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Abstract
Researchers studying complex cognition have grown increasingly interested in mapping symbolic
cognitive architectures onto subsymbolic brain models. Such a mapping seems essential for
understanding cognition under all but the most extreme viewpoints (namely, that cognition
consists exclusively of digitally implemented rules; or instead, involves no rules whatsoever).
Making this mapping reduces to specifying an interface between symbolic and subsymbolic
descriptions of brain activity. To that end, we propose parameterization techniques for building
cognitive models as programmable, structured, recurrent neural networks. Feedback strength in
these models determines whether their components implement classically subsymbolic neural
network functions (e.g., pattern recognition), or instead, logical rules and digital memory. These
techniques support the implementation of limited production systems. Though inherently
sequential and symbolic, these neural production systems can exploit principles of parallel, analog
processing from decision-making models in psychology and neuroscience to explain the effects of
brain damage on problem solving behavior.
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1. Introduction
In order to build biologically plausible cognitive models that exhibit the full range of human
behavior — from playing chess to balancing on skates — it seems that researchers will
inevitably require models that can implement finite state automata (e.g., for representing and
executing sequences of chess moves), and at the same time, feedback controllers for
dynamical systems (e.g., for correcting a destabilizing wobble). Similarly, it will almost
surely require models that are robust to perceptual noise, but that can behave stochastically
when desired; and that require no central clock to govern synchronous, digital circuitry, but
that can still time intervals and represent symbols.

We present a technique for building cognitive models that may be able to satisfy the
disparate and seemingly paradoxical requirements outlined above. This technique draws on
the strengths of existing symbolic (or quasi-symbolic) cognitive architectures, such as Soar
(Laird et al., 1987) and ACT-R (Anderson and Lebiere, 1998) among others, but it
implements every feature in a physical-level design that di ers substantially from the design

psimen@princeton.edu (Patrick Simen), tpolk@umich.edu (Thad Polk).

NIH Public Access
Author Manuscript
Log J IGPL. Author manuscript; available in PMC 2011 October 1.

Published in final edited form as:
Log J IGPL. 2010 October 1; 18(5): 705–761. doi:10.1093/jigpal/jzp046.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of standard computer hardware. It also draws on the strengths of existing subsymbolic
cognitive models, including models of associative memory and of decision making.

Using this technique amounts to hardwiring neural networks to produce complex models of
approximately symbolic processing. What is left out of this hardwiring approach, of course,
is one of the primary virtues of neural networks — the simple and powerful learning
algorithms that can be applied to them (e.g., Rumelhart et al., 1986; Ackley et al., 1985;
Williams and Zipser, 1989; Sutton and Barto, 1998). Our hope, however, is that in showing
how a hardwired system may resolve some of the differences between strictly symbolic and
strictly subsymbolic cognitive models, we will have presented a well-defined target
architecture that future learning algorithms may be designed to acquire through experience.

To best achieve our purpose, and to show that an account of a symbolic / subsymbolic
interface can have practical consequences in cognitive modeling, this paper investigates the
functionality underlying human problem solving. Problem solving has been argued to
exemplify complex cognition (Miller et al., 1960; Newell and Simon, 1972), but it is not
typically modeled with neural networks (although see Dehaene and Changeux, 1997). While
what we present is by no means a comprehensive theory of human problem solving, we
hope that it illustrates the leverage that can be gained from extracting symbolic processing
out of a subsymbolic system.

We begin from the same starting point assumed in some of the earliest cognitive modeling
efforts: namely, we model problem solving as a process of heuristic search (Newell and
Simon, 1963). However, our approach differs from early symbolic modeling efforts in that it
does not presuppose any hard and fast distinction between software and hardware. Instead, it
directly addresses a lower level of description whose fundamental atoms we propose to be
standard, artificial neural network units. We choose this level of description despite the fact
that it, like a purely symbolic approach itself, sacrifices a great deal of biophysical detail.
We note at the outset, however, that there is growing evidence that this type of neural
network may plausibly be reduced even further to models whose greater level of physical
detail is more appropriate to single-cell physiology than to whole-brain function (Wang,
2002; Wong and Wang, 2006).

In what follows, we build from this model of the physical processing level up to an
architecture capable of problem-space search, presenting possible solutions to problems that
arise along the way. Admittedly, this is an architecture with several limitations — including
an inability to implement firstorder logic — that all appear to reduce to what is commonly
known as “the binding problem”, and which further work must address. However, a variety
of promising approaches to this problem already exist that seem compatible with the
proposed architecture, including the binding of object features through temporal synchrony
of activations (Shastri and Ajjanagadde, 1993) — an approach which supports analogical
reasoning in some systems (Hummel and Holyoak, 1997) — and, without relying on
synchrony, using layers of conjunctive processing units (O’Reilly and Busby, 2002) to bind
features. The general problem of using neural networks to represent first-order logic
statements and to carry out deductive inference has also been addressed by a number of
approaches, several of which are detailed in Hammer and Hitzler (2007).

The organization of the paper parallels both the design-level hierarchy of modern computer
engineering (Hayes, 1993) and the levels-of-analysis hierarchy made famous by David Marr
in vision research (Marr, 1982). Section 2 covers the basic ‘physical-level’ (Hayes, 1993) or
‘implementational-level’ (Marr, 1982) building block that we will use for cognitive
modeling — a stochastic version of a classic artificial neural network unit. Section 3 covers
the decision making networks that form the basic components of the architecture’s ‘logic
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level’, in engineering terms. Sections 4 and 5 cover the composition of these networks into
sequential processing systems equivalent to simple production systems (collections of if-
then rules coupled with a working memory). Because of their computational power and
psychological plausibility, production systems are used widely in symbolic cognitive
modeling (e.g. Anderson and Lebiere, 1998; Just and Carpenter, 1992; Laird et al., 1987;
Kieras and Meyer, 1997).

In order to demonstrate the usefulness of a well-specified symbolic/subsymbolic interface
for cognitive modeling, section 6 reviews published results from a model that incorporates
this interface. We applied it to human performance data from a problem solving task used in
psychology to assess cognitive deficits in brain damage and disease (the Tower of London
task of Shallice, 1982). These sections correspond to the ‘architecture level’ in engineering
and span the implementational and ‘algorithmic’ levels in Marr (1982); they provide most of
the essential pieces of a cognitive architecture — that is, a framework of core assumptions
that defines a space of possible cognitive models (Newell, 1990).

We conclude with a general discussion in section 7. In the supplementary materials, we give
a specification of the previously mentioned cognitive model of human performance in the
Tower of London task (the details of which have not been published and may interest
modelers seeking to replicate or generalize our modeling results). This example serves as an
existence proof that recurrent neural networks may serve as a bridge between low-level,
biophysically detailed neuron models and high-level psychological models.

2. Basic building block
In this section, we define a stochastic version of a classical model of neural population
activity that has received empirical support from neurophysiology (e.g., Shadlen and
Newsome, 1998). This population model will serve as the basic building block of a proposed
cognitive architecture. In its deterministic form (cf. Cohen and Grossberg, 1983; Hertz et al.,
1991; Hopfield, 1984; Lapique, 1907; Wilson and Cowan, 1972), this simple model feeds a
linear combination of a unit’s inputs into a system defined by one of the simplest possible
nonlinear differential equations. It is formally equivalent to an electric circuit of resistive
inputs feeding into a capacitor, or leaky integrator, whose output is boosted by an
operational amplifier (Mead, 1989).

Computing linear combinations or weighted sums of inputs allows a model neural
population to perform arbitrary linear transformations of its inputs. This capability has
proven useful for modeling fundamental human learning and categorization capacities by a
number of authors (e.g., Anderson et al., 1977; Rosenblatt, 1958). It will form the basis of
our subsymbolic approach to simple decision making in section 3 and to more complex
decision making in section 5, where we equate making a decision to voting for outcomes in
an election. Further, it is consistent with the basic phenomena in synaptic transmission
between neurons, which lend themselves well to a linear description if plasticity is not too
great (Dayan and Abbott, 2001). Importantly, a linear model for integrating multiple inputs
also has the advantage of allowing the large body of linear systems theory to aid in the
formal analysis of models. Subsequently transforming these linear combinations with a
nonlinear tranformation (namely a squashing function) then allows a tremendous increase in
functionality (such as the ability to represent any continuous function; see, e.g., Bishop,
2006) without a complete loss of analytical tractability.

In addition to the linear combination of momentary inputs, the model assumes the addition
of Gaussian noise to these inputs, followed by leaky integration of these noise-corrupted
combinations from moment to moment prior to application of the nonlinear transformation.
Leaky integration is formally defined in appendix A, where we also discuss the stochastic
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numerical integration technique used to simulate the proposed architecture on a computer.1
Similar behavior occurs in a resistor-capacitor (RC) circuit: when the input voltage to such
an RC circuit is abruptly changed, the output voltage approaches the new value at an
exponential rate determined by the value of the circuit’s time constant, which equals the
inverse of the resistance times the capacitance (Oppenheim and Willsky, 1996).

It is from this property that we derive two of the most important reasons to use this
stochastic model. One is functional, which is that the RC factor (equivalently, the time
constant) determines the model’s ability both to act as a low-pass filter — that is, to filter
out high-frequency noise — and to act as a short-term memory. Thermal noise occurs at
roughly equal power at all frequencies in electrical circuits (Gardiner, 2004), and is therefore
referred to as ‘white’ noise. In contrast, most signals of interest will have an upper frequency
bound, leaving a high-frequency band filled entirely with noise. Thus, attenuating high
frequencies is probably critical for the survival of organisms that use electrical activity to
process information. At least a small amount of such attenuation is, in any case, probably
unavoidable in any physically implemented system: the small capacitances in digital,
sequential circuits provide a small amount of noise reduction, for example.2 When applied
to Gaussian signals corrupted by Gaussian white noise, this approach to filtering is in fact
equivalent to the optimal Bayesian signal estimation procedure (Poor, 1994); when it is not
optimal, it can frequently still approximate such a procedure, and unlike a true Bayesian
approach, it requires no explicit priors and is computationally tractable under all
circumstances. Furthermore, noise allows random behavior, which is essential in
competitive games (Von Neumann and Morgenstern, 1944).

The other major reason for using this model is empirical, since individual neurons
themselves have a capacitive membrane with resistive conducting pores (Hodgkin and
Huxley, 1945). Thus leaky integration is known to occur in the brain (albeit in the context of
a variety of more complex processes). Simple, leaky integrators can be related to more
complex models of neural activity (Gerstner, 2000; Wang, 2002; Wong and Wang, 2006)
that can in turn be related to the widely accepted model of Hodgkin and Huxley (1952), but
the simplicity of leaky integrator models allows analytical solutions that more complex
models lack.

As we discuss in the next section, however, the time constant of individual neurons is much
too small to provide the kind of noise filtering and slow memory decay that may be required
for typical cognitive tasks (instead, individual neurons appear to be optimized for
millisecond-level computation). Nevertheless, populations of neurons acting in concert may
be able to achieve time constants that are much larger than that of an individual neuron
(Wang, 2001). In addition, Seung et al. (2000) discuss a method that we review here for
using recurrent, self-excitatory feedback within such a population to achieve an arbitrarily
large time constant, including an ‘infinite’ time constant that causes a self-exciting unit to
act as a perfect integrator of its inputs (see Eq. 20). This fact will allow us to design
mechanisms that time intervals and provide feedback control with desirable properties
(namely, properties that allow cognitive models to make decisions robustly). These
mechanisms in turn will enable the construction of models that carry out problem space

1For an intuitive example of leaky integration, consider a water-bucket with a hole in the bottom: when water is poured in at a fast
enough rate, the height of the water approaches a stable equilibrium; after the inflow is shut off, the accumulated water drains out in
such a way that its level approaches zero; and rapid changes in the input signal (the inflow of water) translate into gradual changes in
the height. Reading off the water height therefore gives a smoothed version of the input signal in which high frequencies are
attenuated.
2Unfortunately, increased noise reduction comes at the cost of slower operation, so that higher computer speeds can be achieved by
reducing capacitance and boosting power to more clearly distinguish noisy 1s from noisy 0s.
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search without the use of a central, oscillating clock and a traditional, synchronous circuit
design.

Obviously, electric circuit models also describe electrical activity in the type of hardware
underlying programmable computers. As a result, a single form of mathematics can be used
for our ultimate goal of linking psychological models to neurophysiological models, and
also for translating between the symbolic computational level and the physical level of
transistors, resistors and capacitors in modern computing technology.

Formally, a low-pass filter coupled with a nonlinear activation function forms a system
defined by a stochastic differential equation (SDE), Eq. 1, and a squashing function, Eq. 2:

(1)

(2)

Here, V is taken to represent the average firing rate of a neural population; λ determines the
slope of the sigmoidal activation function f, and β represents the offset voltage, or
equivalently, the value of the input x such that f(x) = 0.5. By arguments in Appendix B,
however, we can use a single, much more manageable equation with approximately the
same behavior (cf. Cohen and Grossberg, 1983):

(3)

Here I represents a weighted sum of inputs from other units: . The variable c’
represents the weighted sum of noise terms, which averages out to 0 in the limit of a large
number of uncorrelated noise terms.

Now we turn to compositions of these building blocks for carrying out an essential operation
in both computer technology and human and animal behavior: namely, decision making.

3. Composition of decision making circuits
With basic computing elements in hand, we now describe an implementation of symbols and
logical rules. Symbols arise in our analog system through a quantization (Gray and Neuhoff,
1998) or categorization process. The particular categorization process we use is equivalent
to a well-supported model of decision making in psychology and neuroscience known as the
diffusion (or drift-diffusion) model (cf. Ratcliff, 1978), which itself is inspired by the
physics of Brownian motion (Gardiner, 2004). A ‘decision’ is the selection of a unique
outcome from among a finite or countably infinite set of discrete possibilities, although the
inputs to such a process are often continuous.

This quantization approach is also at the heart of basic decision-making operations in digital
electronics (and in symbolic cognitive modeling approaches like production systems).
Decisions are the fundamental logic-level operations that allow a purely symbolic (i.e.,
binary) description of the physical state of a circuit and a description of its dynamics in
terms of propositional logic, even though the physical laws governing its behavior are
defined by differential equations and continuously varying quantities. Applying logical
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operations to symbolic descriptions then allows engineers to design at the hierarchically
higher architecture level (and software engineers to program at a still higher level) using
much simpler Boolean algebra. We hypothesize that symbolic search processes arise in
cognition for similar reasons of increased efficiency.

