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Abstract

Despite the central role of amyloid deposition in the development of Alzheimer's disease (AD), the
pathogenesis of AD still remains elusive at the molecular level. Increasing evidence suggests that
compromised mitochondrial function contributes to the aging process and thus may increase the
risk of AD. Dysfunctional mitochondria contribute to reactive oxygen species (ROS) which can
lead to extensive macromolecule oxidative damage and the progression of amyloid pathology.
Oxidative stress and amyloid toxicity leave neurons chemically vulnerable. Because the brain
relies on aerobic metabolism, it is apparent that mitochondria are critical for the cerebral function.
Mitochondrial DNA sequence-changes could shift cell dynamics and facilitate neuronal
vulnerability. Therefore we postulated that mitochondrial DNA sequence polymorphisms may
increase the risk of AD. We evaluated the role of mitochondrial haplogroups derived from 138
mitochondrial polymorphisms in 358 Caucasian ADNI subjects. Our results indicate that the
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mitochondrial haplogroup UK may confer genetic susceptibility to AD independently of the
APOEA4 allele.
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1. Introduction

Despite the remarkable effort and resources devoted to Alzheimer's disease (AD) this last
decade, the pathophysiology of AD has not been well characterized. The current animal
models of AD pathogenesis and the human genome-wide association studies (GWAS) have
not resulted in a single common origin for the irregular but common incidences of AD, thus
implying extensive heterogeneity in the underlying pathophysiology. One clear underlying
pathophysiologic feature of AD has been identified and this centered on “the amyloid and
tau pathology” that is believed to lead to neuronal loss, decreased synaptic density, brain
atrophy, and a subsequent progressive cognitive decline associated with AD (Yankner et al.,
2008). Nevertheless, recent research into AD provides compelling evidence for a variety of
additional pathological events including oxidative stress and apoptosis (Mamelak, 2007).

It is has been postulated that the accumulation of reactive oxygen species (ROS) over a
period time is negatively correlated with mitochondrial function and significantly
contributes to the aging process (Wallace and Fan, 2009). As the primary source of ROS,
mitochondria play pivotal roles in maintaining cellular energy balance and lie at the nexus of
the signaling pathways controlling apoptosis. As such, it is conceivable that mitochondria
may mediate the development and clinical outcome of AD. In fact, numerous research
findings suggest a link between altered cerebral metabolic rate for glucose (CMRc) in
subjects with mitochondrial mutations (Lindroos et al., 2009). PET imaging studies have
demonstrated a detectable decline in cerebral metabolism prior to any brain atrophy or
abnormality found by neuropsychiatric testing in subjects who later developed AD (Reiman
et al., 2004). Postmortem studies on AD brains have revealed a reduction in the
mitochondrial respiratory chain proteins in the posterior cingulate (Liang et al., 2008). The
projection neurons of the cerebral cortex which tend to die first in AD, and show increased
vulnerability to decreased mitochondrial efficiency (Gotz et al., 2009).

The Down-syndrome (DS) brain, with accelerated amyloid deposition and high propensity
for AD, implies a possible synergy between amyloid deposition and ROS production. The
structural changes that caused DS harbor APP, a precursor molecule of amyloid B as well as
gene SOD1 encoding an enzyme named superoxide dismutase 1. SOD1 marks the first
important step in scavenging and neutralizing ROS in cells (Engidawork and Lubec, 2001).
The amyloid B, a product of APP processing, has been shown to be transported into the
mitochondria through the TOMM complex (Devi et al., 2006) and inhibit the oxidative
phosphorylation system (OXPHQOS) in line with APOE (Crouch et al., 2005). In addition,
DNA sequence variations within both the APOE and TOMMA40 genes have been found to be
significantly associated with AD in genome-wide association studies (Potkin et al., 2009;
Roses et al., 2009; Shen et al., 2010). Mitochondria efficiency may decrease in response to
amyloid toxicity and interfering proteins like APOE and Drp1 (Cho et al., 2009) that initiate
a “vicious cycle” in ROS production facilitating apoptosis and leading to cell death (Reddy,
2009).

Therefore, it is plausible link AD to the functional status of mitochondria that critically
relies on the mitochondrially expressed OXPHQS proteins (Fosslien, 2001). Because the
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mitochondria genome differs from the nuclear genome in the rate of accumulation of
mutations, it has been proposed that some common mitochondrial DNA (mtDNA)
polymorphisms probably alter protein functions and compromise mitochondria efficiency
(Tuppen et al., 2009). There is growing evidence that certain mtDNA clusters and
polymorphisms as well as the somatically acquired mutations could predispose to
psychiatric disorders (Coskun et al., 2004; Jou et al., 2009; McMahon et al., 2000; Zecavati
and Spence, 2009).

