correct.

In Table 1 the 56 proteins in the data set have been ordered
by the number of residues in the patch that overlap with the
known DNA-binding interface and are shown with their
RPVs. For example, methionine repressor structure (1mjoB)
has all 10 residues in the top ranked patch overlapping with the
known DNA-binding interface. The RPV for this prediction is
0.09 indicating that there is only a 9% chance of selecting such
a patch by chance.

For two of the incorrect predictions (1hwt, 1a3q) the RPV
was zero, indicating that a 10 residue patch de®ned on these
structures never overlapped the known interface by >7
residues. HAP1 (1hwt) has a known interface site that
comprised 13 residues and is an irregular shape, and hence
selecting 10 of these 13 in one circular patch proved

impossible. NF-KB P65 is a two-domain structure in which
the 22 DNA-binding residues span both domains and the loop
structure that joins the two. This site is an elongated shape and
the circular shape of the 10 residue patches de®ned on the
surface was not adequate to overlap >7 interface residues in
this structure.

Another three structures (2dnj, 1lmb, 1qum), for which
incorrect predictions were made, had known DNA-binding
sites that have negative electrostatic potentials. One of these
proteins, endonuclease IV (1qum), includes three Zn2+ ions at
the DNA-binding site that are critical for the enyzme's activity
(24). Hos®eld et al. (24) calculated that the grooved DNA-
binding site has an overall net positive electrostatic potential
when these metal ions are included. The electrostatic score for
the proteins in the current work was calculated without metal
ions present and hence this could explain why the known
binding site for this structure is negative and why the
prediction was unsuccessful. It has been observed in other
complexes that the binding of metal ions affects the binding of
DNA (25±27) and the inclusion of such ions should be
considered in further developments of the current method.

Predictions for another three proteins (1tau, 1zqf, 2dnjA)
had the residue overlap of the patch ranked top as zero
(Table 1). Both 1tau and 1zqf are polymerase structures that
comprise `thumb', `®ngers' and `palm' domains (28) com-
plexed with a short DNA double helix comprising just 8 bp.
On further analysis, it proved that for both polymerase I (1tau)
(29) and polymerase b (1zqf) (30) the top ranked patches were
located in the ®ngers domain and could potentially interact
with the DNA if the DNA molecule bound was not a short
fragment. Polymerase I (1tau) also had a top ranking patch that
mapped to the exonuclease domain of the structure. A
mechanism has been proposed that explains the editing of

Figure 5. The relationship between the electrostatic score and the residue interface propensity for 9778 surface patches de®ned over the 56 proteins in the
data set. A best-®t straight line is shown that has a correlation coef®cient (r) of 0.61.
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DNA by the polymerase structure in which the exonuclease
domain binds single-stranded DNA (28). It is possible that the
positive electrostatic patch identi®ed may constitute part of
this binding site. In the DNase I (2dnj) (31) structure, the top
ranked patch occurs on a surface of the protein that is far from
the DNA-binding site, and there is no evidence that suggests a
function for a positive electrostatic patch in this region.

DISCUSSION

In this work, we have used a fast and simple method to make
predictions of DNA-binding sites on the surface of 3D protein
structures. We have obtained a 68% correct prediction rate for
a large data set of 56 non-homologous proteins known to bind
DNA. The prediction method is based on the observation that
DNA-binding sites are, in general, amongst the most positive
electrostatic patches on the surface of a protein.

A recent paper has addressed the wider issue of predicting
whether a protein structure binds DNA (21). This method
employs a total of 12 sequence and structural features of
positively charged surface patches to make predictions using a
neural network. The properties used include secondary
structure content, ASA, hydrogen bonding potential, surface
concavity, amino acid frequency and sequence conservation.
Each property alone is insuf®cient to determine DNA binding,
but in combination a neural network was successfully trained
for prediction. With such methods, where training occurs
using a large number of features, it is impossible to
deconvolute which properties contribute most to the predic-
tions. In the current method, we have achieved successful
predictions using scores based on electrostatic potentials
without the addition of other parameters.

In the current work, it has been assumed that the protein
solved with DNA bound has the same structure and surface
properties as the protein solved without DNA bound.
However, it is known that many proteins undergo conforma-
tional changes on binding DNA. There are examples of protein
structures that have been solved with and without DNA bound,
and the changes that occur in such structures range from
disorder-to-order transitions to changes in tertiary, quaternary
and domain structure (22). However, restricting the current
analysis and predictions to the small number of structures that
have been solved in both states would reduce the data set
considerably and not allow general conclusions to be drawn. A
much larger number of proteins solved in both states would be
required to quantitatively analyse how such changes affect the
surface properties of the protein. However, Stawiski and co-
workers have showed that their analysis of positively charged
electrostatic patches for binding site prediction was still valid
when used on a small subset of protein structures solved
without DNA bound (21).

We have previously published a method for the prediction
of DNA-binding sites in proteins using 3D motif templates (5).
This method involves the scanning of 3D templates of helix±
turn±helix (HTH) motifs across the PDB and the evaluation of
a root-mean-squared deviation threshold below which a
protein is predicted as including a DNA-binding motif. In
this method, a number of false positive matches still remained
even when an additional ASA threshold was applied to the
data (false positives are proteins predicted to contain HTH
motifs but for which there is no evidence that they bind DNA).

In the current work, it has been shown that DNA-binding sites
are amongst the surface patches with the most positive
electrostatic potential. An obvious next step is to combine the
structural template method with electrostatic potential data to
make the template scanning method more speci®c to DNA-
binding motifs.

It is intended that the current prediction method based on
electrostatic potentials will be made available as a Web server.
The server will enable the user to upload protein structure
coordinates, calculate electrostatic scores for surface atoms
and then get a prediction of the surface patches included
within the DNA-binding site. This new server will be
organized concurrently with the motif server which imple-
ments the method of using 3D motif templates to identify
DNA-binding proteins (http://www.ebi.ac.uk/thornton-srv/
databases/DNA-motif) (5).
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