3.1. A standard voltage binarization scheme
Although we will argue that analog computation should not be ignored in cognitive
modeling, the way in which standard computers implement digital behavior in inherently
analog circuitry will nevertheless provide a paradigm for our own analog-to-digital (AD)
conversions when they occur. Given that continuous change in the output voltage is
produced by continuous change in the input voltage, all-or-none switching behavior in
networks of transistors, resistors and capacitors is determined simply by choosing a
convention for voltage levels that correspond to ‘all’ (1) and to ‘none’ (0). This convention
assigns a band of acceptable voltage values for representing a 0 to small voltages, and a
wider band of acceptable voltage values for representing a 1 centered at a higher voltage
(Hayes, 1993). The conventions for transistor-transistor logic (TTL) circuits, which are used
for a wide range of digital electronic circuits, are shown in Fig. 1.

In a digital system, symbolic representation is achieved by the use of these bands. When the
output voltage of a transistor-based logic gate falls within one band, it will be virtually
guaranteed to produce an output in downstream components that also falls within one of
these bands. The width of these bands is set so that noise cannot erroneously flip a bit,
except in circumstances of very small probability (and error-checking schemes are built in to
digital circuits to further reduce this probability). Noise is an ever-present element of real,
electronic system operation due, among other reasons, to the heat generated by electric
current flowing through resistive material. Dealing with this noise when we abandon a
digital interpretation of voltages is of major importance.

In a noisy environment, the task of detecting whether a signal is present can be non-trivial.
The same is true inside an electronic system that does not adhere at all times to a TTL
voltage scheme (i.e., one that combines analog and digital circuitry). When many signals are
possible, and evidence for each conflicts with evidence for the others, the task of deciding
on a signal’s identity is all the more difficult.

Fortunately, the study of signal detection and decision making that has taken place since the
1940s — in engineering, statistics and psychology — has led to a clear understanding of
optimal performance in these tasks. It has also produced a rigorous analysis of various
algorithms for carrying them out. A great deal of behavioral research in psychology has
furthermore been devoted to examining these algorithms as models of human and animal
decision making. As we will show, all of this work provides a strong incentive for choosing
some variety of a random walk as our algorithm for signal detection and decision making.
More fortunately still, recent work in psychology and neuroscience provides us with a
simple mapping from these algorithms onto neural networks, our computational medium of
choice (Bogacz et al., 2006).

In this section we draw on this work to develop an attractor network mechanism for
resolving conflict between the possible outputs of a decision making element: this
mechanism uses lateral inhibition to implement a process of competition between responses.
Lateral inhibition is an old idea in neuroscience (Hartline and Ratliff, 1957) and neural
networks (McClelland and Rumelhart, 1981; Grossberg, 1980b), and underlies many
associative memory models based on attractor networks in psychology. We draw on this
work to formalize our approach to the basic decision making operations of our system when
ambiguous inputs attempt to produce more than one output from an element.
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It is at this point that analog numerical representation begins to impact the method by which
neural networks emulate finite state automata and production systems: unlike standard
computer hardware components, individual units in a decision making element will now
represent real numerical quantities of evidence using an analog code. Specifically, this code
relates activation levels monotonically to the likelihood ratio of the hypotheses (or
preferences) under consideration.

We now examine how theories of signal detection and decision making, particularly random
walk models, contribute to our story. We will then be ready to address the implementation of
productions and the resolution of conflict.

3.2. Theories of signal detection and decision making in statistics, psychology and biology
A great deal of psychological research has focused on the processes leading up to human
responses in simple decision making tasks. Signal detection — the subject of psychophysical
investigation since Weber in the early 1800s — involves a single response to stimuli of a
single category. Signal discrimination or choice reaction — also studied since the 1800s
using reaction time techniques developed by Donders — involves multiple stimulus classes
and responses (Green and Swets, 1966). In our analysis, decision making will be taken to
include these simple processes, as well as other, more complex processes leading to discrete
responses (for example, choosing a car to purchase; cf. Roe et al., 2001). Our purpose in this
section, though, is to situate the building blocks of a neural cognitive architecture in a
framework that has recently connected neurobiological research on decision making to
behavioral reaction time research (Smith and Ratcliff, 2004). For that reason, we will focus
on the favored task in this domain: discrimination tasks involving two stimulus categories,
each associated with its own response.

In this domain, models that employ a technique known as sequential sampling have been
used to explain some widely observed features of response time (RT) and accuracy data
(Luce, 1986) — in particular, the specific shape of the long-tailed RT distributions that
typically occur in human reaction time experiments. In sequential sampling models, the
stimulus is assumed to consist of a stream of samples from one of two probability
distributions (Fig. 2A illustrates an example of two Gaussian distributions). To determine
which distribution is actually generating the stimulus, the samples are accumulated over
time. Evidence in favor of one or the other hypothesis thus builds up until a response
criterion — or decision threshold — has been reached. Sequential sampling models explain
speed-accuracy tradeoffs in decision making performance in terms of shifts in the response
threshold toward or away from the starting point of the decision variable trajectory: closer
thresholds produce shorter RTs and higher error rates on average (Grice, 1972; Laming,
1968; Ratcliff, 1978; Reddi and Carpenter, 2000).

In accumulator versions of sequential sampling models, evidence accumulates
independently in a set of accumulators, one of which is assigned to each hypothesis. In
random walk versions, in contrast, each sample that increases the evidence for one
hypothesis (i.e., the likelihood of that hypothesis given the data) correspondingly reduces the
evidence in favor of the other. This is a form of competition that effectively reduces two
decision variables to one: this variable equals the difference in accumulated evidence for
each hypothesis. (Fig. 2B shows the trajectory of this variable plotted against time for four
different decisions superimposed on each other. Fig. 2C shows the resulting response time
distributions over many decisions.)

The ratio of the likelihoods of the two hypotheses is the quantity that is implicitly used to
make the decision in most random walk models: when the likelihood ratio approaches 0, the
hypothesis corresponding to the denominator is almost certainly true; when the ratio
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approaches infinity, the hypothesis corresponding to the numerator is almost certainly true.
Assuming independence of individual samples, the current likelihoods can be updated to
incorporate a new sample quite easily: the likelihood of the hypothesis given the single
sample is multiplied against the total likelihood of the hypothesis given all previous
samples.

When the logarithm of the likelihood is taken, this multiplication becomes an addition.
Similarly, dividing one likelihood by the other becomes subtraction when the logarithm of
the ratio is taken. Steps in the random walk thus equal increments to the logarithm of the
likelihood ratio for one hypothesis over the other. This property makes such a model
equivalent to the sequential probability ratio test, or SPRT (Stone, 1960). This fact is
encouraging for the use of random walk models, since the SPRT is optimal in a statistically
stationary environment, in the sense that no other test can achieve higher expected accuracy
in the same expected time; conversely, no other test can reach a decision faster for a given
level of accuracy (Wald and Wolfowitz, 1948).

The drift-diffusion model (DDM) (Ratcliff, 1978) is a sequential sampling model in which
stimuli are sampled continuously rather than at discrete intervals, like the continuous-time
low-pass filter mechanism of Eq. 3 (we will soon review a proof that the DDM can in fact be
approximated by a suitably organized neural network). With human subjects, the DDM has
accounted for response time distributions and choice probabilities in a wide range of two-
alternative tasks (Ratcliff and Rouder, 1998; Smith and Ratcliff, 2004).

During decision making by the DDM, the difference between the means of the two possible
stimulus distributions (see Fig. 2A), imposes a constant drift of net evidence toward one
threshold, and the variance imposes a Brownian motion that may lead tofferrors. The DDM
is defined by the following stochastic differential equation (SDE):

(4)

We examined similar equations when discussing analog computation in section 2. Here, the
equation is arguably simpler. A is the signal strength; when it is nonzero, it produces a
tendency for trajectories x(t) to move, or ‘drift’, in the direction of the signal. Brownian
motion produced by integrating a white noise process W, causes diffusion of a substance
within a liquid — hence the term ‘diffusion’ in the name of the model. The factor c weights
the intensity of this di usive component of x’s motion.

3.2.1. Sequential sampling by leaky integrator networks
In monkeys performing oculomotor tasks, the continuously evolving firing rates of neurons
in the lateral intraparietal sulcus (area LIP) have been related to competing evidence
accumulators that approximately implement a drift-diffusion process (Gold and Shadlen,
2001; Roitman and Shadlen, 2002; Shadlen and Newsome, 2001). Similar findings have
been reported for frontal structures responsible for controlling eye movements (Hanes and
Schall, 1996). We now examine how a network of leaky integrator units can implement the
DDM in this way, thereby achieving nearly optimal decision making capabilities in addition
to nearly optimal signal estimation capabilities in a way that is consistent with evidence
from neuroscience.

Evidence accumulation can be approximated by a simple neural network with two leaky
integrators, each of which responds preferentially to one of the stimuli. Each integrator is
also subject to inhibition from the other integrator (see Fig. 2D), as proposed by Usher and
McClelland (2001) (cf. Bogacz et al., 2006;Gold and Shadlen, 2002;Grossberg, 1982). The
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evolving activation of each unit (indexed by i) is determined by an SDE, the deterministic
part of which is given by Eq. 5:

(5)

Eq. 5 is a version of the basic leaky integrator unit (Eq. 3) that is linearized for easier
analysis. In this equation, Ii is the input to unit i. It is usually assumed to be a step function
of time (corresponding to stimulus onset). The parameter ξ represents the inhibitory strength
of symmetric connections between the two decision units; −ξyj represents inhibition from
the other unit(s).

When noise is included, the pair of linearized units is governed by Eqs. 6-7:

(6)

(7)

Assuming linearity also allows us to make the relationship between the DDM and its neural
network implementation explicit. By adding the two, noise-free, linearized equations (Eqs.
6-7), we get a quantity, yc = y1(t) + y2(t), that approaches an attracting line — defined in the
(y1, y2) plane by y1 + y2 = (I1 + I2)/(1 + ξ) — exponentially at rate 1 + ξ. Subtracting the
second equation from the first yields an Ornstein-Uhlenbeck process for the net accumulated
evidence, x = y1 − y2:

(8)

We will refer to the attracting line as the ‘decision line’ (following Bogacz et al., 2006). The
difference quantity, y1 − y2, represents movement along this plane in one of two possible
directions. By using strongly self-exciting units to implement thresholds on the activation
values, y1 and y2, decisions can be read out of this system. These thresholds define lines in
the phase space of unit activations that intersect the decision plane (the dashed lines in Fig.
2F). These intersections are equivalent to decision thresholds applied to a process of drift
and diffusion along the decision line.

If leakage and inhibition are balanced (ξ = 1), the drift term is a constant, A, and the system
is equivalent to the DDM (Eq. 4) with A = I1 − I2 representing the difference in inputs
(Brown et al., 2005;Holmes et al., 2005).

Fig. 2F shows the evolution of the activations y1(t) and y2(t) over time. After stimulus onset,
the system state (y1, y2) approaches the decision plane. Projection of the state (y1, y2) onto
this line yields the net accumulated evidence x(t), which approximates the DDM as shown in
Fig. 2B. Fig. 3 shows that including nonlinear activation functions does not dramatically
change the decision making dynamics.

We have now addressed the evidence accumulation aspect of two-alternative decision
making, but we have not addressed how a surplus of evidence in favor of one hypothesis is
‘read out’ into a decision. We must address this issue because of a conceptual problem: if a
surplus of size x is sufficient for making a decision that in many cases leads to a motor
action, then why is x−∊ not sufficient, for any ∊ > 0? How can an arbitrarily small change in
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the surplus make the difference between taking an action and remaining still? We can
address this problem easily by adding a second layer of strongly self-exciting units that
implement step functions (approximately). We discuss this solution in detail in section 4.

Thus, extremely simple leaky integrator units that provide nearly optimal signal estimation
can also perform nearly optimal decision making in the context of difficult, two-alternative
tasks.

3.3. Attractor and winner-take-all networks in higher dimensions
We have shown a simple example of an attractor network for the case of two-alternative
decisions. The pair of threshold detector units used to detect threshold crossings in the
accumulator/leaky integrator layer has four attractors in the state space of activations: both
units near 0; one near 0 and the other near 1; and both near 1. Assuming normal operating
conditions for a properly parameterized two-alternative decision making circuit, and
assuming one of the two signals is present, the expected behavior is that ultimately, one of
the two units will achieve an activation near 1, and the other will remain at an activation
near 0. Thus, the system of two threshold units acts as a winner-take-all (WTA) network.
This scheme can be generalized to n units and constitutes a 2-layer building block for a
cognitive architecture that is analogous to the logic gates in computers.

We can also collapse the accumulator layer and the threshold layer of units into a single
layer of self-exciting units, as in the model of Wong and Wang (2006). Analysis of the
relationship between the SPRT and such models is not as well developed as for the two layer
network, but such networks exhibit similar dynamics and may allow a simpler, one-layer
building block.

Here we generalize this two-channel WTA network to n channels. Technically, depending
on the interconnections among units, such a network could have an arbitrarily large number
of attractors in the state space of possible activations of all units (Amit et al., 1985).
However, we are only interested in attractors that we can easily use to do computation. Thus
we will primarily investigate networks whose attractors under normal conditions consist of
exactly n + 1 patterns of activation: one in which all units are near 0 activation, and for each
of the n channels, one pattern in which the given channel’s threshold unit is near 1 while all
the others are near 0 (i.e., a localist representation).

We can generalize beyond two dimensions by considering first three dimensions, defined by
Eqs. 9:

(9)

A general, n-dimensional version of Eqs. 9 is a nonhomogeneous linear system that can be
transformed into a system with 2 unique eigenvalues (of multiplicities 1 and n − 1) and n
orthogonal eigenvectors (McMillen and Holmes, 2006). The eigenvalue of multiplicity 1

corresponds to the eigenvector , which defines the position of a decision plane —
an n − 1-dimensional generalization of the 1-dimensional decision line in the two-alternative
case. The remaining eigenvalues correspond to orthogonal directions within the decision
plane that push the system toward a threshold on the plane.

