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Abstract
Clinical trials often include binary endpoints. In some cases, no successes are observed and the
usual large-sample estimates of relative risk are undefined. This paper proposes an estimator for
relative risk based on the median unbiased estimator. The proposed relative risk estimator is well
defined and performs satisfactorily for a wide range of data configurations. To facilitate the use of
the estimator, a deterministic bootstrap confidence interval is also proposed, and a SAS MACRO
is available to perform the necessary calculations. An ongoing randomized clinical trial motivated
the development of the estimator and is used to illustrate the approach.

1 Introduction
Modern clinical trials often include at least one categorical outcome variable. These
categorical outcomes are used to describe an intervention’s efficacy or safety profile. For
example, binary outcomes could be used to describe the occurrence of a serious adverse
event, a treatment ‘response’ (e.g., tumor remission), or an observation of a desired result
(e.g., a urine drug screen negative for illicit substances). The analysis of the data generated
by such studies usually presents no difficulties, but there are situations in which the large
sample estimators generally break down.

Typically, the sample size of a pilot study or early phase clinical trial is small. Nonetheless,
decisions to further examine a treatment are based on these small, initial investigations.
Similarly, interim monitoring of safety in clinical trials, of any size, may yield few observed
events even in instances when the adverse events of interests are not rare (Carter & Woolson
2007). In these cases, large-sample estimators of proportions and relative measures of
association may perform poorly. This poor performance is magnified when the sample size
is small and/or when the success probabilities are at or near 0 or 1 (Agresti 2003).

In this paper, we derive a point estimate for the relative risk based on the median unbiased
estimator. In addition, a confidence interval based on the precisely enumerated discrete
distribution of the estimate (i.e., a ‘deterministic’ bootstrap) is proposed. This approach is
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designed particularly for use when the number of subjects in each group is small, or the
proportions are at or close to the boundary values of 0 and 1. The proposed estimator is
compared to the standard large-sample (‘Wald’) estimator and to the class of estimators that
rely on the addition of a small constant to the cells of the contingency table. The method is
illustrated by an interim safety analysis of an ongoing clinical trial.

1.1 Motivating Example
For patients with type 1 diabetes mellitus, intensive glycemic therapy, which may more
closely resemble the body’s own glycemic control achieved through a functioning endocrine
system, has been commonly regarded as the optimal therapy, but recently, the safety and
efficacy of intensive therapy in patients with type 2 diabetes has been called into question
(Weir 2007). Regardless of the type of diabetes, complications due to severe hypoglycemic
events (blood glucose levels less than 40 mg/dL), are of critical concern(Finfer et al. 2009).
For clinical trials evaluating intensive diabetes therapy relative to conventional diabetes
therapy, one must carefully evaluate whether there is an increased risk of severe
hypoglycemia in the intensively-treated participants to ensure adequate protections of
human subjects. However, close monitoring during inpatient hospital stays with corrective
actions taken if low blood glucose are observed may help minimize the risk for severe
hypoglycemia (Hermayer et al. 2007). Statistically speaking, these clinical procedures may
create situations in which the risk for severe hypoglycemia is small and few, if any,
occurrences of severe hypoglycemia are observed over the course of the clinical trial. As
will be shown later when the motivating example is revisited, ordinary calculations
involving the ratio of the risks become poorly defined when few, if any, events are observed.

2 Methods
2.1 Median Unbiased Estimators

Consider a binomial random variable, Y ~ Bin(n, p), where n and p are the usual binomial
parameters. The maximum likelihood estimate (MLE) for p is , where y is the
observed number of successes in n independent Bernoulli trials. This estimate and its
asymptotic confidence interval have poor statistical performance when n is small or when y
is, or in some cases approaches, 0 or n (Newcombe 1998, Agresti 2002). While
asymptotically the MLE is an efficient estimator for p, there has been significant research on
the finite sample properties, see Brown et al. (2001) for an excellent review. A general
estimation approach not covered by Brown et al is the use of the median unbiased estimator
(MUE) (Read 1985, Hirji et al. 1989). The MUE, , is an estimator that satisfies the
following property:

In the context of the binomial distribution with probability mass

the MUE is defined as the value  that satisfies
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For discrete data, there is no unique  (Hirji et al. 1989), so we obtain lower and upper

values,  and , by solving

(1)

and

(2)

for  and . The midpoint is usually chosen as the MUE (Hirji et al. 1989). Thus, let

 denote the MUE of p.