To further elucidate the relation between mitochondrial DNA sequences polymorphisms and
risk of AD, we calculated the association of mitochondrial haplogroups derived from 138
mitochondrial polymorphisms in 358 ADNI subjects. To the best of our knowledge this is
the first report considering mitochondrial SNPs in the context of a longitudinal clinical study
of AD.

2. Methods

2.1 Ethics

The ADNI data was previously collected across 50 research sites. Study subjects gave
written informed consent at the time of enrollment for imaging and genetic sample
collection and completed questionnaires approved by each participating sites' Institutional
Review Board (IRB).

2.2 The Alzheimer's Disease Neuroimaging Initiative (ADNI)

ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and non-profit organizations as a $60 million, 5-
year public—private partnership. The primary goal of ADNI is to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessments can be combined to measure the
progression of MCI and AD. Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians in the development of new
treatments and monitor their effectiveness, as well as lessen the time and cost of clinical
trials.

The principal investigator of this initiative is Michael W. Weiner, M.D., VA Medical Center
and University of California, San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and Canada. ADNI
participants include approximately 200 cognitively normal older individuals to be followed
for 3 years, 400 people with MCI to be followed for 3 years, and 200 people with early AD
to be followed for 2 years. Participants are evaluated at baseline, 6, 12, 18 (for MCI only),
24, and 36 months (although AD participants do not have a 36 month evaluation). For
additional information see http://www.adni-info.org.

2.3 ldentification of 138 mitochondrial SNPs

The genotyping procedure for the mtDNA and APOE variations was executed as described
in (Potkin et al., 2009). Genotyping was performed on the IHlumina Human610-Quad
Infinium HD platform. The Illumina Human610-Quad BeadChip has of 550,000
polymorphic sites (SNP), plus an additional 60,000 genetic markers including 138
mitochondrial DNA sequence polymorphic sites. The 138 mitochondrial SNPs are based on
the AF347015.1 mtDNA reference sequences, one of 53 African sequences deposited in
Genbank by Ingman et al in 2001 (Ingman and Gyllensten, 2001). As the first step, the 138
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mitochondrial AF347015.1 DNA SNPs were mapped to revised Cambridge Reference
Sequence (rCRS) and manually annotated. The 138 SNPs consist of 21 noncoding, 91
protein coding, 4 rRNA, 11 tRNA and 1 termination sites. A subset of the 138 SNPs is
shown in Table 1.

2.4 Haplotyping and haplogroup assignment

Since variation in the mtDNA genome arose as result of the sequential accumulation of
mutations over time (1 mutation/10,000 years), specific combinations of these ancient
mutations can cluster as haplotypes, and subsequently define haplogroups. The hierarchical
relationship amongst these haplogroups based on mutations can be represented by a
phylogenetic tree via available programs (http://www.phylotree.org). The nucleotide
changes of the 138 mitochondrial SNPs for each subject were compared to rCRS and used to
identify motifs that characterize mitochondrial haplotype (van Oven and Kayser, 2009).
Assignment of each individual mtDNA “sequence” to specific haplogroups was performed
according to criteria as published (Torroni et al., 1996) (e.g. haplogroup J is define by
mutations at locations 11251, 16126, and no mutation at 16294). Based on each subject's
available genotyping, all 816 ADNI subjects were haplotyped and assigned to a haplogroup.

2.5 Population and stratification

Population heterogeneity has been cited as one of many difficulties in studying complex
diseases (Schork et al., 2001). Although race and ethnicity were available as surrogates to
evaluate genetic similarity amongst individuals, race does not always correctly reflect
population of origin, particularly in heterogeneous admixed groups - as expected for the
ADNI dataset. In order to avoid the confounding effect due to population stratification, we
assessed evidence for genetic background heterogeneity and by leveraging publicly
available, well-defined populations. Briefly, Phase 2 HapMap dataset (n=270 subjects) were
merged with the entire genome-wide scan of 816 ADNI subjects
(http://pngu.mgh.harvard.edu/~purcell/plink/res.shtml) (Enoch et al., 2006). For all
individuals in the merged dataset, a pair-wise identity-by-state (IBS) distance matrix was
created by a linkage agglomerative algorithm implemented in PLINK (Purcell et al., 2007).
Subsequently, Multidimensional Distance Scaling (MDS) analysis was carried out on the
genome-wide IBS pair-wise-distance matrix of the merged dataset to display the structure of
the distance between individuals as a geometrical picture (JMP Genomics 4.00). For the
purpose of this study, the ADNI individuals that clustered with CEU founders (Utah resident
with ancestry from northern and western Europe), and belonged to the diagnostic AD
(n=170) or control (n=188) groups were selected for further statistical analyses. Analysis
comparing nuclear DNA genetic background differences among individuals in the different
mitochondrial haplogroups did not reveal any obvious associations among European sample
of individuals chosen for study.