Returning to the three-dimensional situation, let B = y1 +y2 + y3. Then Eqs. 9 imply Eq. 10:
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(10)

Setting  to 0 gives the following relationship between the three activation variables:

(11)

This defines a 2-dimensional decision plane that, like the 1-dimensional decision line in the
two-alternative case, cuts diagonally through the activation bounding box. This intersection
forms a triangular area (see the triangular surface in Fig. 22) within which drift and diffusion
take place (McMillen and Holmes, 2006). The boundaries of the triangle are absorbing,
meaning that as soon as the system hits one of them, the process stops. Thus they act as
response thresholds in a decision making context. (The decision plane can also form a
hexagonal bounding area with three absorbing and three reflecting boundaries, depending on
the precise decision plane placement. Reflecting boundaries prevent the system from going
beyond them, but do not stop the evolution of the process; thus the system can hit a
reflecting boundary and then move back away from it over time.)

In general, we can continue this pattern for n alternatives to get a decision plane defined by
Eq. 12:

(12)

We can always generate a winner by exciting one unit more strongly than all others by some
margin. The problem is that we can also easily produce either no winner, or multiple
winners, by carelessly defining input strengths and the connection strengths from the
accumulator layer to the threshold layer. These problems are addressed in appendix C,
where nonlinear, integral feedback control is used to ensure the WTA property of our
decision making networks.

We now address the means by which connections and connection strengths can be
programmed to implement competing if-then rules, or productions, of varying degrees of
preference, as well as the state-maintenance and sequential state transitions that define a
finite state automaton (FSA).

4. Sequential processing
We have discussed how a simple, low-pass filtering mechanism can be applied to the
problem of signal estimation and decision making. We now address how a network of these
mechanisms can emulate a memory-limited Turing machine, or equivalently, an FSA
(Sipser, 1997). For our cognitive modeling goal, the FSA must itself implement a production
system that in turn must implement a problem-space search algorithm. And given our
commitment to biologically plausibility, our system must do all this without relying on a
centralized system clock governing a sequential, synchronous processing architecture, as
standard computers do. Nevertheless, we need a standard computer’s capability for
sequential processing, because when humans solve problems — and more generally, when
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they carry out the type of symbolic processing exemplified by problem solving — they
frequently appear to mentally simulate a sequence of state-to-state transitions in a space of
possible task states (Miller et al., 1960; Newell and Simon, 1972). Indeed, it is this fact —
especially in the case of mathematical proofs and computations — that inspired the Church-
Turing Thesis, which states that computation in any form is essentially equivalent to the
operation of an FSA controlling a memory tape (Sipser, 1997).

The primary external signal given to the type of problem-solving models we envision within
the proposed architecture (we discuss one such model in detail in the supplementary
materials) will be an initial problem space configuration and a goal configuration. At that
point, the model will need to move through the problem space at its own pace, and various
parallel processing pathways will need to coordinate the timing of their processing. Thus the
FSAs we need to emulate have states in which the next state is determined without reference
to any signal from the environment. The components of such an FSA will need to time their
own operations, determining how long to remain in a given state before transitioning
without using a centralized, oscillating clock as a trigger. In our case, we would like to know
how to make the system operate as quickly as possible, moving through the problem space
at maximum speed, while maintaining some specified level of accuracy in its transitions.
This section covers the state-maintenance and self-timing mechanisms that our system will
require in order to do this.

In another contrast to standard sequential circuit designs, these circuits will also involve
concurrent operations which frequently conflict with each other (as in the competitive
dynamics of the circuit in Fig. 4). In particular, a key operation of the system will be to
select an action to take in a given problem solving task, and the production system emulated
by the network will frequently match multiple, mutually exclusive rules specifying which
action should be selected. Thus, the system must carry out a process that is equivalent to
decision making among more and less preferred alternatives. Finally, the system will also
frequently need to decide among alternatives that are all equally preferred. This fact requires
that our system emulate a probabilistic FSA: an FSA in which the probabilities of particular
state transitions, rather than the transitions themselves, are what are determined by the
current state and current input.

4.1. Mapping finite automata onto neural networks via symbolic dynamics: symbols =
state-space regions

The first complete analysis of the computational capabilities of finite state automata —
showing specifically that every FSA essentially computes whether an input string of
symbols matches some regular expression — was given by Kleene in the context of a model
of neural processing (Kleene, 1956). It would therefore seem that we do not have to do any
work in order to construct a mapping between FSAs and neural networks. However,
Kleene’s construction involved discrete time and the use of noiseless, McCulloch-Pitts
neurons: units which compute a weighted sum of inputs and then apply a step function to the
sum, producing an instantaneously responsive, binary output. (In contrast, our leaky
integrator units compute a weighted sum of inputs and then asymptotically approach the
value defined by a sigmoidal function of that weighted sum.) Given the constraints that we
derived in the previous section, however, it is not yet clear that a neural network of the type
that interests us (i.e., one that operates in continuous time and is analog, asynchronous and
noisy) can implement finite automata and carry out problem-space search. In this section, we
outline a mapping from finite automata onto neural networks that meets our constraints. In
the sections that follow, we will fill in the details about the critical mechanisms that are
sketched here.
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We can think of the state of a two-dimensional analog system as the x and y coordinates of a
ball rolling around on an energy surface (a function z = f(x, y)). If noise is present, the ball
will also be constantly jostled by random perturbations. The ball will tend to come to rest in
any valleys, or wells, in the surface (e.g., see Fig. 5).3 In order to implement an FSA in an
analog system, we need to create a mapping between non-overlapping regions of the
underlying analog system’s state space (the analog states, defined by coordinates x and y in
Fig. 5) and the states of the FSA (the FSA states). These analog-state regions must not
overlap, so that the mapping from FSA states onto regions is one-to-one and the system will
never be confused about what state it is in.

As a reminder, the analog state space (or phase space) of the system we will examine
consists of vectors of real numbers, each greater than or equal to 0 and less than or equal to
1. When we are faced with more than two phase space dimensions (i.e., more than two
units), the energy surface is difficult to depict graphically. Nevertheless, the analog state is
equivalent to a point moving inside a hypercube (i.e., a ‘brain state in a box’, in the colorful
description of Anderson et al., 1977). Each dimension corresponds to one unit in the system,
and an energy surface can still be well-defined.

Since we assume the presence of noise, the non-overlapping regions of state space must be
separated by a no-man’s-land that is not associated with any state. Otherwise, a stochastic
process involving white noise perturbations that is leaving one region and entering another is
likely to make multiple, back-and-forth crossings of a region-boundary during a single
intended FSA transition. A separated analog state region is consistent with the TTL voltage
band convention. Fig. 5 shows regions in the x − y plane that denote four distinct symbols,
separated by large regions that do not encode any particular state of an emulated four-state
FSA.

4.2. Threshold mechanisms
Since the behavior of an emulated FSA will be conditioned on the entry of an analog state
into a symbol region, threshold-crossing detection will be an essential function of our
system (as it is in any computer). Mathematically, it is easy to define a quantity (an indicator
variable) that specifies whether the analog state of a system is within a symbol region, such
as the TTL regions for 0 and 1 in digital systems. An indicator variable for a single voltage
takes on the value 1 when a voltage is inside a region, and 0 when it is outside, making it a
step function — or Heaviside function — of the analog state variable.

4.2.1. McCulloch-Pitts neurons
In general, approximations to step functions will play critical roles in our models in
determining whether or not to make a response. However, using step functions per se would
present serious difficulties for the type of model that we address in section 6. Ultimately, we
will derive instead a simple mechanism for approximating a step function with arbitrary
precision using only the leaky integrator units we presented in section 2. First, though, we
state the definition of McCulloch-Pitts neurons (McCulloch and Pitts, 1943) explicitly in Eq.
14, and we analyze the problems this model presents, especially when the discrete time steps
(n) are generalized to continuous time (t).

Formally, the activation Vi of the ith unit in a system of McCulloch-Pitts neurons in
response to input Ii is as follows:

3Importantly, given that our model consists of first-order differential equations, the energy surface determines the velocity of the ball,
rather than its acceleration, as in the case of a real ball.
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(13)

(14)

Eq. 14 is very similar to Eq. 3 in that it computes a weighted sum of its inputs. The effective
threshold can be increased or decreased from Θ by providing a constant input (or bias) to the
unit. A positive bias in effect shifts the function to the left (decreasing the threshold), and a
negative bias shifts it to the right (increasing the threshold). A simple but effective technique
for adapting response thresholds (and speed-accuracy tradeoffs) to changing task conditions
derives from this fact (Simen et al., 2006).

However, there are critical problems with this idealized approach to thresholds regarding its
physical and biological plausibility. Furthermore, a disastrous, noise-induced ‘chatter’ effect
is easily produced by artificial mechanisms that approximate these idealized thresholds.
Without compensating mechanisms, thermostats that use temperature readings to govern a
furnace, for example, can rapidly switch a burner on and off as a room’s temperature hovers
noisily around the thermostat’s temperature threshold, thereby wasting energy and possibly
damaging the furnace.

For our purposes, the worst problem with McCulloch-Pitts units is that, by themselves, they
cannot maintain an encoded FSA state in the interim between received state-transition
signals. Therefore, we either need to guarantee that the intervals between input signals to the
FSA are shorter than the decay time of our state-maintaining units (an unnecessarily strong
constraint), or we need to ensure that state can be encoded indefinitely (or latched) as is
done in digital electronics. Latching is the path we will take.

We achieve latching and avoid the chatter problem with the use of strong, recurrent self-
excitation in ‘readout’ units, like those in the second layer of Fig. 4. This results in bistable
dynamical systems with exactly two equilibrium points that produce all-or-none behavior of
the desired type. Bistability will play an important role in our proposed architecture, as it
does in other neural modeling approaches and in digital electronic circuit components
(Hayes, 1993). Bistable striatal neurons in mammals, for example, are thought to produce
action initiation by promoting signal propagation through the basal ganglia (Alexander et al.,
1986). Because of its role in action initiation and sequencing (Aldridge and Berridge, 1998),
the most recent version of ACT-R has associated production firing with the basal ganglia in
its mapping from the architecture onto the brain (Anderson et al., 2004). We proposed a
similar mapping in Simen et al. (2004).

Thus recurrent excitation defines the symbolic/subsymbolic interface in our approach to
cognitive modeling, by turning a nearly linear system into a highly nonlinear (nearly binary)
one.

4.2.2. Hysteresis
In general, bistability and latching are properties of many systems that display hysteresis:
that is, systems whose outputs do not depend exclusively on their immediate inputs, but also
on the recent history of the system’s outputs. Fig. 6 shows a classic example of a bistable
system with hysteresis. The vertical axis represents output values, and the horizontal axis
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represents input values. The solid curves denote stable equilibrium output values as two,
distinct functions of the input values. The dashed curve represents unstable outputs as a
function of inputs: for any coordinate pair that lies on this curve, any perturbation of the
output will cause it either to increase to the upper solid curve segment or to decrease to the
lower solid curve. The resulting dynamics of such a system are that upward velocities occur
as the input increases above point A if the output starts out on the lower solid curve (these
velocities become large as the input grows greater than A). Similarly, downward velocities
occur as the input decreases below B if the output starts out on the upper solid curve. For
any input I in the range between B and A, the system’s output value has either the lower or
upper solid curve as its equilibrium, depending on whether the previous output values were,
respectively, below or above the dashed curve.

Hysteresis has historically been employed for a variety of functions in psychological and
neural models, including shortterm memory (Cragg and Temperley, 1955; Harth et al., 1970;
Nakahara and Doya, 1998), abrupt changes in conditioning and extinction (Frey and Sears,
1978), and critically, the implementation of population thresholds for activity that are robust
to noise (Wilson and Cowan, 1972). A simple method for controlling the amount of
hysteresis in the bistable units we propose for threshold-crossing detectors will be the
principal technique that allows us to construct models capable of complex, sequential
processing. Also, while we have noted that the vertical translations in the hysteresis diagram
in Fig. 6 can be rapid, circuits with cyclic connection patterns (as discussed below) will
sometimes require in addition a method for controlling the speed of the vertical translations.
In fact, for inputs only slightly greater than A, the upward vertical velocity is very small for
solutions that are leaving the lower, stable equilibrium curve, so that input strengths can be
tuned to achieve arbitrarily slow translations in the absence of noise.

We now show how input latching and resetting can be achieved if we can assume that our
units display hysteresis. Rather than using an ‘enable’ line, as in typical electronic latches,
this latch operates more like a static RAM cell in computer memory: it loads a new value
when forced with a strong input that overwrites its currently stored value. Here, ‘strong’
inputs are those that are greater than A or less than B. As we show below, we can
parameterize our units so that input signals of strength near 0 occur at the midpoint of the
unstable (dashed) curve, as in Fig. 6. When strongly positive inputs greater than A are
received for a duration long enough to drive the output into the 1 region, the latch is ‘set’,
independently of the previously stored value. When strongly negative values (less than B)
are received for long enough to drive the output into the 0 region, the latch is ‘reset’, again
independently of the previously stored value. When inputs in the intermediate range are
received, they change the output value slightly, but they are incapable of driving the output
out of the symbol region for the currently stored symbol.

4.2.3. Threshold-crossing detectors and latches built from self-exciting, sigmoidal, low-
pass filter units

Positive feedback in sigmoidal units is the key to generating the hysteresis properties that we
need for threshold-crossing detection and latching, just as it was the key to achieving a
larger time constant for linear units in section 2. We therefore consider the dynamics of a
self-exciting unit, whose output value V is weighted by a nonzero synaptic strength w and
added to the weighted sum of its other inputs. A standard result for such units is that
supplying them with positive feedback is mathematically equivalent to changing the shape
of their activation functions. We can achieve latching in this way, and we can also achieve
precise control over the speed of this latching. Control over this aspect of hysteresis is what
will allow us to connect units into network topologies containing small cycles, which in turn
will allow us to build concurrently operating, self-timing circuit components with ease.
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We can determine the effects of recurrent excitation by two methods: the first is the
hysteresis diagram that we have already discussed, which will allow us to interpret self-
excitation as a deformation of a unit’s activation function; the second method, based on
‘cobweb diagrams’ (Jordan and Smith, 1999), is covered in the supplementary materials.
The latter technique is extremely useful for model construction, allowing the designer of a
model to estimate the rate of change in activation at a given pair of input and output values
by visual inspection. This method in turn supports an efficient procedure for setting the
connection strengths between units in large networks so that desired behaviors are achieved.
However, the workings of architecture components can be understood without delving
deeply into the details of this technique.