Iterative procedures can be used to solve equations 1 and 2, but in practice, iterative
solutions are not needed since one may rely on the relationship between the cumulative beta
distribution and the binomial distribution. In particular,

(3)

and

(4)

where F−1(Q|α, β) is the Qth quantile of the cumulative beta distribution, a value that is
readily available in most common statistical packages.

2.2 Special case of zero or all successes
Special considerations are needed when y is either 0 or n. If y = 0,

Thus, any value of  in the interval [0, 1] satisfies the definition of MUE, so  is taken as

0, the lowest possible value (Parzen et al. 2002). Additionally when  must satisfy
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This expression is easily solved in terms of . Therefore, when no successes are
observed, the MUE is

The MUE is also well defined in instances when all of the Bernoulli trials are successes. If y

= n, it can be shown that  and . Thus,

when y = n.

It should be noted that the assignment of  when y = 0 and  when y = n is arbitrary.
These values, which represent the extreme cases, are useful to yield a conservative estimate

of , but other choices for  and  could be considered. Their use in the present context
is consistent with previous use for the odds ratio (Parzen et al. 2002) and the risk difference
(Lin et al. 2009).

2.3 Estimator for the relative risk
Theorem: The ratio of two median unbiased estimators for independent
proportions is always defined—The proof of this theorem is straight forward. Consider
two independent binomial random variables, Yg ~ Bin(ng, pg), where ng and pg are the usual
binomial parameters for group g, g = 1, 2. From inspection of equations 3 and 4, it is
inferred that when yg is not 0 or 1, . Likewise, when  provided ng
> 0. Similarly, when  provided ng > 0. Thus, the ratio of two median
unbiased estimates is always defined. That is, the estimator for relative risk (RR) based on
the ratio of two MUEs is always defined. Therefore, let  be defined as

It is worth noting that while  are MUE,  is not necessarily an MUE.

2.4 Deterministic bootstrap confidence interval
A confidence interval for  can be obtained by using the exact enumeration of the full
bootstrap distribution for (Y1, Y2). This ‘deterministic’ bootstrap differs from the usual non-
parametric boot-strap in that no Monte Carlo simulations are needed. To establish the
bootstrap sample space, a parametric bootstrap sample can be obtained by drawing random
binomial samples of size ng from the binomial distribution defined by , which is
represented as follows:
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This parametric bootstrap sample, denoted as , is defined as one random binomial sample
of size ng from this distribution. When the two groups are considered together, the sample

space consists of (n1 + 1)(n2 + 1) elements denoted as . Since the two groups are
usually independent, the probability mass for each element in the sample space is

For each element in the sample space, an estimate of RR is obtained. It is important to note
that not all of the estimates, denoted as , are unique. This stems from the fact that 
under certain conditions such as when  with n1 = n2, i.e., k = 1. Thus, the individual
joint probabilities, P*, need to be summed over identical estimates of  to yield the

, the probability mass, and , the cumulative bootstrap probability distribution.
To obtain the lower end point of a two-sided 100(1 – α)% confidence interval, one identifies

the value  such that . Likewise, to obtain the upper limit, the value  is

chosen such that .

Since the bootstrap distribution is discrete, there are special considerations that need to be

addressed. First, if the cumulative distribution is such that  or

, then the value for the end point of the confidence interval is poorly
defined. To account for this, the lower and/or upper confidence limits are set at either 0 and/
or ∞, respectively. Furthermore, it is unlikely that  and  will be observed directly, so
linear interpolation may be used to estimate the lower and upper confidence limits. For
example,

where  and πl are the closest quantile cutting off a tail area less than α/2; and  and πu
are the closest quantile cutting off a tail area above α/2.