2.6 Statistical analyses

Student's t-tests were used to evaluate the differences in means between AD and control
(CTRL) groups for continuous variables. Statistical significance was assesses on the basis of
a 2-sided test with a=0.05. Frequency differences for categorical outcomes in AD and CTRL
groups were assessed via Chi-square (y2) test statistic or Fisher's exact test (Table 2).
Mitochondrial haplogroups and allelic frequencies were compared between AD and CTRL
using x2 test or Fisher's test. Effect size for the association was measured as an odds ratio
(OR) with a 95% confidence interval (Cl). Cochran-Mantel-Haenszel (CMH) tests were
performed to adjust for APOE4 allele genotype (i.e. E4 “dose”). The homogeneity of odds
ratios across strata was tested by the Breslow-Day test. Logistic regression was performed to
assess the contribution of mtDNA haplogroup, APOE4 allele, and their potential interaction
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effects to AD risk. Adaptive permutation tests were employed for accommodating multiple-
testing.

2.6.1 Statistical Package—JMP Genomics Version 4.00. (SAS Institute Inc., Cary, NC,
1989-2007); PLINK (Purcell et al., 2007); STATAL0 (StataCorp. 2007. Stata Statistical
Software: Release 10. College Station, TX: StataCorp LP).

3.1 Demographic

All subjects were part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), a
longitudinal multi-site observational study including. All the participants in this study were
confined to group case (AD) or control (CTLR) defined at baseline diagnosis. Following
MDS analysis (section 2.7), a total of 170 AD subjects and 188 healthy controls were
included in this analysis. The two groups were compared at different variables and
summarized in Table 2.

AD and cognitively normal participant (CTRL) groups do not differ in age, gender, smoking
and handedness. However, AD subjects had a lower education level (p<5.4E-5) and had a
disproportionally higher APOE4 allele frequency (p<4.77E-17) than the CTRL group. The
two groups also significantly differed in ADAS-cog (p<0.00001) and MMSE scores
(p<0.00001) reflecting the enrollment criteria for ADNI.

3.2 Association Analysis

3.2.1 Case-control differences in mitochondrial haplogroups—All subjects with
Caucasian origin belonged to a major haplogroup N which was rooted approximately 70,000
years before present (YBP). Haplotype N consisted of 358 subjects who were distributed
among the 9 designated haplogroups: H, I, J, K, T, U, V, W, and X. These 9 haplogroups
were partitioned into 4 encompassing haplogroup clusters 1) HV, 2) JT, 3) UK, and 4) IWX
based on their relation to ancestor lineage N (Finnila et al., 2001; Richards et al., 1996;
Richards et al., 1998) as detailed in Figure 1.

The frequency of the haplogroups for each of the 4 clusters is demonstrated in Figure 2. The
frequency distribution of the clusters is consistent with the reported worldwide
mitochondrial haplogroup distribution reported at the MITOMAP database
(www.mitomap.org). From the 358 ADNI participants, 86 subjects (24%) belong to
haplogroup UK, 67 subjects (19%) belong to haplogroup JT, 183 (51%) to haplogroup HV,
and 22 subjects (6%) to haplogroup IWX.

The chi-square (x2) test statistics revealed significant association between disease status and
mitochondrial haplogroups (y2=7.99, df=3, p-value<0.046). The strongest association
among the 4 haplogroups involved in the UK haplogroup with a contrast between CTRL
(x2=2.75) versus AD (x2=3.05) and associated odds ratio of (1.92, 95% CI: 1.13, 3.26; p-
value < 0.013). A formal test for homogeneity confirmed that UK haplogroup appeared to
have a stronger association with AD than the other haplogroups (32=7.97 df=3 p-value <
0.045). A score test for trend of odds supported this (y“= 4.76, p-value < 0.03). The
magnitude of association remained significant (y?=7.63, df=3,p-value<0.0057 Cl 1.12, 195)
after adjusting for APOE4 allele dose.