Diagrams like those in Fig. 6 are sufficient for this purpose. These figures can be computed
by numerically finding the points in the input-output plane at which the derivative dV/dt in
Eq. 3 is equal to 0, using Newton’s method, for example. (The utility of cobweb diagrams is
that they do not require this computationally expensive step.) The activation derivative can
also be computed at a grid of points in the input-output plane, so that nonzero velocity
vectors can be plotted (with arrowlength proportional to magnitude) to give a global picture
of how the system changes as a function of position. The plots in Fig. 7 show this approach:
a system with self-excitation that perfectly balances its leak is plotted on the left (we will
refer to such units as balanced); a system with stronger self-excitation results in bistability
and is plotted on the right (we will refer to such units as strongly self-exciting); units with
weaker self-excitation (not shown) will be referred to as weakly self-exciting (a weakly self-
exciting unit’s activation function will look more like the non-self-exciting activation
function shown in Fig. 2E; weak self-exciters act as leaky integrators with an adjustable time
constant that increases as the recurrent weight increases, as in Eq. 20).

A unit’s activation function can also be computed over a range of self-excitation strengths
and plotted as a surface. Fig. 8 illustrates this graphical approach. This type of diagram is a
depiction of a ‘cusp catastrophe’ (Thom, 1989), in which a particular type of sudden,
‘catastrophic’ change occurs in the shape of the equilibrium curve (which in our case is an
activation function) as some parameter of the system changes continuously (in this case, the
strength of self-excitation). The equilibrium curves in the bottom plots of Fig. 7 are
equivalent to vertical slices through this surface that run parallel to the Input axis. The
catastrophic change that occurs as recurrent weight strength increases is the sudden
appearance of three equilibrium points for certain input levels (and therefore hysteresis too),
whereas for smaller recurrent weights, there is only one equilibrium point (and no
hysteresis). The so-called ‘bifurcation’ value of self-excitation at which this change occurs
happens to be equal to the slope of the original sigmoid activation function at its inflection
point, as shown in the supplementary materials. At this special value (i.e., when it is
balanced), the system approximates a perfect (non-leaky) integrator. We discuss an interval
timer in section 6 that exploits these dynamics in order to time out unsuccessful steps of
computation and generate subgoals for problem solving.

4.2.4. The closed-loop problem
The primary self-timing operation that independent, concurrent processes in our model will
invoke once activated is to prevent other processes from interfering with them until they
have finished their work (if possible). This includes preventing new inputs to a process from
being accepted once the process begins. It also includes waiting for indications that the
result of a process has been computed, and then cancelling itself. Both of these types of
handshake operation can be achieved with cyclic connection patterns involving excitation
and inhibition (Sparso and Furber, 2002).
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Here we examine the simplest example of such a system, depicted in Fig. 9: two units, IN
and OUT, in which IN excites OUT, which in turn inhibits IN. Once IN is inactive and OUT
is active, we might want OUT to persist in its activity indefinitely, or to persist until being
inhibited by some other unit (not depicted), or finally to return to inactivity after a delay of
controllable duration. We now address parameterizations and a technique for finding them
that allow these behaviors to be realized.

Fig. 9 shows the activation levels of the two units over time, under three different
parameterizations, in response to two step pulses of input of amplitude 1. The only
parameter that varies in the three sets of plots is the strength of the connections between IN
and OUT. The intended behavior of the system is to detect the first input pulse, thereafter
propagating a 1 from OUT and making IN unreceptive to external inputs. Both units are
parameterized with bias β equal to 1.2, gain λ equal to 4, and recurrent excitatory connection
strength 2. Each subfigure of Fig. 9 shows the timecourse of activation in a two unit network
receiving a pulsed input. The top two graphs of each subfigure show the activation of the
unit illustrated next to the graph. Subfigure A and C both show failures to achieve the
intended behavior due to interconnection strengths that are too weak and too strong,
respectively. Subfigure B shows the intended behavior being executed.

4.3. Elementary logic functions
Using hysteresis diagrams, we now demonstrate that self-exciting, nonlinear leaky integrator
units can implement a complete set of logic functions (a set, like {AND, NOT}, that can be
used to compute any propositional logic function). We will then have the means to compute
the state-transition table for any FSA.

Consider a system of two upstream units, A and B, and one downstream unit C, with
feedforward excitation from A and B to C, as in Fig. 10. In order for C to respond as the
neural equivalent of an AND gate in digital logic, the following behavior is required: when
A and B are both highly active, C should be highly active. If either A or B are inactive, C
should be inactive. C should never linger at values that are far from 0 or far from 1.

The following parameterizations, illustrated in Fig. 10, give this behavior. C should be
strongly self-exciting, and θC should be greater than γ2, the bifurcation point at which two
stable equilibria and one unstable equilibrium collapse to a single stable equilibrium. The
connection strengths from A and B to C should sum to a value sufficient to exceed this
threshold when added to the baseline level of input to C (in Fig. 10, this level is a point ϕ to
the left of γ1). Thus when A and B are highly active, C’s effective activation curve will have
a single equilibrium value near the maximum possible output value of 1. Without a drop in A
or B, C will eventually become highly active. The time that C takes to become active will
depend on how far to the right of γ2 is the weighted sum of C’s inputs, because this
horizontal position determines the size of the upward velocity vectors (shown in Fig. 7). For
horizontal coordinates arbitrarily close to, and greater than, γ2, the diminishing upward
velocity vector length indicates that C’s ramp-up time will be arbitrarily long. (Strictly
speaking, the time to approach an attractor is always infinite, since attractors are approached
exponentially. By ‘ramp-up time’ we refer instead to the time required to approach within
some nonzero-diameter neighborhood of an attractor, which happens in finite time.) Thus,
faster decision making requires the sum of input from A and B to exceed γ2 by a larger
amount (that is, to excite C more strongly).

With strong A → C and B → C connections (denoted wCA and wCB respectively), however,
there is the potential problem that strong activation in only one of A or B will be sufficient to
activate C. In order for C to retain the property of being a conjunction detector, the
connection strength from each of A and B to C must be less than θC − γ1. Thus a requirement
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for faster conjunction detection requires both that θC be larger and that the feedforward
connection strengths be larger and roughly equal, each less than θC − ϕ, and with sum
greater than θC − ϕ.

Finally, we note that the connection strengths used in–this discussion are approximations.
The units A and B in this example will never quite reach an activation of 1 or 0. Weights and
θ’s must therefore be set with a margin for error that is discovered through trial and error
when building a system (in our experience, this is quite easy to do).

We have shown the parameterization of a three-unit network that computes an AND
function. We omit the description of OR and NOT functions; interconnection strengths that
compute these functions are straightforward modifications of the values depicted in Fig. 10.

4.4. Using attractors in the form of latches to maintain state
We now address the means by which the proposed system can maintain the representation of
an FSA state in between the reception of transition-triggering signals, and the means by
which signals can trigger transitions from one FSA state into another.

We do this by parameterizing the strength of a connection from the old state-encoding unit
(or units) to the new state-encoding unit(s) — and from the input to the new state-encoding
unit — so that together, the old state plus the new input cause activation of the new state.
That is, each state-encoding unit acts as an AND gate that detects the conjunction of the old
state and the new input, and whose hysteresis properties maintain the new state after the
input disappears, even in the presence of noise. In this way, state can be maintained with
high probability and for long durations in between signals (although noise will eventually
produce an escape from the potential well defining a state with probability 1 — see
Gardiner, 2004 — implying a practical limit on working memory duration).

4.5. Using flip-flops to prevent critical race conditions
There is a well-known problem with using latches to maintain state that has been solved in
digital logic design with the use of flip-flops (Hayes, 1993). The problem is that
computations often need to use the maintained state in order to compute the next state. If
state is maintained by latches, then the old state can begin to be overwritten by a new
internal signal even as that signal is being computed. This can easily result in a failure to
complete the computation of the next state. In that case, the result is an unpredictable state,
or a rapid oscillation between 1 and 0 known as a ‘critical race’ condition, or even
metastability: persistence in a state in the analog state space that is not within any of the
symbol regions.

To handle these problems, flip-flops are used in digital logic to ensure that only one
transition is possible before some additional control signal is received on an enable line,
usually from a central clock. Flip-flops maintain two copies of a bit value: the current bit
value, and a new value that will become current when the next control signal is received.
Rules can be applied to transform old values into new values, but without overwriting the
old values until the next control signal. This eliminates any possibility that in the process of
computing a new value, the old value becomes destabilized before the computation of the
new value is complete. The use of clocked flip-flops is the defining feature of synchronous
digital circuit design, and it heavily influences the discrete time-cycle view embodied in
most production systems and AI models.

Because we cannot assume a central clock, however, we make each concurrent process
determine for itself whether or not to accept input. The method we have used to handle this
issue is to cause one or more units involved in a process to strongly inhibit all of that
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process’s input units once the process has begun, as in our closed-loop example. When
reduced to near-0 activation, the input units can neither excite nor inhibit the units carrying
out the process. Thus, no input will be accepted by a process until it detects that its
processing is complete, or until it decides that too much time has gone by (we discuss the
latter in section 6). Nevertheless, we can still make use of locally clocked flip-flops to solve
problems involved in generating subgoals during problem solving, as we discuss in the
supplementary materials.

To achieve flip-flop behavior, we define a gate to be a copy of an upstream latch
component, with one-to-one feedforward connections from upstream units to their
corresponding downstream units.4 A second set of inputs to the gate component is strongly
inhibitory and reduces all activity in the gate to baseline when propagation of outputs is not
desired. The purpose of a gate is to prevent propagation of a latch’s contents without wiping
out its activation-based memory. We note that while neural latches are analogous to latches
in digital systems, gates as we have defined them are distinctly different than digital
components with the same name (AND, NAND, OR gates, etc.). We use this term for our
neural component because it is a common term for mechanisms with the same function in
the cognitive neuroscience literature (e.g. Frank et al., 2001;Braver and Cohen, 2000).

We have now described the operations of decision making under uncertainty, thresholding,
computing logic functions and maintaining state, and we have proposed neural network
mechanisms to implement them. These operations give us sufficient computational power to
emulate any FSA (and if we allowed ourselves infinitely many filter units, we could emulate
any Turing machine with an infinitely long tape — see Simen et al., 2003). The mechanisms
are simple: self-exciting, bistable units maintain binary representations of state for arbitrary
durations; connection strengths between units and the bias parameters within units determine
the logical function that a unit computes on its binary inputs (thereby implementing an
FSA’s statetransition table); finally, the bistability of these units leads to approximately
punctate transitions into the next state. Aside from the absence of a central clock (which we
can achieve by the use of asynchronous timing methods based on closed-loop circuit
connections; cf. Sutherland and Ebergen, 2002, and Sparso and Furber, 2002), the result is a
network mechanism that is not all that different from a standard, digital electronic circuit, in
which units play the role of capacitors and transistors, and connections play the role of
resistors. Neural automata of this type can then be used to control a hierarchy of truly
subsymbolic processing, as might be carried out in hybrid neural-symbolic models of motor
control in animals and robots (e.g. Ritter et al., 2007).

Our discussion of logic-level mechanisms is not yet complete though. We must now
consider how decisions are made in the presence of processing conflict — an operating
condition described below that typifies the operation of parallel-processing systems such as
production systems, but a condition that is purposely precluded by standard sequential-
circuit design techniques in digital electronics in order to ensure predictable operation
(Hayes, 1993). Since the brain appears to be a parallel processing device, conflict constitutes
a central concept in cognitive neuroscience (Botvinick et al., 2001). Aside from the capacity
for subsymbolic decision making, it is the presence of processing conflict and mechanisms
for resolving it that most distinguish our proposed architecture from standard digital
computing techniques.

4In previous work (Simen et al., 2004), we speculated that the laminar and columnar structure of mammalian cortex reflected this sort
of organization, with middle and deep layers of cortex within a cortical column corresponding to the input stage, and superficial layers
corresponding to the output stage, or gate.
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5. Voting processes that implement if-then rules
Production systems5 (e.g., Anderson and Lebiere, 1998;Just and Carpenter, 1992;Laird et
al., 1987;Kieras and Meyer, 1997) are used widely in cognitive psychology and AI to model
cognition. These systems exhibit flexibility in their operation relative to standard computer
programs, because they decompose the potentially long, complex routines of a standard
program into sequences of smaller instructions – if-then rules, or ‘productions’ – which can
be conditioned on the state of the world and on current goals, and which can be executed in
parallel. Thus production systems are able to sample the world frequently, detect and handle
errors quickly, and interrupt long routines if necessary. They are also amenable to powerful
learning strategies such as ‘chunking’ (Anderson and Lebiere, 1998;Laird et al.,
1986;Miller, 1956) that compile successful rule-sequences into single rules, thereby
speeding performance, as well as stochastic, exploratory rule-creation processes in some
systems (Holland, 1986a).

Production systems consist of a working memory (WM) for symbolic information (whose
contents are typically updated frequently), and a long-term memory of productions (whose
contents typically endure for much longer durations). The typical processing scheme for
such a system is that the conditions of the production rules are repeatedly matched against
the contents of WM. Any rule whose conditions are satisfied becomes a candidate to make
the changes to WM specified by its postcondition. These rules are said to ‘match’. Conflict
resolution processes that vary among production system architectures may then determine
which rules actually execute their postconditions, or ‘fire’. These changes typically occur at
the onset of the next processing cycle and do not produce matches of other rules on the
current cycle. In Soar, many productions can fire in parallel and generate preferences about
the next sequential step to take in problem solving. A separate decision cycle then consults
the preferences and commits to a specific mental operator (Laird and Congdon, 2006). ACT-
R instead allows only one production at a time to fire (Anderson et al., 2004).