3 Evaluation study
The small to moderate sample properties of the proposed estimator for the relative risk were
examined through an evaluation study. In essence, for sample sizes of n1 and n2, the sample
space consisted of (n1 + 1)(n2 + 1) elements. For each element, estimates of RR and
confidence intervals were obtained using the methods described below. To allow for a
variety of scenarios to estimate the performance of the proposed statistical method in terms
of coverage probability, power, type I error rate, and mean squared error, the underlying
binomial parameters (p1 and p2) were allowed to range from 0.02 to 0.98 in two percentage
point increments thereby yielding 2401 different combinations of binomial parameters and a
wide range of relative risks. Sample sizes of 10, 25, 50 and 100 for each group were also
considered. However, for brevity of publication, a subset of all possible results have been
presented. The online appendix to this article contains the full results of the statistical
performance study.
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3.1 Alternative estimation methods
For comparative purposes, the proposed relative risk estimator was compared to the large-
sample (i.e., ‘Wald’) approximation and the general class of add a small constant (ψ) to each
cell of the contingency table. The large sample estimate of the binomial parameter,  is

where yg is the observed number of successes out of ng trials for group g, g = 1, 2. The large
sample estimates of the relative risk and associated standard error are

and

Two values of ψ were considered. The first let ψ = 0.5 if any cell in the 2 × 2 equaled zero.
With this approach

The regular large-sample estimate of the standard error was used with ng = ng + 1.0 if there
was at least one zero cell.

The second value of ψ mirrors the method of Agresti and Caffo(Agresti & Caffo 2000). This
method was presented in the context of the risk difference in their paper and was originally
based on a realization that the addition of two success and two failures to a single binomial
readily approximated a 95% score confidence interval for a binomial proportion (Agresti &
Coull 1998). For this examination, the Agresti-Caffo method is extended to include the
relative risk. The Agresti-Caffo method adds one success and one failure (ψ = 1) to each
treatment group regardless of whether or not a zero cell is obtained. Thus, pg,ψ=1.0 = (yg +
1)/(ng + 2) for g = 1, 2. Therefore, the relative risk and associated standard error for this
approach are

and
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3.2 Special considerations for statistical performance comparisons
The combination of small sample sizes and success probabilities close to the boundaries
necessitated special handling of zero cells in addition to the previously defined estimators.
The large-sample based point estimate for RR and its confidence interval are poorly defined
when at least one group fails to observe a success. For the calculation of the statistical
properties of the Wald estimator, any element of the sample space that did not contain at
least one success in each group was determined to have failed to have rejected the null
hypothesis. The point estimate was set at 1.0 and the confidence interval at (0, ∞) to
represent completely uninformative information, but at the expense of inflating the coverage
probability since the confidence interval would always contain the true population
parameter. As Figure 1 illustrates, the probability of having to utilize this non-estimated
interval is non-trivial and is in fact the motivation for this paper.

3.3 Statistical performance results
Figure 2 portrays the coverage probabilities under the null (p1 = p2) for all binomial
parameters considered. With small sample sizes, the proposed MUE-based methods
performs close to the desired 95% target for most values of p, but all methods are
conservative in that they have higher than the nominal coverage probability when the
binomial parameter is close to the boundaries. Some of the conservativeness is due to the
decision rules used to create a confidence interval described above; however, as the sample
size increases, these decision rules do not affect as profoundly. It is worth noting that while
Figure 2 shows that the MUE has coverage probability strictly greater than 95% (under the
null RR = 1), this is not the general result.

Since the MUE always produces a finite estimate, the MUE estimate will be biased as RR →
∞. To examine this issue further, the mean coverage probabilities for various relative risk
groupings was computed (Table 1; see online appendix for raw data). From this illustration,
sample sizes of 10 with large relative risks have, on average, less than the nominal coverage
probability. The lowest coverage probability was 0.14, a value corresponding to true
underlying probabilities of 0.02 and 0.58 (RR ∈ {29−1, 29}. It is worth noting that coverage
probability improves as p2 increases beyond 0.58 with p1 = 0.02. The reason for this is
associated with the discreteness of the bootstrap sample space. As the RR → ∞, the

probability of observing the largest MUE-based estimate of RR (denoted as 
above) increases. At some point, this probability will exceed α/2 and the upper limit of the
confidence interval is administratively set at ∞.

The mean squared error (MSE) is illustrated in Figure 3. The MSE for the MUE-based the
largest of the four methods considered, however, as the sample size increases, the
differences become negligible. The increase in MSE is most apparent for large relative risks,
which as just stated, is a limitation of the finite nature of the MUE-based approach.

