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Abstract
Objectives—To characterize the lipid profile of individuals with newly diagnosed type 1
diabetes mellitus using LC-MS-based lipidomics and the accurate mass and time (AMT) tag
approach.

Design and methods—Lipids were extracted from plasma and sera of 10 subjects from the
Diabetes Antibody Standardization Program (years 2000–2005) and 10 non-diabetic subjects and
analyzed by capillary liquid chromatography coupled with a hybrid ion-trap-Fourier transform ion
cyclotron resonance mass spectrometer. Lipids were identified and quantified using the AMT tag
approach.

Results—Five hundred fifty-nine lipid features differentiated (q < 0.05) diabetic from healthy
individuals in a partial least-squares analysis, characterizing of individuals with recently diagnosed
type 1 diabetes mellitus.

Conclusions—A lipid profile associated with newly diagnosed type 1 diabetes may aid in
further characterization of biochemical pathways involved in lipid regulation or mobilization.
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Introduction
Type 1 diabetes mellitus (T1DM) is a chronic, autoimmune disease affecting over 1 million
individuals in the United States alone and is characterized by insulin deficiency as a result of
pancreatic beta-cell death. At clinical diagnosis, only about 10% of beta-cell mass remains
[1] and their protection (at and prior to hyperglycemia onset) and regeneration are active
areas of research interest. Currently, the best approach for predicting who may be at risk for
developing T1DM before onset of clinical symptoms is by measurement of autoantibodies to
islet cell antigens [2–4].

We previously conducted a global proteomics analysis of plasma and serum samples from
the Diabetes Antibody Standardization Program (DASP) in an attempt to identify novel
protein biomarkers of T1DM. The DASP is a collaborative agreement between the U.S.
Centers for Disease Control and Prevention’s (CDC) National Diabetes Laboratory and the
Immunology of Diabetes Society, and has as its goal the periodic evaluation (since 2000) of
assays for islet cell autoantibodies by selected laboratories. In our proteomics study, we
reported the identification of five candidate protein markers of recently diagnosed T1DM in
a DASP sample subset [5]. In particular, zinc alpha-2-glycoprotein (ZAG) was strongly
upregulated in individuals with T1DM. ZAG is a member of the immunoglobulin
superfamily [6] and displays lipid mobilization activity [7,8]. Patient samples collected as
part of the DASP study correspond to recently diagnosed individuals (within 14 days of
starting insulin treatment); thus, increased levels of ZAG in patient relative to control
samples may be an indication of a system-wide mobilization of lipids for energy production
[9–11]. We therefore hypothesized that perturbations may be present in the components of
the blood lipidome of individuals with newly diagnosed T1DM.

To evaluate this hypothesis, we performed lipidomics analyses using the same DASP
samples in an attempt to identify perturbations in the lipids of individuals with recently
diagnosed T1DM, as well as to potentially identify a lipid profile predictive or diagnostic of
the disease, and which may also reflect beta-cell lipotoxins. We used capillary liquid
chromatography (LC) coupled with Fourier transform ion cyclotron resonance (FTICR)
mass spectrometry (MS) and the accurate mass and time (AMT) tag approach [12] to
identify and quantify lipids present in healthy and diabetic individuals. The AMT tag
approach relies on initial, low-throughput shotgun LC-MS/MS analyses to populate a
database of identified molecules. The identified species, or AMT tags, are annotated with
their associated calculated monoisotopic mass and LC normalized elution time (NET)
information, among other parameters. The AMT tag strategy is based on the uniqueness of
the measured molecular mass and LC retention time for a specific lipid and makes use of the
fact that the probability will be low that “new” species detected in additional analyses of the
same or similar biological sample will be observed at the same mass and LC retention time
as a previously assigned species. Subsequent high-throughput analyses using LC-MS with
high-mass measurement accuracy allows molecules to be identified by matching their
measured monoisotopic masses and NETs to those of the entries in the AMT tag database
within user-defined mass and NET tolerances. By performing the subsequent analyses with
high-mass measurement accuracy instrumentation and avoiding additional MS/MS
experiments for lipid identification, the dynamic range of detection is greatly expanded and
allows for detection of low abundance species that would otherwise not be observed by MS/
MS. Our preliminary lipid AMT tag database [13] contains over 250 lipids that were
identified from human plasma, erythrocytes and lymphocytes. While the coverage, in terms
of number of identified species, of the human blood lipidome represented by our lipid AMT
tag database is modest, it provides the means to define the lipid profiles among comparative
samples in preliminary, proof-of-principle studies. Herein, we report the identification of
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perturbations in the lipid profile of individuals with recently diagnosed T1DM, providing
evidence of altered lipid metabolism in patients enrolled in the DASP.

Methods and Materials
Human plasma and serum samples

The DASP is conducted in accordance with the Human Subjects policies and regulations of
the CDC. Similarly, this work was approved by the Institutional Review Board of the Pacific
Northwest National Laboratory. Human plasma and serum samples from the DASP (years
2000–2005) were received frozen on dry ice; these samples (Table 1) correspond to healthy
control individuals (n = 10) and patients recently diagnosed with type 1 diabetes (n = 10).
The patient samples were collected from donors under the age of 30 within 14 days of
starting exogenous insulin treatment [14] before insulin antibodies (as opposed to insulin
autoantibodies) were induced. The control individuals were self-reporting healthy blood
donors.