In order to implement production systems in neural networks, the mechanisms underlying
this cyclical process must be addressed (or the cyclical model must be modified) in order to
observe a constraint that we and others have hypothesized: this is that the brain lacks a
global, synchronizing clock circuit. Furthermore, a means must be addressed by which
circuits can make decisions about which rules to fire when there is processing conflict
between multiple matching rules.

This section addresses both issues in the same manner as Polk et al. (2002). It emulates
‘matching’ by a voting process among competing candidate rules (cf. Grossberg, 1980b;
Feldman and Ballard, 1982). This voting is implemented as a high-dimensional diffusion
process in a competitive attractor network (or ‘module’), driven by connection strengths that
implement preferences among candidates and that connect modules together (cf. the similar
feedforward network approach, or ‘Core Method’, for encoding propositional logic
statements in Bader et al., 2007). It emulates ‘firing’ as a threshold-crossing event,
implemented by strongly self-excitatory neural network units that can operate without
governance by global clock signals.

5.1. Production implementations: if-then rules and conflict
We characterized the operation of n-dimensional attractor networks in response to a vector
of n constant inputs in section 3. We are now ready to take our most significant step toward
the implementation of production systems, by implementing working memory symbols and

5We use the term ‘production system’ to refer to any architecture sharing the basic structural features of if-then rules and a working
memory. Under our interpretation, this also includes systems referred to as ‘classifier systems’ (Holland, 1986b), and probably others.

Simen and Polk Page 20

Log J IGPL. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



symbolic productions that may conflict with each other, as was done in Polk et al. (2002).
To do so, we consider a simple example of the type of productions necessary for performing
the Tower of London task (Shallice, 1982).

This task is depicted in Fig. 11. In it, a participant is shown a starting configuration and a
goal configuration of colored balls on pegs; the participant is then asked to transform the
starting configuration into the goal configuration by moving one ball at a time. The TOL
task has been used extensively to assess planning impairments and is thought to depend
crucially on goal management (Shallice, 1982). It is a variant of the Tower of Hanoi
problem (Simon, 1975), but in contrast to that task, there are no constraints specifying which
balls can be placed on which others. Instead, the pegs differ in how many balls they can hold
at one time (the first peg can hold one ball, the second peg can hold two, and the third peg
can hold three). There is typically one red, one green and one blue ball. Participants are
usually asked to try to figure out how to achieve the goal in the minimum number of moves
and are sometimes asked to plan out the entire sequence of moves before they begin (Carlin
et al., 2000;Shallice, 1982;Ward and Allport, 1997).

In the model discussed in Polk et al. (2002), the representation of the current task state
consists of the following symbolic attributes (among others): six numbered gameboard
position attributes, each of which can take on one of the four possible color values — blue,
green, red, and empty — indicating the color of the ball that currently occupies that position;
and a move/action symbol, with eighteen possible values corresponding to every possible
conjunction of a ball to be moved and a target position for it to occupy. (Here we rely on a
conjunctive code for binding ball colors to positions; a dynamic binding mechanism, which
we do not model in this paper, could presumably use fewer units to represent the same
thing.) Given the right vector of inputs, we can cause any of these attractor modules to
converge to the desired values so that any combination of attribute/value pairs can be
represented.

Now we address the general interconnection pattern between modular networks that allows
us to produce these constant input vectors. Before considering the production
implementation in full generality, we begin with a simple example. Consider the set of two
productions in Table 1, which use a Soar-style preference encoding.

In this system, the current state of the gameboard determines which rules match. To
implement the two productions, we use three attractor modules: Position1 and Position2,
representing the antecedent conditions of the production, and Move, representing the
consequent of the production. Each Position module uses four pairs of units for representing
four possible ball colors, each pair consisting of an accumulator feeding into a threshold
unit. The Move module consists of eighteen accumulator/threshold pairs for representing
moves. We depict connections among the units of interest in these modules in Fig. 12 (the
full model is depicted in the Supplementary Materials).

The weights in Fig. 12 define a net input vector in the two-dimensional space of the two
Move accumulator units shown. Such vectors are depicted in Fig. 13. Any preference vector
in which the elements are not equal will ultimately drive the attractor network into one
symbol region or the other (assuming properly parameterized thresholds and bias terms —
how to achieve such parameterizations through feedback control is the subject of appendix
C). We therefore partition the input space into two half-plane regions by the diagonal line
running through the origin and the point (1,1). If no noise is present in the system, the
network will deterministically enter the symbol region in the same half-plane as the input
vector. If noise is greater than 0, then the probability of entering the symbol region in the
same half-plane is greater than that of entering the other symbol region, but it is less than 1.
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We can continue in the following way to translate productions into neural networks more
generally: create an attractor network for every antecedent attribute that appears in a rule,
with one unit in the network devoted to each value that that attribute can take on. Then
create weights from those networks to networks that similarly encode the consequents of
each rule, with values equal to the specified preference strengths.

Specifically, for the case of n antecedent units projecting in a one-to-one pattern to n
consequent units (see the five-unit example in Fig. 19), set the preference ratings Pi, (i = 1
… n) as follows. (For simplicity, we assume that the antecedents are binary-valued.) Pick a
base strength B and a difference value, Δ, such that P1 = B, P2 = B + Δ, … Pn = B + (n −
1)Δ. The difference value Δ between preferences should be large enough to guarantee a
desired minimum level of expected accuracy in choosing the most preferred option, as well
as a desired maximum response time.

While reaction time distributions and expected accuracies are quantities that are given by an
explicit formula in the case of the drift-diffusion model of two-alternative decision making
(which properly parameterized neural networks approximate), they can only be computed
numerically by solving partial differential equations or by Monte Carlo simulations in the
case of decision making among three or more options (McMillen and Holmes, 2006). In
programming the model of Tower of London performance in Polk et al. (2002), we used a
process of trial and error to set B and Δ manually (a task which was made easier by the use
of the feedback control methods discussed in appendix C).

5.2. Preference blending
While we do not currently have an automated procedure for setting (or learning) these
values, a formal statement of the preference-encoding scheme used by the proposed rule
implementation may be helpful for future work on this problem. Let the outputs of the
antecedent threshold units be the vector A (whose ith element is Ai), the outputs of the
consequent accumulator units be labeled Ci, and the uniform lateral inhibition between
consequent accumulators be ξ (we assume uniformity only for simplifying our discussion).
Assuming binary-valued outputs from the antecedent units, the net input, Ii to consequent
unit i is given by Eq. 15:

(15)

Given the nonlinear activation functions of all units (Eq. 2), which prevents outputs from
going negative, we can assume that Ci is effectively zero whenever Ai is zero. Thus,
whenever any term Aj, j ≠ i, is zero in Eq. 15, no competitive influence is exerted by
consequent unit j on consequent unit i. In this way, if antecedent unit j is inactive, then
option i can become the most preferred option, even if the connection strength feeding into
consequent unit i is smaller than that feeding into consequent unit j.

This picture becomes more complicated when one-to-one connections are generalized to
many-to-one and many-to-many connections. In such a case, we must work with a matrix W
(whose ith row is labeled Wi) that encodes the preferences P, as in Eq. 16 (which is identical
to Eq. 13 apart from changed variable names):

(16)
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As it happens, most of the interesting action-selection functionality of the Tower of London
model in Polk et al. (2002) and in the supplementary materials involves many-to-many
connections. Unfortunately, such connections create a serious difficulty for the
straightforward mapping of production preferences onto weights that we have described up
to this point. The most obvious use of preferences in such a system is to list all matching
productions in order of the static preference values attached to them, and then to choose the
most preferred. In our system, in contrast, preferences change depending on which rules are
matching (they blend together in the form of a weighted sum). We address this problem in
the context of fully general preference implementation in appendix D, keeping in mind that
what we ultimately want is a means by which any desired preference ranking among
alternatives, in response to any current state of working memory, can be imposed by a
programmer or learned by a learning algorithm.

6. Models of complex cognition: problem solving
The preceding sections described architecture components that make sequences of decisions
and implement if-then rules in a process analogous to holding an election. This is the most
important step in implementing production systems. Still, several other high-level
architectural features of production systems are required before models built from these
components can achieve the functionality of systems like Soar and ACT-R. Principal among
them is the capacity to make actions contingent both upon immediate states of the
environment, and upon internally maintained representations such as goals and subgoals
(Newell, 1990).

Goals and subgoals in our system are represented in the same way as any other symbolic
information, using recurrent latch mechanisms. For simplicity’s sake, actions too are
represented as the symbolic outcomes of if-then decision processes. Goals exert their
influence on these decision-making processes by favoring the outcomes that would help
achieve a given goal, using direct, excitatory connections to the units representing those
outcomes. This idea is quite simple, and is prevalent in cognitive neuroscience models of
related phenomena such as attention (Miller and Cohen, 2001; Desimone and Duncan, 1995;
Cohen et al., 1990). This approach to goal implementation leads directly to predictions about
the cognitive and behavioral effects of brain damage and disease.

In Polk et al. (2002), we discussed the use of goal and subgoal representations in the context
of a model of the Tower of London task. In Polk et al. (2002) and in Simen et al. (2004), we
discussed the application of different versions of this model to behavioral data from human
task participants, including participants with, respectively, prefrontal brain damage and
Parkinson’s disease. One virtue of a subsymbolic approach to modeling these tasks is that
brain damage and disease can easily be modeled by parameter changes, such as the
weakening of connection strengths or elimination of processing units, for which no obvious
counterpart exists in purely symbolic approaches. Here we review these results; in the
supplementary materials, we cover the detailed structure and operation of the model in
Simen et al. (2004) (this model is similar to that of Polk et al., 2002, but it makes use of the
sequential processing mechanisms discussed in section 3 to eliminate the latter model’s
dependence on symbolic computer code for sequentializing performance).

6.1. Human performance in the Tower of London task
In Fig. 14, we show the basic behavioral results (Owen et al., 1995) that will guide our
interpretation of model performance. In this experiment, participants were instructed to plan
solutions to problems that varied in the minimum number of moves required for their
solution. Once they had decided on a solution, the task required them to indicate the first
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move that the optimal solution would require. If they made an error (i.e., their first choice
was not the first move in an optimal solution trajectory), they chose again.

In the top row of plots in Fig. 14, the vertical axis represents a measure of response time: the
time from problem presentation to first move selection. The horizontal axis represents the
number of moves in the optimal solution. In the bottom row of plots, the vertical axis
represents a measure of accuracy: the number of first-move selections prior to selecting the
optimal first move.

As can be seen in the bottom-left plot in the figure, prefrontal patients clearly demonstrate
accuracy impairments in problems requiring 4 or 5 moves, relative to normal control
participants (for problems requiring fewer moves, the accuracy differences were statistically
insignificant). However, they show little impairment in terms of latency, as the top-left plot
shows.

Parkinson’s patients were examined under medicated and unmedicated conditions, and with
a range of symptom severities. The top row of plots shows that in all medication and
severity conditions, Parkinson’s patients demonstrated latency impairments relative to
control participants, and the impairment was more severe for harder problems (problems
requiring more moves). The bottom row of plots shows a pattern of accuracy impairments
that is less clear cut. Medicated patients with mild Parkinson’s symptoms showed no
accuracy impairment relative to controls. Non-medicated patients with mild symptoms
showed accuracy impairments in the hardest problems (although an earlier study, Owen et
al., 1992, showed no accuracy impairments in this group). Medicated patients with severe
symptoms showed definite accuracy impairments (and also did in the earlier study).

By providing one account of this pattern of deficits, we will be able to evaluate the choices
we made for modeling brain circuits involved in problem solving at multiple design levels.

6.2. The influence of goals on decision making
We have discussed the use of connection strengths (like those from Perception to Action in
Fig. 15) to encode preferences among options in decision making: when the unit assigned to
one option is excited more strongly than the unit assigned to another option — because its
input connections are stronger, for example — then the first unit is likely to cross threshold
before the second. The probability of this event depends on noise levels and connection
strengths.

This probabilistic choice mechanism leads to stochastic exploratory behavior, and
preference encodings lead to exploration that is biased toward more-preferred options
(Loewenstein and Seung, 2006; Montague and Berns, 2002; Soltani and Wang, 2006; Simen
and Cohen, in press). When preferences vary greatly among different options, there is likely
to be less exploration and little conflict between options, because the most preferred option
will usually win and will usually do so rapidly. When preferences are nearly equal, however,
so that many options are equally competitive, a state of prolonged conflict can ensue. To
resolve it, thresholds can be set low, resulting in purely exploratory behavior through rapid,
random choice; or thresholds can be set high. In the latter case, some other mechanism must
instead resolve the resulting, intractable conflict between competing options. Goals are one
mechanism that can be used to resolve this type of conflict (we discuss a second, less
knowledge-intensive mechanism for conflict resolution based on feedback control in
appendix C; this mechanism is essential for preventing critical problems faced by the
decision making components of the proposed architecture, but we assume for the present
purposes that these problems have been solved).
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A serious limitation of the weight-encoded preference approach to choice is that preferences
are static in the proposed architecture. Static preferences imply a lack of flexibility in choice
that will make effective problem space search impossible. Dynamic wiring is an obvious
potential solution to this problem, but it is beyond the scope of this paper. Even in an
architecture with dynamic wiring, however, weight-encoded preferences cannot change
faster than the weights themselves. For this reason, rapid preference adjustments require
rapid weight changes if weights alone mediate preferences. Unfortunately, a large degree of
plasticity can be very disruptive to neural networks. This phenomenon is known as a
stability-plasticity tradeoff (Grossberg, 1987).

In order to carry out problem space search, however, the choice of an action to take at any
given state should be highly context-specific. The current state should certainly help
determine what the next move in the problem space should be, and search heuristics might
also play some role. Based on its success in explaining many aspects of human problem
solving behavior (Newell and Simon, 1972), means-ends analysis is the search algorithm we
emulate here (minus that algorithm’s formulation of goals, which is beyond the scope of this
paper). Under this algorithm, the most important unachieved aspect of a solution is worked
on first, and this work may generate subgoals that must be achieved before the parent goal
can be achieved. Therefore — assuming that a current goal is guiding the search — goals
must be a part of the context in which actions are selected, and goals should therefore
dynamically determine preferences.