For small sample sizes (Figure 4, row 1), the MUE had the highest power to reject the null
hypothesis for relative risks of 1.5, 3.0 and 5.0, values that represent a modest association up
to a very strong association. The MUE-based estimator consistently had higher power than
the Agresti-Caffo (ψ 1.0) estimator. This is likely do to the fact that the Agresti-Caffo
estimator provides greater ‘shrinkage’ towards p = 0.5 than the MUE-based estimator
(Figure 5). As the sample size increased, the power to detect these relative risks converged.
Figure 4 illustrates a drop in power for the Wald estimator as p1 approaches 1.0. This is due
to the decision rule of if there was a zero cell, the confidence interval was set to the full
range of relative risk. Furthermore, the power curves show an important consideration–
power to detect a fixed RR varies as a function of the magnitude of the underlying success
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probabilities. That is, there is more power to detect RR = 2.0 when (p1, p2) = (.8, .4) than
when they equal (.02, .01).

4 Motivating example revisited
Patients undergoing renal transplantation are subjected to high doses of steroids and
immunosuppressants to help improve graft survival (i.e., to decrease the risk of the recipient
rejecting the foreign kidney). A complication of these therapies is that they render the
patient with significant glucose intolerance afterward due to stress hyperglycemia, steroid
use, immunosuppressive agents such as calcineurin inhibitors, and other contributing
factors(Hosseini et al. 2007, Pham et al. 2007, Mazali et al. 2008). The incidence of post-
transplant diabetes occurs in 4% to 25% of those patients undergoing renal transplantation
(Pham et al. 2007). Therefore, interventions are required to manage the recipient’s blood
glucose levels such as insulin or oral hypoglycemic agents (Hermayer et al. 2006). An
ongoing clinical trial (Clinicaltrials.gov ID: NCT00609986) is evaluating the safety and
efficacy of intensive glycemic control in the peri-operative, immediate post-operative, and
outpatient time periods at the time of renal transplantation. The primary hypothesis is that
the intensive glycemic therapy administered during the peri-operative, immediate post-
operative, and outpatient time periods will lead to improvement in graft survival when
compared to standard glycemic therapy. Intensive therapy, however, may increase the
likelihood of a severe hypoglycemic event (a blood glucose less than 40mg/dL). This risk is
one of the primary concerns of the study’s data and safety monitoring board (DSMB).
Another parameter being followed by the DSMB in hyperglycemia defined as a blood
glucose reading in excess of 350 mg/dL. In particular, the DSMB requires quarterly reports
of the occurrence of severe hypoglycemia and hyperglycemia. The DSMB charter stipulates
that the relative risk and associated 95% confidence interval will be computed for each
interim safety report. Should this confidence interval yield a conclusion that the intensive
therapy has greater than three times the risk of a severe hypoglycemic event, the trial would
require reevaluation of the risk-to-benefit ratio.

Three interim reports have been completed to date. The large sample estimates of the
probability of experiencing a severe hypoglycemic event, denoted as  for groups g =1 and
2, and t = 1, 2, 3 for interim safety report at time t were as follows: p11 = 0/3, p21 = 0/4; p12
= 1/9, p22 = 0/11; and p13 = 1/12, p23 = 1/15. Note that for the first two interim safety
reports, the MLE estimate of the relative risk is undefined or infinite. A ‘Wald’ confidence
interval for the third report period is estimable, but the validity of such an estimate is
questionable given the small sample size at this point in the trial. Table 2 provides a detailed
summary of the point estimates, and associated confidence intervals, for the relative risk of
developing a severe hypoglycemic event for group 1 relative to group 2 (i.e., a partially-
blinded comparison).

The MUE-based and general class of ψ estimators yield similar results when either both
treatment groups fail to yield a success or when both groups have at least one success. In the
event of only one group containing a success, there are some notable differences in the point
estimates. The point estimates for the relative risk are remarkably different for the second
interim analysis (  vs. RRψ=1.0 = 2.36). This difference is the result of greatest
shrinkage of the Agresti-Caffo (ψ = 1.0) estimates for the two proportions, particularly for
Group 2 which had zero instances of severe hypoglycemia in 11 participants (See Figure 5).
In fact, the Agresti-Caffo estimate of p22 is 2.5 times higher than that estimated by MUE.
Since this proportion is in the denominator, it leads to attenuation (shrinkage towards the
null) in the estimated relative risk. The point estimates for Agresti-Min’s unconditional
exact test have been added for completeness, but these estimates are equal to the MLE in
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this instance. The confidence intervals, however, for this method are unique to the
unconditional approach proposed by Agresti and Min (Agresti & Min 2001).