3.2.2 Case-control differences in mitochondrial single nucleotide

polymorphism—An allelic association analysis was conducted for each of the
polymorphic mtDNA sites. In the analysis, all the 138 SNPs were calculated for association
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regardless of haplogroup specificity or minor allele frequency. Adaptive permutation
analysis for each polymorphism was performed to determine an empirical p-value. All the
mtSNPs with an empirical p-value < 0.05 were considered statistically significant. The SNP
DNA position, minor allele frequency in AD and CTRL, asymptotic p-value, odds ratio,
confidence interval, functional consequence and haplogroup specificity are reported in Table
4.

Analysis of individual SNP revealed that risk of AD was increased in subjects who carried
minor allele MitoA11467G (OR=2.22; 95% CI, 1.30 3.78; p value<0.003). The
MitoA11467G is a synonymous polymorphism located in gene NADH dehydroenase 4
(ND4). The encoded protein of this gene is a subunit of a large enzyme complex known as
complex I. Complex | is responsible for the first step in the oxidative phosphorylation
process by transferring electrons from NADH to ubiquinone. The second most significant
SNP was MitoA12308G (OR=2.03; 95% ClI, 1.23 3.34; p value<0.006) located in a tRNA
which transfers the amino acid leucine for protein synthesis. This polymorphism was found
highly significant in an interaction with 10398G (empirical P value = 0.0028) suggesting
some women are at increased risk to develop breast cancer (Kinoshita et al., 1996).
MitoG12372A (OR=1.996; 95% Cl, 1.21 3.27., p value<0.006) located in gene NADH
dehydrogenase 5 (ND5) that encodes a subunit for complex I. MitoC9698T (OR=2.265;
95% ClI, 1.16 4.41; p value <0.003) is synonymous variant encoding Cytochrome C oxidase
I11 (COIlII) enzyme found in complex IV. Defects in mitochondrial COIlll gene implicated in
Leber hereditary optic neuropathy (LHON) (Brown et al., 1992; Eichhorn-Mulligan and
Cestari, 2008) and age-dependent accumulation of mutations in mitochondrial DNA
(mtDNA) in cytochrome ¢ oxidase has been implicated in the onset of sporadic AD (Davis
etal., 1997; Lin and Beal, 2006) MitoC16270T (OR=2.527; 95% Cl, 1.16 4.41; p
value=<0.048) is located in the hypervariable segment assumed to represent a mutational
hotspot (see summary in Table 4)

Besides age as a major risk for AD, APOE 4 is the most consistently replicated genetic risk
factor for late-onset AD. Since there is a significant APOE allele frequency difference in our
cohort, a subsequent analysis was performed to assess the potential for an APOE4
cofounding or interactive effect. Logistic regression revealed no evidence for an interaction
effect. However, APOE revealed strong association with AD at level of OR=4.11-5.35
independently of mtSNPs.

The location and potential effect on gene function of the significant mutations in relation to
mtDNA are depicted in Figure 3.

Thus, based on ¥ tests and logistic regression analysis, the APOEA4 allele, and the
mitochondrial haplogroup UK, as well as specific mitochondrial polymorphisms, are
significantly associated with AD in the ADNI cohort. Given the functional consequences of
the significant mitochondrial polymorphisms, the possession of these polymorphisms may
predispose to AD.

4. Discussion

Recent research studies have found links between mitochondrial dysfunction and common
diseases of aging, such as Parkinson's (PD) and Alzheimer's disease (AD) (Wang et al.,
2009; Wang et al., 2007). A growing body of evidence suggests a reasonable association
between amyloid-p toxicity, mitochondrial dysfunction, oxidative stress and neuronal
damage in AD pathophysiology (Mancuso et al., 2006) The impact of the dysfunctional
mitochondria on the integrity of neuronal cells is not fully understood. Mitochondria are
exclusively positioned to play a pivotal role in neuronal cell survival or death by controlling
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energy metabolism and apoptotic pathways. Mitochondrial malfunction can alter the delicate
bioenergetics balance making neuronal cells vulnerable to challenge (Wallace et al., 2010).
Mitochondrial haplogroups and polymorphisms have also received substantial consideration
in psychiatric and neurodegenerative diseases (Tuppen et al., 2009). Mitochondrial
associations were found between AD and haplogroup J with increased susceptibility, while
haplogroup T was found to have protective effect (Chagnon et al., 1999). Increased risk of
AD in males with haplogroup U (van der Walt et al., 2004) as well as the mitochondrial
tRNA(GIlu) 4336 SNP have been reported (Brown et al., 1996; Shoffner et al., 1993). In
addition, we report 5 mitochondrial SNPs, 3 of which define haplogroup UK and 2 of them
specific to certain UK haplotypes in association exhibit associations with AD in the ADNI
cohort.