We implement dynamic preferences while avoiding the stability-plasticity dilemma and
even the need for dynamic wiring by drawing on the idea of activation-based biasing (Miller
and Cohen, 2001; Desimone and Duncan, 1995; Cohen et al., 1990). We use a separate
network (Goals in Fig. 15) as a context representation that acts to favor a subset of the units
within a decision making network. This separate goal network may be capable of
representing arbitrarily many contexts. Each context is assigned a strongly self-exciting,
approximately binary unit. This unit again uses a suite of static connection strengths to
excite units in the decision network and thereby create a temporary preference ordering (one
that is in force as long as the context unit is active). In a different context, though, a different
context unit becomes active and the previously active context unit inactivates — a process
that can happen rapidly. Now the strengths of the new unit’s connections to units in the
decision network determine the choice preferences in that network (probably different
preferences). However, the previous preference ordering is not lost as a result of connection
strength adaptation; instead, the inactive context unit’s connections to units in the decision
network maintain the memory of the previous preference ordering for later, rapid retrieval.

The hybrid neural/symbolic Tower of London-solver modeled in Polk et al. (2002) used goal
context units in this way to bias the selection of actions in the Tower of London task. In that
model, the current state of the game determined which moves were possible (the units
representing currently illegal moves, such as moving a ball to a position which is already
occupied, were strongly inhibited). The units representing the current state of the game also
defined a preference ordering among possible moves, by favoring moves of balls to lower
positions on a peg over positions higher on the same peg. This still left multiple options
available to the system at many choice points during problem solving. Goal units played
their roles at these choice points, guiding the system to select from among a restricted subset
of actions by temporarily increasing the preferences for the favored subset (in fact, actions in
Polk et al. (2002) and in the model presented in the supplementary materials are restricted to
a subset consisting of only the action that would obtain the goal in one move, but this
restriction may be loosened).
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If goal-unit connections to a decision network are strong enough and noise is weak enough,
this guidance can cause nearly deterministic selection of the favored action. However, the
key to proper problem-space navigation is to balance the excitation of goal-achieving
actions against the inhibition used to prevent illegal moves. Our model relied heavily on
such inhibition of the main decision-making network; this was a modeling choice that is
consistent with evidence from brain imaging for selective facilitation and suppression by
attentional processes of localized, functionally defined brain areas in tasks with conflicts
between stimulus dimensions (Polk et al., 2008). When the action that would immediately
achieve a goal cannot be chosen because of massive inhibition, the model can either choose
some other move randomly, or remain stuck in a problem-solving impasse.

6.3. Normal performance, simulated PFC damage, and simulated Parkinson’s disease
We now review the results of previous simulation studies, showing how a model of Tower
of London performance captures the response time and accuracy of typical task participants
and of patients with prefrontal damage or Parkinson’s disease. As in Polk et al. (2002), we
assume that PFC damage, especially damage to dorsolateral prefrontal cortex (DLPFC),
reduces or eliminates the populations of neurons that implement a network devoted
specifically to representing subgoals. This assumption is consistent with other modeling
work that assigns the DLPFC a role for working memory in problem solving (e.g., Goel et
al., 2001), as well as with the behavior of prefrontal patients (Kimberg and Farah, 1993).
These patients can frequently carry out basic tasks, but cannot organize sequences of basic
behaviors into coherent, complex behavior that achieves goals.

As shown in the left two panels of Fig. 16, prefrontal patients encounter difficulty in
achieving an optimal solution to the puzzle (a solution trajectory that involves a minimal
number of moves), but only when the required number of moves to solution exceeds three
(Shallice, 1982;Owen et al., 1990). The model of Polk et al. (2002) displays a very similar
pattern: no more than the optimal number of moves are made when problems require only
two moves of a ball. However, when three or more moves are required, the problem
typically requires a subgoal: that is, one or more of the balls must not be moved to its final,
goal position, even when that position is free, so that the free position can be used
temporarily by another ball (ordinarily, so that the order of a stack of balls can be reversed).
When our model’s subgoal module has a reduced ability to guide action selection by voting
for certain actions and against others, noise leads more often to random selections of a ball.
Furthermore, as shown in Fig. 17, base-level goals defined by the final goal configuration of
the problem tend to override a reduced subgoal influence in such situations, leading to
greedy moves of balls to their final positions. This occurs despite the fact that a lookahead
search would have identified that such a move should be inhibited until after a subgoal has
been achieved.

In severe cases of Parkinson’s disease, the same pattern of deficits is seen; in milder cases,
the accuracy of performance is indistinguishable from normal performance. At all levels of
Parkinson’s severity, however, impairment in problem solving latency (the time to begin
problem solving once a problem has been presented) is seen. Interestingly, however, this
impairment appears only on problems requiring more than three moves. A similar latency
effect is not seen in prefrontal patients (Owen et al., 1992,1995).

To simulate the effects of Parkinson’s disease, we weaken the connection strengths that
implement propagation delays within an interval timer circuit that is used for impasse
detection during problem solving (Simen et al., 2004). Interval timing deficits —
specifically, slowing of an internal clock — are a robust phenomenon in cases of
Parkinson’s disease (Meck, 1996). The impasse timer in our model, which is discussed in
more detail in the supplementary materials, is used to sense when a period of intractable
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conflict between actions has extended beyond a certain duration. When this occurs, the fully
functional model employs a cascade of asynchronous logic circuits (discussed in section 4.3)
embodying basic knowledge about block-stacking tasks to compute which subgoal the
model should work on in order to make base-level goals achievable. This timer
sequentializes problem space search by bottling up activation in an action selection network,
and allowing this next step of problem solving to proceed only after the predetermined
delay.

Since the timer slows down under simulated Parkinson’s disease, problem solving also
slows down in this simulated disease condition — but this slowdown in problem-solving
only occurs when subgoals are required. When they are not required, the model proceeds
through action selection without any additional bottling up of processing in the action
selection network. For this reason, the model only slows down significantly when solving
problems require three or more moves, thereby replicating the response latency data in the
literature.

The basic functionality of the models discussed here rests on a symbolic representation of
task knowledge, goals and actions. However, the basic response time and accuracy
predictions of the models depend strongly on manipulations of the subsymbolic substrate
supporting this symbolic processing.

7. Discussion
The processing that occurs in a standard computer is highly sequential: most components of
the machine are not changing in activity during a processing cycle; only CPU components
such as the arithmetic/logic unit and one memory location are typically changing their
values on a given clock cycle, but these cycles are incredibly brief and computation is
therefore fast nevertheless. In contrast, of course, brains appear to involve a large amount of
parallel processing by relatively slow components. Furthermore, while tantalizing hints
about timing signals may be perceived in electrophysiological recordings of phase-locked
oscillations across widely separated brain areas, the basic technique of computer hardware
design in which synchronous digital logic circuits are clocked by a central oscillator seems
like a non-starter as a physical model of the brain.

Our approach to these mismatches is to assume as much parallelism as possible, and to push
as much computation as is feasible onto a substrate of untimed, asynchronous, neurally
implemented voting processes. When conflict between processes competing for neural
resources forces a slowdown in processing that would be catastrophic, sequentialization
occurs: that is, an agent learns (through a process we have not specified) to implement a set
of essential sequence control mechanisms. These include processing bottlenecks (consisting
of feedback-regulated decision making components), handshake completion signals,
deadline timers and flip-flops for the prevention of critical race conditions. These
mechanisms can be straightforwardly applied to the underlying, analog processes commonly
used in psychology and neuroscience to model choice and decision making by animals
across the phylogenetic spectrum. The result is a system that can be made to approximate
basic production system behavior arbitrarily precisely.

The theoretical position staked out by this paper is consistent with the idea that information
processing systems can best be understood by decomposing them into mostly independent
levels of analysis. That is, systems can be analyzed and understood at one level of analysis
while (mostly) ignoring the details at other levels, as in other hierarchical theories of brain
function (e.g., Cooper and Shallice, 2000; Eliasmith and Anderson, 2003; Marcus, 2001;
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Sun et al., 2005). This approach simplifies the task of understanding, because it facilitates
the focusing of attention on a smaller part of the overall problem at any given time.

In accordance with this view, we have explicitly followed a levels-of-analysis organizational
scheme in the paper. Of course, the notion of total decoupling between levels is idealization
that is not likely to bear up under close enough examination. David Marr’s position at the
end of his seminal work on vision (Marr, 1982) is consistent with this notion as well:

Question: Are the different levels of explanation really independent? Answer: Not
really, though the computational theory of a process is rather independent of the
algorithm or implementation levels, since it is determined solely by the
information-processing task to be solved. The algorithm depends heavily on the
computational theory, of course, but it also depends on the characteristics of the
hardware in which it is to be implemented. For instance, biological hardware might
support parallel algorithms more readily than serial ones, whereas the reverse is
probably true of today’s digital electronic technology.

— David Marr, Vision

Indeed, we have argued that changes at the lowest levels have important impacts at the
highest levels. These show up, for example, in simulations of problem-solving performance
by patients relative to healthy control participants (Polk et al., 2002). Thus, this paper has
relied on a levels-of-analysis organizational structure, but each section of the paper has
focused on the interface between two, adjacent levels. In this way, the extent of their
independence could best be analyzed. Furthermore, this structure was intended to facilitate
understanding of the way in which the effect of a biological or psychological constraint at
one level propagates up the level hierarchy. The ultimate result was that low-level changes
did indeed have an impact on the way behavioral data could be accounted for by a
computational theory at Marr’s uppermost level of analysis. However, though we have
argued that this impact was substantial, it was not a complete revolution: the basic notion of
problem-space search carried out by a goal-driven system consisting of simple if-then rules
is still the simplest way to describe the system we have simulated. We therefore propose the
principles embodied by this system as an implementation-level theory that is roughly
consistent with much of the computational theory already proposed for explaining complex
cognition, most of it symbolic in nature.

Where this paper differs from much of this existing theory, and where it begins to overlap
with connectionist and other subsymbolic theories, is in the degree of emphasis it gives to
the implementation level. We have further decomposed Marr’s lowest level, that of
implementation, into the physical and logic levels in the design-level hierarchy of computer
engineering. This decomposition has allowed us to focus on low-level modifications that
borrow heavily from neural networks and from analog computation.

We have seen that serious problems remain to be addressed before the principles in this
paper can be used to support the whole range of computational-level theorizing that
currently takes place using the standard computer as its implementation-level medium.
These include the dynamic wiring and binding problems (it is worth noting that previous
research groups have attempted to merge production systems and neural networks, only to
abandon further efforts in this direction once the difficulty of the binding problem was fully
appreciated: e.g., Touretzky and Hinton, 1988; Touretzky, 1990). But, as will be obvious to
readers with a background in neuroscience, we have also given short shrift to the physical
level, our lowest level of analysis. We have entirely ignored the complex dynamics possible
in spiking neural networks in which neurons are governed by the Hodgkin-Huxley
equations, or even by simplifications of these equations that are not quite as simple as our
RC-filter models of populations.
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Ultimately, however, our hope is that the choice of an extremely simple model of neural
computation may serve the goal of unifying disparate psychological theories that Allen
Newell spelled out in Newell (1990). Some variety of random-walk mechanisms was
proposed there as a possible substrate for a complete cognitive architecture. In his words:

Any mechanism with the common properties epitomized in Fig. 1-11 [a diagram of
a random walk decision making model] will do all right. This means that we may
be able to settle on an important schematic characterization of an elementary
mechanism of the mind. And we can trust the incorporation of this mechanism into
unified theories of cognition that may appear to have quite different structure.

— Allen Newell, Unified Theories of Cognition

Symbolic and subsymbolic modeling approaches are indeed quite different in structure. But
considering these two approaches merely as two different levels of description and focusing
on the interface between them highlights the possibility of their ultimate compatibility. In
more practical terms, a better understanding of the symbolic/subsymbolic interface may
simply help cognitive modelers pick the right tool for a given job.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

A. Filtering out noise by leaky integration
In this appendix, we detail our approach to simulating stochastic integration processes,
focusing especially on the central role of leaky integration of noisy signals in our proposed
architecture. Leaky integration is a form of sliding window averaging that is equivalent to an
exponentially weighted average of a signal y over the infinite past. In discrete time, the
weights on the samples of y follow a recursive, difference equation:

(17)

As n goes to infinity, these weights sum to 1. For a noisy input signal rn = sn + ∊n, the
estimate xn of the signal value sn is then:

(18)

Our goal is to minimize the difference between xn and sn — in fact, we will follow common
practice and attempt to minimize the square of xn − sn, summed over n.

Furthermore, we will consider a version of this exponential averaging that takes place in
continuous time. By doing so, we free ourselves from any dependence on a clock for
triggering samples. As the samples come closer and closer together in time,6 and as the
weights on individual samples yn are correspondingly reduced at each iteration so that the
sum does not blow up,7 the output of the discrete-time signal estimation process (Eq. 18)
asymptotically approaches the output of a low-pass RC filter. The differential equation

6E.g., separated by equal intervals of duration i, with Δi+1 reduced to Δi/2 at the ith reduction of the inter-sample interval.
7That is, set according to Eq. 18 — with αi defined by 1 − αi ≈ exp(−Δi/τ)/2, with τ defined by Eq. 19.
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governing the output of such a system in response to a deterministic, non-noisy input signal
s(t) is given in Eq. 19:

(19)

Here, τ = RC, where R is the resistance and C is the capacitance of an electric circuit
implementation, and the voltage V across the capacitor plates is the filter’s output.