Overall, the confidence intervals are wide and reflect the uncertainty in the estimated
relative risk with small sample sizes. The implementation of Agresti-Min’s confidence
interval in StatXact (Cytel Software Corporation 2003) fails to run for interim analysis 1; the
software produces an error that the table is not a 2 × 2 table and terminates. The MUE-based
confidence interval provides for a finite confidence interval that is the most narrow of all
methods considered except for the case of the Agresti-Caffo for the interim analysis 3.
While there is some evidence of a difference in the proportion of participants experiencing
severe hypoglycemia, the data do not suggest that the study needs to be reevaluated at the
present time.

5 Discussion
The proposed estimator for relative risk based on the ratio of two median unbiased estimates
of a proportion works well in a variety of settings. It particularly is well suited for small
sample sizes with rare events such as was illustrated by the motivating example. The use of
Agresti and Caffo’s ‘add one success and one failure’ (ψ = 1.0) approach can be
recommended with little reservation in this setting too, especially considering the ease at
which it can be computed. As would be expected, the large sample estimator is not
recommended for small samples involving rare events.

Beyond the obvious limitation of using large-sample asymptotics for small samples, the
relative risk defined as the ratio of two MLEs is not well defined when no successes are
observed. One could reason evidence for the null hypothesis when no successes are
observed in either group and the sample size is large, but instances in which the sample sizes
are not equal, this conclusion is more difficult to support. Furthermore, no formal test for the
tenability of the null hypothesis can be performed if the point estimate of the relative risk is
undefined. Likewise, if the outcome is considerable more prevalent in one group (e.g.,
adverse events occurring on the active treatment and not on placebo), the relative risk based
on MLEs may still be undefined, yet the data suggest a difference in the proportions. Both
the MUE-based and Agresti-Caffo estimators for the relative risk are properly defined in this
case. While not an estimator of relative risk, Fisher’s exact test could be used in this
situation to test the general null hypothesis of no association.

The estimation of the confidence interval for the MUE-based approach is straightforward,
but for large sample sizes, the computations become time consuming. For an individual
dataset, this is only a minor consideration, but for the evaluation study, sample sizes of 500
proved too time consuming to be included in this manuscript. While the exact enumeration
of the bootstrap sample space is viewed as a limitation with large sample sizes, in the
context of smaller studies it is actually a strength of the method as it avoids Monte Carlo
error.

The evaluation study focused on equal sample size allocations, yet slight imbalances in the
group sample sizes were observed in the transplant example. We believe that for such slight
differences in allocation, no direct impact will be observed on the point estimate or
confidence interval for the MUE-based relative risk estimate. However, should significant
imbalance be observed (e.g., 4:1 or higher), further evaluation of the confidence interval
may be warranted since the deterministic bootstrap sample space will be more defined by
the larger group’s sample size. Since the context of this method is that of a randomized
clinical trial, the scenario of greatly imbalanced sample sizes is not anticipated. An
additional limitation of the evaluation study is that it did not include the Agresti-Min
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unconditional exact estimator (Agresti & Min 2001). There were two primary reasons for
this omission. First, the computation requirements of evaluation study were significant
without the addition of the unconditional exact method and this addition, while scientifically
interesting, would have hindered the timeliness of this manuscript. Second, the
unconditional exact implementation in StatXact has the limitation that the method will not
run if at least one success is not observed. Future research, with increased computational
capabilities, will be needed to fully compare the proposed estimator to the unconditional
exact estimator.

The determination of the MUEs for the two groups can present some logistical problems and
could hinder the application of the MUE-based relative risk estimator in practice. In
addition, the exact enumeration of the bootstrap sample space requires specialized
programming. To facilitate the use of the proposed methodology, a SAS MACRO has been
written to perform all necessary calculations. This program is available upon request from
the first author.

In summary, the difficulties in estimating relative risk when zero cells are observed are
encountered in practice and warrant novel analytical advances. The proposed relative risk
estimator based on the ratio of two median unbiased estimators for the group proportions
can be recommended for these situations.
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Figure 1.
Probability of observing no successes for small to moderate sample sizes and a variety of
binomial proportions
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Figure 2.
Coverage probability
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Figure 3.
Mean Squared Error. Mean squared error is calculated on the relative risk scale but for
illustrative purposes, the x-axis has been natural log transformed to aid in presentation.
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Figure 4.
Power
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Figure 5.
Comparison of MUE with estimators that add constants to each cell when zero successes are
observed
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