One potential explanation for the associations is that mtDNA haplogroups correlates with
genetic background that are distinctive between geographically separated populations.
However, our population stratification analysis did not find significant difference between
the major haplogroups and nuclear DNA-based genetic background and hence argues
against a population substructure confounding effect. Another potential explanation is that
the underlying mechanism for the predisposition for Alzheimer disease is related to energy
deficiency. Observations on longevity, neurodegenerative disease susceptibility (van der
Walt et al., 2004; Wallace et al., 1998), sperm viability (Montiel-Sosa et al., 2006), and
climate adaptation propose association between functional mtDNA variations and ATP
production efficiency and correlated ROS and heat generation in different haplogroups
(Arning et al., 2010). The mtDNA haplogroup most prone to energy deficiency in Europe
are haplogroups U and Uk (Hendrickson et al., 2008). It is conceivable that additional
genetic risk factors further compromise the mitochondrial ATP production causing it to fall
below the threshold level needed for optimal neuronal functioning. It is important to note
that mitochondria genome expresses 37 genes and other approximately 1500-2000 nuclear
genes may play critical role in optimal mitochondria function (Wallace, 2008). This
interaction between the two genomes may influence brain function (Roubertoux et al., 2003)
and may contribute to the complexity of AD pathophysiology.

Despite few contradictory research findings in haplogroup association to AD (Chinnery et
al., 2000; Coppede et al., 2007; Elson et al., 2006), the design of ADNI provides the
opportunity to follow up our findings with neuroimaging and psychometric examination in
addition to a nuclear DNA-based GWAS interrogation. This comprehensive approach has
the potential to provide novel insight into the underlying pathomechanisms of Alzheimer's
disease and possibly open up a new prospect for novel pharmacological targets and
therapeutic strategies (Wallace, 2005).
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Figure 1.

Schematic phylogeny of the basal European mtDNA haplogroups.

Legend: Simplified mtDNA phylogeny tree demonstrate the Caucasian lineages exclusively
originated from haplogroup N approximately 50,000-70,000 YBR. The alphabetical symbols
illustrate the descendant lineages of macrograph N and indicate the phylogenic relationship
amongst haplogroups as a basis of the haplogroup designation to clusters. The global
mtDNA variations are available at http://www.phylotree.org.
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Figure 2.

Overall distribution of mtDNA haplogroups of 358 subjects in the ADNI dataset.

Legend: Labels designate the name of the haplogroup clusters and the relative frequencies of
the haplogroup expressed in percentages.
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Figure 3.

Semantic illustration of the Human Mitochondrial Genome

Legend: The 5 significant mitochondrial polymorphisms in italics (ADNI prefix followed by
SNP number) are mapped to mtDNA. The most well-know pathogenic mutations are also
outlined. The abbreviations are DEAF=deafness; MELAS=mitochondrial
encephalomyopathy, lactic acidosis and stroke-like episodes; LHON=Leber's hereditary
optic neuropathy; ADPD=Alzheimer's and Parkinson's disease; MERRF=myoclonic
epilepsy and ragged red fiber disease; NARP=neurogenic muscle weakness, ataxia, retinitis
pigmentosum; LDY S=LHON-+dystonia modified from (Wallace, 2005).
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Summary of demographic and clinical data of the 358 participating subjects

Table 2

CTRL AD Statistical Significance (p-value)
# Subjects 188 170
Mean Age 75.9345.01 | 75.79x7.57 p=0.83
Gender (Male/Female) 98/90 101/91 p>0.706
Smoker/non-smoker 69/101 222/135 p=0.26
Handedness (right/left) 171/17 158/12 p=0.5
Mean MMSE 29.11+0.93 | 23.40%2.07 p<0.00001
Mean ADAS-cog 9.37+4.09 28.65+8.7 p<0.00001
Mean years of Education | 16.18+2.81 14.9+ 3.0 p<5.4E-5
APOE (£2/¢3/¢4) 27/297/52 | 8/189/143 p<4.7755E-17

Mean * standard deviation (SD) and the frequency of each category are represented with test statistics.
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