Note that with positive feedback through a recurrent connection strength of 0 < k < 1 and
with a reduction in input connection strength by a factor of (1 − k), a unit defined by Eq. 19
can achieve effectively any time constant (cf. Seung et al., 2000):

(20)

Modeling the effect of a filter applied to a noisy input requires one further complication
beyond moving to differential equations: we must use stochastic, rather than deterministic,
modeling techniques. For this purpose, we use stochastic differential equations (SDEs), for
which a well-developed theory of integration exists (the Ito calculus) (Gardiner, 2004;
Oksendal, 2003). The effect of a low-pass filter applied to a noisy input can now be modeled
as in Eq. 21:

(21)

In this case, s(t) in Eq. 19 is replaced by s(t) + c · dW/dt, where dW/dt is idealized white
noise, weighted by a constant,8 c. Strictly speaking, dW/dt is not a well-defined stochastic
process in continuous time, although a discrete-time version of dW/dt is quite easy to define
and to simulate: dW/dt evaluated at discrete time points n is simply a sequence of samples
from a Gaussian distribution centered at 0. Typically, n indexes a sequence of time points
spaced apart by some fixed duration Δ. The limiting form of dW/dt as Δ becomes
infinitesimal is not well-defined, but the limit of the integral of dW/dt(n) — a Wiener
process, denoted by W — is (Oksendal, 2003). A Wiener process, or Brownian motion, is
just a continuous-time version of a random walk with steps selected from a normal
distribution.

For this reason, we can easily simulate the system9 of Eq. 21 just as we can Eq. 19, using
Euler’s method: x(t + Δ) ≈ x(t) + Δ · dx/dt(t). Now, however, at each update of the value of x
in a small, discrete time step of size Δ, we also add a normal random variable with mean 0

and standard deviation  (Higham, 2001). Obviously then, the way to eliminate any
effect of white noise is to make τ large; however, the tradeoff is that a system with τ too
large cannot track changes in s rapidly enough.

8We keep c constant for simplicity, but a variable c may be more plausible. In the case of thermal noise in electrical circuits, it
depends on the amount of heat generated by voltage across resistors (Gardiner, 2004), and in the case of neuronal circuits, it may
increase with the firing rate.
9We can also solve it analytically when s is a constant. In such a case, Eq. 21 is a stochastic process — specifically, an Ornstein-
Uhlenbeck process — with an asymptotic mean value given by Eq. 19, and standard deviation c/τ (Gardiner, 2004).
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Of course, the idealized processes of Eqs. 20 and 21 can take on unboundedly large values,
but the firing rates of real neural populations are necessarily bounded below by 0 and above
by some maximum. Similarly, offset voltages and saturation effects are observed in real
amplifiers (Hopfield, 1984;Mead, 1989). Saturation bounds impose a sigmoidal nonlinearity
on the output of the RC filter model in Eq. 21 (in applications to brain-modeling, such
nonlinearities have been modeled as a logistic function, cf. Cowan, 1967, which is a
convention that we too will follow). With sigmoidal nonlinearities in their activation
functions, neural network units can be combined to approximate any analog computation
conceivable (Cybenko, 1989;Rumelhart et al., 1986).

B. Simplified unit equation
We now derive a simplified, single equation for stochastic unit activity (cf. similar
arguments in Brown et al., 2005) from the two-equation systems found in (?). The
deterministic part of this equation is identical to standard neural network models,
represented by Eqs. 23-23:

(22)

and

(23)

In general, we will not require the connection strengths, wij between any two units, i and j,
to be equal. However, it will simplify matters to assume that the noise coefficients cij on
every connection between two units is the same (cij ≡ c), and furthermore that λ and β are
the same for all units. (Of course, it might be better to model cij as proportional to f(xj), since
neural firing rate variability tends to scale linearly with firing rate; however, the assumption
of constant cij may not make a great difference, since f is bounded between 0 and 1.)
Assuming that amplification of inputs by all units is instantaneous, we can replace f(xj) with
Vj. We then arrive at a single equation for the system, Eq. 24:

(24)

If we examine the deterministic part of this equation, and keep in mind Eq. 23, we see that
as f−1(V) = x approaches I for some constant input I, V must approach f(I). Furthermore,
when x is in the linear range of f, df/dx ≈ λ/4, and f(x) ≈ (λ/4) · x + (2 − λβ)/4. Thus f−1(V) ≈
(4V − 2 + λβ)/4. We therefore get the following deterministic equation:
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(25)

It is only when V approaches 1 or 0 that nonlinearities affect the approximation, and they
will have a small effect. Thus we can use the following, much more manageable equation in
our simulations and analyses:

(26)

If we assume that λ = 4 (which we can do without any loss of functionality), we can
eliminate the df/dx factor to get the simpler equation:

(27)

For λ = 4 and β = 0.5, the linearized version of this equation is just the equation for a low-
pass RC filter that includes the weighted effects of noise:

(28)

Figure 19.
A simple example of five productions. When all five antecedent units are active near 1, then
a preference ordering exists: A’, B’, C’, D’, E’. When only B through E is active, the
preference ordering becomes B’, C’, D’, E’, A’. Normally, relative preferences are
sufficiently large to produce a unique outcome (far right panel), but it is unfortunately quite
easy to parameterize a network so that it produces multiple winners (middle panel) or no
winners.
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C. Integral feedback control of decision making to guarantee the winner-
take-all property

In section 3 we discussed the use of lateral inhibition for resolving conflict between
multiple, concurrent response processes — a technique that is a principal feature of most
neural network-based cognitive models (e.g., Grossberg, 1980a; McClelland and Rumelhart,
1981; Cohen et al., 1990). The dynamics of attractor network convergence in laterally
inhibiting, winner-take-all (WTA) networks leads to decisions based on local competition,
so that no third party mechanism needs to be invoked, and an infinite regress in identifying
the physical locus of deciding and resolving conflict can be avoided. Furthermore, in the
case of two competing processes, conflict resolution in linear WTA networks is in fact
equivalent (to arbitrarily close approximation) to the SPRT, a statistical decision making
algorithm that maximizes earned reward rate in environments with stationary statistics
(Bogacz et al., 2006; see section 3).10 Thus, no other conflict resolution mechanism is likely
to offer much better performance in such conditions (i.e., more reward per unit time or unit
of behavior); nor is any other mechanism likely to be much simpler physically.

As we have noted, though, true linearity is physically implausible, and nonlinear activation
functions are essential for the activation hysteresis upon which our architecture depends.
Unfortunately, attractor networks of nonlinear filter units often face serious difficulties in
selecting a single unit (or a single subgroup of units) for maximal activation. It is all too
easy to parameterize a network so that the intended resolution of conflict does not occur,
either because multiple competing processes remain active in parallel, or because all of the
currently competing processes are silenced (see Fig. 19).

Fig. 20 illustrates this problem in terms, once again, of a phase-plane description of activity
in a two-unit decision-making circuit with symmetric lateral inhibition. In section 3, we
discussed the phase-plane of a linear system of two units: the activations of the pair
correspond to a coordinate pair in the plane, with unit 1 corresponding to the position along
the horizontal axis, and unit 2 corresponding to the position along the vertical axis. Starting
from the origin of the plane (i.e., both units at 0 activation), the usual idealization of a
decision process involves step-like inputs to both units: inputs that instantaneously jump
from 0 to some level Ii (Ii > 0, i indexing the units), remaining there until a threshold
crossing event, at which time they both return to 0. Usually, I1 is greater or less than I2, and
the goal of the process is to determine conclusively which is greater (Gold and Shadlen,
2001).

The picture of such a system in Fig. 2 is complicated by the simplest form of nonlinearity
we can impose on the units’ activation functions: a hard lower bound of 0, and a hard upper
bound of 1, with linearity in between those extremes. This type of piecewise linearity
imposes a bounding box on the system’s activation coordinates. The system must always
remain inside this box, depicted with solid lines in Fig. 20. Prior to reaching a boundary, the
system evolves like its linear analogue. Once a boundary is reached, however, the system
tends to stay there. The boundary is ‘reflecting’ in the terminology of stochastic processes,
meaning that the system can in fact hit a boundary and then move back arbitrarily far from it
(until another boundary is hit), but the tendency of the system is ultimately to become
trapped against the intersection of the decision plane and the side of the bounding box in
which the unit with stronger input is most active.

10In the case of more than two competing processes, asymptotically optimal algorithms exist for which a neural implementation has
also been proposed (Bogacz and Gurney, 2007).
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Fig. 20 also shows three different decision planes, whose distance from the origin is
determined by the sum of the input strengths (Bogacz et al., 2006). The plane closest to the
origin corresponds to weak inputs. It intersects the bounding box at activation values that are
below threshold — this is a case of conflict between two responses in which, on average,
neither response emerges as the winner. The farthest plane from the origin produces a rapid
approach of both units toward maximal activation prior to any disambiguation — this is a
case of conflict between two responses that results in both units exceeding threshold within
a short time period, on average. If we do not make unrealistic assumptions about
instantaneous threshold crossing detection and instantaneous reset of the WTA network to
the origin, then this is a case of unresolved conflict with multiple winners that will remain
almost equally active and above threshold as long as the input signals are present. Fig. 19
shows an example of unit timecourses in a multiple-winner situation.

Figure 20.
The problems of multiple winners and no winners illustrated in terms of phase planes.
Vertical axis represents activation of unit 1, ranging from 0 to 1; horizontal axis represents
activation of unit 2, also bounded between 0 and 1. Dashed lines represent thresholds
applied to these activations. Exceeding threshold i generates a response of type i. Bold,
angled lines represent ‘decision planes’: restricted subspaces which the system approaches
rapidly along the main diagonal (shown by three different, curved, arrow-head trajectories).
The position of the decision plane depends on network parameterization. When the plane is
beyond the thresholds, both units are very likely to exceed their thresholds. When the plane
is below both thresholds, neither unit is likely to cross threshold — instead, the system will
converge on one of the two intersections of the plane and the bounding box. Feedback
control can be used to keep the decision plane in the middle region, in order to ensure a
single winner.
One solution to this dilemma that has been proposed is the k-winners-take-all (k-WTA)
algorithm that figures prominently in the Leabra system of O’Reilly and colleagues
(O’Reilly and Munakata, 2000). This approach involves a mechanism that inhibits all units
in the network sufficiently so that k winners emerge at a high level of activation. Lateral,
shunting inhibition is offered as a possible physical underpinning for the necessary
computations, but knowledge about the entire network is needed to set parameters to ensure
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the k-WTA property. This approach is intended as a computational shortcut for the type of
integral feedback control we propose here, although our approach is in fact computationally
quite efficient and requires the simulation of only one additional unit. This integral feedback
control approach is based on pooled, feedback inhibition and excitation (inhibition and
excitation generated by a separate unit or set of units that receive equally strong, common —
or ‘pooled’ — inputs from all of the decision making units; this feedback is returned in
equal measure to all of these decision making units). However, we note that the difference in
proposed physical implementation of k-WTA and integral feedback control is less important
than the mathematical similarity of the computations ultimately performed by the network.
We therefore refer to this approach as pooled WTA. More complex schemes based on this
feedback control approach may be able to provide general k-WTA performance for k > 1,
but this functionality is not required for simple models, such as the Tower of London task
model that we have discussed.

Based on this definition of desired decision-plane placement, we can now define an error
term that can we can attempt to reduce during decision making by applying standard
techniques from control theory: namely, integral feedback control (symbolized by the ‘I’ in
proportional-integral-derivative (PID) control, a standard heuristic control approach;
Franklin et al., 1994). We define the error as the absolute value of the distance from the
current intersection of the decision-plane and the phase-plane-diagonal to the desired
intersection. We then use feedback control to shift the decision plane’s effective position
within the phase plane whenever the sum of activations is too great: in such a case, pooled
inhibition is fed back to the decision making units to offset inputs that are too strong. When
too little activation is detected, pooled excitation can be used to shift the decision plane
upward into the shaded area.

Figure 21.
A decision making circuit of sigmoidal filter units (gray units) regulated by integral
feedback control units (white units). These units integrate the error between the sum of
decision making unit activity and the desired decision plane placement. The inhibitory
down-regulator has a small time constant and rapid dynamics, so that it approximates a
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proportional feedback control device that switches on only when the sum of gray unit
activity exceeds a threshold. The excitatory up-regulator has a large time constant and
relatively slow dynamics, so that a small sum of gray unit activation does not produce rapid
upregulation; after all, decision processes that start at the origin take time to reach symbol
regions of the phase plane. Boosting net excitation of the gray units too rapidly would
produce overshoot of the desired sum of activity, and instability involving oscillations of the
upand down-regulators.
The units that perform this feedback control (shown in Fig. 21) are simple, self-exciting
units that ramp up nearly linearly in activation at a rate determined by the error magnitude.
Specifically, these controller units integrate the amount by which error exceeds a threshold
determined by the units’ bias terms, β. This linear ramping can be achieved by precisely
balancing recurrent self-excitation against the leak term of Eq. 3, which is also the basis of
the interval timing mechanism discussed in the supplementary materials. The inputs to these
units consist of an equally weighted sum of the activation of the decision-making units —
this is equivalent to the average activation level in the WTA network. A pooled inhibitor is
excited by positively weighted connections from the WTA units, returning inhibition in
proportion to the excess of average WTA network activation above the desired level. A
pooled exciter has a low bias term so that its activation in the absence of inhibition is near 1.
This unit is inhibited in proportion to the average activation of the WTA network, and
returns excitation in proportion to the deficit of average WTA network activation below the
desired level.

This prescription for a feedback controller works because it is the sum of decision unit
activation — rather than the product or ‘Hopfield energy’ (Hopfield, 1984), as in Botvinick
et al. (2001) — that is used to determine the feedback signal. In any symmetrically, laterally
inhibiting WTA network with two units, the sum of unit activations is constant along any
decision plane (because every decision plane is equivalent to a contour of the function V1 +
V2, where Vi represents the activation of the ith unit). Thus, detecting the deviation from
desired decision plane placement can easily be done by summing WTA unit activations, and
the weighted sum input function of our leaky integrator units is already perfectly suited to
this computation.

We now have a means of supplying positive or negative feedback to a WTA network
(specifically, the input layer of a module) in proportion to that network’s integrated
deviation from a simple reference value for average activation. We now face the standard
problems that control engineers face in supplying control inputs to their systems: too small a
gain on the feedback, and error is corrected too slowly, or it leaves a residual error that
cannot be eliminated (steady-state error); too high a gain, and the system is liable to undergo
wild oscillations in response to perturbations. In our case, this would mean a decision plane
that ricochets back and forth from the origin to the upper-right corner of the phase-plane
bounding box. Furthermore, we need to allow at least enough time for the system to reach
the decision plane before supplying it with strong, supplementary excitation, which would
then cause overshoot and oscillations, or the multiple-winner problem we are trying to avoid
in the first place.

D. Voting in full generality
We now address the fully general case of ranking preferences among productions by using
linear combinations of antecedent unit activations.

Formally, we wish to be able to map any binary vector of antecedent latch unit activations
onto any preference ordering among consequents. This preference ordering is defined by the
weight matrix connecting the antecedent units to the consequent units. If there are N
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antecedent units, then there are 2N unique binary activation patterns. If there are M
consequent units, then there are M! distinct preference orderings. Preferences are vectors in
M-space. The weight matrix is equivalent to one form of a rated voting system for
expressing the preferences of a group of voters. In this analogy, a participating voter is
equivalent to an active antecedent unit, and the candidates for a one-winner election are the
consequent units.

In a ratings-based voting system, voters express preferences by assigning numerical
preference values to each candidate, rather than an ordinal list of relative preference
rankings. Unlike rankings-based voting systems, a ratings-based system is not covered by
the Arrow impossibility theorem — that is, a ratings system can achieve a unique winner
(even for N > 2 and M > 3, which rankings cannot) while satisfying the constraints of the
Arrow theorem. These constraints describe the intuitively reasonable properties of a fair
voting system (Arrow, 1950).

Nevertheless, the particular rating method we have proposed for aggregating preferences —
linear combination — is highly constrained. The ith column of the M × N weight matrix that
defines the interconnections between N antecedents and M consequents corresponds to the
preference ratings of the ith antecedent voter for the consequent candidates. This preference
rating defines a vector in the space of consequent unit inputs. An election involves using the
vector sum of all active voters’ preference vectors as the input to the stochastic decision
making process implemented via the competition between consequent units.

Ranked preference orderings are determined in M-space by dividing each pair of dimensions
by an (M − 1)-dimension hyperplane that intersects the two dimensions–in question — call
them dimension j and k — along the 45° line (the vector with element j and k equal to 1, and
0s in all other positions). These planes divide the space into regions of points which favor
dimension j over k and regions in which k is favored over j (Fig. 22 illustrates such a
partition in the case of 3 consequent units). Given our decision making mechanism,
whenever dimension k is favored over all others, it is the most likely to win the election, as
in the two-dimensional case. However, the closer this preference vector is to a boundary
between regions, and the noisier the inputs are, the less likely the leading candidate is to be
selected.

This voting system cannot implement arbitrary mappings from binary antecedent vectors to
consequent preference-ranking partition regions. This can be shown by a simple example in
which three antecedent units vote for two candidates (Fig. 23).

Suppose that we have encoded the preferences of two antecedent units — units 1 and 2 —
among two consequent units — units A and B. Suppose that these preferences correspond to
the vectors labeled ‘Pref1’ and ‘Pref2’ in Fig. 23. In this case, unit 1 prefers B to A (the B
value of this preference is greater than its A value), and unit 2 prefers A to B. The linear
superposition of these preference vectors is a point in the B > A subspace; thus the two units
together have a slight preference for B over A. This preference ranking is encoded in tabular
form in the third row of Table 2 as 110 → B > A.

Simen and Polk Page 37

Log J IGPL. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 22.
A partition of three dimensional space into 6 = 3! non-overlapping regions, each
corresponding to a distinct preference ranking. The perspective is toward the origin down
the vector (1,1,1), which points directly out of the page.
Now suppose we attempt to add an additional antecedent unit, unit 3, and to connect it to the
consequent units in order to encode 101 → A > B, 011 → A > B and 111 B > A. → This set
of context-dependent rankings cannot be implemented given the existing preferences of
units 1 and 2. Fig. 13 shows graphically how existing preferences define linear constraints
that separate the plane of consequent unit activations into feasible and infeasible regions
(respectively, regions where a new voter’s preferences lead or fail to lead to a desired net
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preference ranking, given existing preferences). The intersection of the feasible half-planes
defined by the set of productions in Table 2 is necessarily the empty set, regardless of the
numerical ratings involved.

This example highlights what appears at first to be an unavoidable contrast between the
behavior of our proposed implementation and the behavior of typical production systems. In
Soar, when there is a match of multiple rules that propose different candidate operators,
preference information is used to determine which operators are selected. ACT-R uses a
system based on the activation levels associated with chunks and production utility values
associated with rules themselves to determine which single rule to fire. The precise
definition of chunks, operators and so forth is unimportant for our purposes. What is
important is that in both systems, some method of rating productions numerically leads to a
ranking, after which the highest-ranked production or operator is selected.

Our choice of production implementation derives, instead, directly from our model of neural
processing: inputs to a unit are weighted by connection strengths and summed together to
define the net input to a unit at any given moment. For this reason, it will be impossible for
us to make a qualitative distinction between matching and firing. In contrast to the allor-
none behavior of rules in Soar and ACT-R, every matching rule under our implementation
necessarily exerts at least some miniscule influence on the outcome probabilities of a
decision. Furthermore, a full match is not necessary to exert this influence: graded levels of
activation in antecedent units produce a graded preference effect. The result is that the
ranking operation that is carried out by the attractor dynamics within the consequent
modules of all matching productions will be applied to a linear combination of the
preferences supplied by the matching antecedents, rather than to a list of the preferences
themselves. In another divergence from some production systems (e.g., ACT-R), only those
consequents that conflict with each other are ranked in a single ranking; if two consequents
A and B of matching productions do not conflict with each other and are the highest-ranked
consequents among those with which they do conflict, then A and B will both be executed in
parallel. Like EPIC (Meyer and Kieras, 1997) in this respect, the architecture we propose
has no inherent, central cognitive bottleneck (although it can be structured, like our Tower
of London model, to have a single bottleneck if desired).

Table 2

Preference orderings of three antecedent units, 1, 2 and 3, among candidate consequent units
A and B. The preferences of unit 1 are exerted on the outcome (i.e., unit 1 votes) whenever
there is a 1 in the first column, labeled Pref1; this corresponds to a state of high activity in
unit 1; a 0 corresponds to inactivity and no voting. The same is true for units 2 and 3.
Rankings among A and B can depend on which subsets of antecedents are voting.

Pref 1 Pref 2 Pref 3 Aggregate preference ranking

1 0 0 → B > A

0 1 0 → A > B

1 1 0 → B > A

1 0 1 → A > B

0 1 1 → A > B

1 1 1 → B > A

The first of these two properties of our implementation — linear combination — is a
difficulty when viewed from the perspective of a literal mapping of production systems onto
neural networks. Depending on the particular production system architecture involved (i.e.,
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whether rules are allowed to fire in parallel), the second one may be as well. These
differences serve as predictions of our proposed architecture that are distinct from those of
general production systems.

However, something quite like standard, Soar-style preference information can nevertheless
be encoded by connection strengths in a neural network. A straightforward method can
furthermore be used to assign connection strengths so that the outcome rankings are those
desired by a programmer (or possibly learned by a learning algorithm, although we do not
model connection-strength learning here). In this way, we can always

Figure 23.
A simple example of infeasible explicit preferences (arrow-head vectors, Pref 1, Pref 2 and
Pref 3), and the emergent preferences generated by their combinations (circle-head vectors).
The open circle represents an emergent preference rating of the combination of Pref 1, Pref
2 and Pref 3. This rating generates a ranking of consequent 1 higher than consequent 2.
However, this ranking conflicts with any explicitly programmed production that matches
antecedents 1 through 3, yet specifies a rating that ranks the alternative outcome (consequent
2) higher. In order to make such a system of explicit ratings feasible, we add a conjunction
detector (a binary AND gate) to the pool of consequent units, Pref 2 ⋀ 3.
translate a set of productions into a neural network that produces identical behavior by
taking sufficiently many steps to compensate for the disparities that arise from the linear
combination of preferences prior to ranking. However, one virtue of the mapping that we
propose is that it gives rise to emergent behaviors (behaviors not explicitly specified by the
rule set) when these compensating steps are not taken.
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Figure 1.
Voltage bands corresponding to 1 (voltages greater than 2), and 0 (voltages less than 0.8).
These ranges define the limits for acceptable inputs to a logic gate. Output voltage criteria
are stricter. Greater reliability is achieved when logic component manufacturers adhere to
this scheme, because one gate in a chain can effectively clean up extreme noise in its inputs
before propagating its output.
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Figure 2.
A: Two possible stimulus distributions; B: Four sample paths of a drift-diffusion process; C:
Long-tailed analytical RT density (solid curve) and simulated RT histogram (top), correct
RT histogram (middle), error RT histogram (bottom); D: Time courses of noise-free,
mutually inhibitory evidence accumulation units with sigmoid activation functions and
mutual inhibition of strength ξ; E: The sigmoid activation function; F: A smoothed sample
path of mutually inhibitory accumulator activations in the (y1, y2)-phase space showing
rapid attraction to a line (the ‘decision plane’) followed by drift and diffusion in its
neighborhood.
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Figure 3.
The phase portrait of a nonlinear two-unit system in which the decision plane is a good
approximation of where decision making takes place. The red curve illustrates the isocline
of zero vertical velocity, and the black curve represents the isocline of zero horizontal
velocity. Thus, their intersection is a stable attractor. Here unit 1 is given a net input of 1.2,
and unit 2 is given a net input of 1.6.
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Figure 4.
A two-layer decision network, in which the first layer of non-self-exciting, approximately
linear units weighs evidence represented by an analog code, and the second layer of strongly
self-exciting, highly nonlinear units reads out the decision into an approximately binary
code. Here, arrows represent excitatory connections, and circular arrowheads represent
inhibitory connections.
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Figure 5.
Four potential wells, implementing four symbols in the (x, y) state space of two units’
activations.
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Figure 6.
A latch based on hysteresis. The solid curves denote stable, attracting points: for any given,
constant level of input, I, the system will eventually converge to a point on one of these
curves centered above I on the horizontal axis. Where a dashed curve is plotted, two possible
attractors exist for the same input value. Which curve the system converges to (assuming I is
held fixed) is determined by the current output value of the system: if it is above the dashed
curve, it will converge to the upper solid curve, otherwise to the lower curve. If the system
starts out on the solid curve in the lower left corner of the diagram, and input increases, it
will follow the trajectory denoted by the arrows. Input value A then defines a threshold for
inputs that drive the system to a high level of output activation (corresponding to a binary 1).
If inputs then drop below A, the system retains nearly maximal activation until input drops
below the value B, at which point output will plunge to the lower attractor (a binary 0). It
can store a 1 or a 0 as long as the input is between A and B, and will be least susceptible to
noise at the midpoint between them.
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Figure 7.
Phase plots for units with balanced (left) and strong (right) recurrent connections to
themselves. Here equilibrium curves are plotted as solid curves, and velocities are plotted by
arrows and shading (white corresponds to positive, black to negative velocities).
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Figure 8.
Effective activation functions for a range of self-excitatory, recurrent connection strengths,
plotted as a ‘catastrophe manifold’. This system produces a cusp catastrophe as self-
excitation increases above 1 (in general, such catastrophes occur when self-excitation
increases above λ/4, where λ is the maximum slope of the sigmoid activation function (i.e.,
the activation function for self-excitation equal to 0). Given a particular recurrent self-
excitation strength, w, a vertical slice through this surface parallel to the Input axis and
positioned at w on the Recurrent Strength axis gives the effective activation function for that
value of w.
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Figure 9.
Three different parameterizations of a two-unit closed-loop system intended to propagate a 1
forever (from the OUT unit) and to wipe out input layer activity (in the unit IN) once the
first input pulse is detected. Activation over time is shown for each unit in the top two rows
of each subfigure. The input signal is shown in the bottom row. A: Feedforward and
feedback connection strengths between IN and OUT are too weak to cause propagation of
the input pulses; B: Interconnection strengths suffice for the desired behavior; C:
Interconnection strengths are too strong, once again causing failure of input pulse
propagation.
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Figure 10.
Parameterization for an AND gate, C.
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Figure 11.
The Tower of London task. Here we have arbitrarily numbered the possible goal positions
for easier reference.
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Figure 12.
A simple example of a network implementing two productions. We show only the units of
interest within each module (there are three additional pairs of units in each of the six total
Position modules, and sixteen additional Move pairs in the Move module).
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Figure 13.
A simple example of three individual preference ratings (arrow-head vectors) specified
explicitly by productions, and two combinations of emergent (implicitly specified)
preferences (circle-head vectors). Ratings are transformed in continuous time into rankings
by the competitive dynamics of the consequent attractor network. Thresholds on consequent
unit activity are then used to select a unique winner based on these rankings. Without noise,
the highest ranked candidate always wins. When noise is present, a distribution of winners
and of decision times results in which the expected choice proportions are ranked in order of
the preference ranking.
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Figure 14.
Parkinson’s patients display latency impairments (slower planning prior to first move) in the
Tower of London task. Increased latency relative to control subjects is shown by patients at
two different stages of the disease, with and without medication in the early stage.
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Figure 15.
The basic architectural framework: units in a perceptual network excite and inhibit units in
an action-selection network. Units in a goal network bias the competition taking place in the
action-selection network.
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Figure 16.
Comparison of the model in Polk et al. (2002) (right panel) to normal and prefrontal
performance in the Tower of London task from two studies (left two panels).
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Figure 17.
Impaired ability of the prefrontal model to inhibit ‘prepotent’ moves in Polk et al. (2002).
Problem solving difficulties in that model stemmed from an inability to prevent moves that
achieve component goals when they are legal, but conflict with the current subgoal. The two
problems shown involve the same moves, but in the reverse order (initial and goal states are
reversed). Damage to the model (i.e., weakening of connections exerting subgoal influence
on action selection) leads to disproportionate difficulty with the problem on the right in
which prepotent moves must be inhibited.
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Figure 18.
Impaired latency in the current model of Tower of London due to simulated dopamine
depletion (modeled as a decreased connection strength, w, that governs the speed of a
subgoal-generation timer). Latency must increase supralinearly with increasing problem
difficulty since more subgoals in addition to more moves must be generated in harder
problems.
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Table 1

A simple set of productions.

1) IF (Position2 = Red)
  THEN (Move = Red-4)
  Preference = 1

2) IF (Position1 = Green)
  THEN (Move = Green-4)
  Preference = 0.5
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