Serum glucose, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density
lipoprotein (LDL)-cholesterol, and triglycerides were determined (Table 2) by enzymatic
assays at the Northwest Lipid Metabolism and Diabetes Research Laboratory at the
University of Washington (Seattle, WA), using appropriate Roche reagents (e.g. hexokinase
for glucose) and a Roche Double Modular P Analytics automated analyzer (Roche
Diagnostics, Indianapolis, IN). The Roche methods are standardized to the CDC Reference
Methods.

Lipid extraction
Plasma and serum lipids were extracted in triplicate via the addition of 100 μL cold (−20ºC)
chloroform/methanol (2:1, v/v) to 20 μL plasma [13], and the mixture was vortexed for 10 s.
The sample was then allowed to stand at 4ºC for 15 min, followed by vortexing for 10 s.
Protein was separated from the two liquid phases by centrifugation at 13,400 g for 10 min.
The lower chloroform phase was removed by pipetting and placed into a sterile, siliconized
eppendorf tube, while the protein interlayer and upper aqueous phase were discarded. The
chloroform phase was then dried in vacuo and stored at −80ºC until analysis. Prior to
analysis, dried lipid extracts were reconstituted in 60 μL methanol and centrifuged at
13,400g for 5 min to remove any particulates. Our previous studies have indicated no
significant difference in the solubility of triglycerides, cholesterol esters, or related lipids
containing longer chain fatty acids when using methanol, the Bligh and Dyer solvent
(chloroform/methanol/water, 1/2/0.8, v/v/v), or a commonly used solvent for shotgun
(infusion) lipidomics (chloroform/methanol/water, 1/2.2/0.12, v/v/v) for reconstitution of
dried plasma lipid extracts.

Reversed-phase capillary LC-FTICR analyses
An automated LC system with two 150 μm x 65 cm capillary columns was used, as
previously described [13]. All samples in this study were analyzed on the same capillary
column in random order. The mobile phases were (A) 10 mM ammonium acetate in 50:50
water/methanol (v/v) and (B) 10 mM ammonium acetate in 50:50 methanol/acetonitrile (v/
v). The LC system was equilibrated at 6,000 psi with mobile phase A prior to injecting 1 μL
of sample. Exponential gradient elution was initiated 3 min after sample loading with an
initial column flow of ~1 μL/min. After 90 min of gradient separation, the mobile phase
mixer was purged with 3 mL of mobile phase B, followed by a 5 min column wash. Finally,
the mobile phase mixer was purged with 10 mL of mobile phase A, which represented the
end of one separation cycle. While gradient elution is performed on one column, the other
column is equilibrated with mobile phase A.
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The capillary LC system was coupled to a hybrid linear ion-trap-Fourier transform ion
cyclotron resonance (FTICR) mass spectrometer (LTQ-FT, ThermoFisher, San Jose, CA).
The capillary temperature and electrospray voltage were 200ºC and +2.2 kV, respectively.
The FT was used as the mass analyzer over the m/z range 100–1000, with a duty cycle of
~1.0 s and mass resolution of 100,000.

Processing of quantitative LC-FTICR datasets
LC-FTICR datasets, defined as the data obtained from a single LC-FTICR analysis, were
processed using the PRISM Data Analysis system [15], a series of software tools freely
available at http://ncrr.pnl.gov/software/ and developed in-house. The first step involved
deisotoping of the raw MS data to give the monoisotopic mass, charge state, and intensity of
the major peaks in each mass spectrum using Decon2LS [16]. The data were next examined
in a 2-D fashion using MultiAlign to identify groups of mass spectral peaks that were
observed in sequential spectra using an algorithm that computes a Euclidean distance in n-
dimensional space for combinations of peaks. Each group, generally ascribed to one
detected species and referred to as a “feature”, has a median monoisotopic mass, central
normalized elution time (NET), and abundance estimate computed by summing the
intensities of the MS peaks that comprise the entire LC-FTICR feature. LC-FTICR features
were then chromatographically aligned across all 60 datasets using the LCMSWARP
algorithm [17] in MultiAlign, and the lipid identities of detected features were determined
by comparing their measured monoisotopic masses and NETs to calculated monoisotopic
masses and observed NETs for lipids in an AMT tag database [13] within search tolerances
of ±3 ppm and ±0.03 NET for monoisotopic mass and elution time, respectively.

Statistical analysis of processed LC-MS data
Following chromatographic alignment and database matching, the abundances of all
detected features (both AMT tag database matched and unmatched) were loaded into
DAnTE [18] for statistical analysis. Feature abundances were transformed to log2 scale then
subjected to central tendency normalization [19]. Comparative data analysis was then
performed on lipid features that were observed in a minimum of two out of three technical
replicates in at least eight of the ten individuals per sample type (control and patient) a so-
called minimum observation filter. It is important to note that, for most lipid features within
a sample type, more observations than the required minimum were present (e.g. a given lipid
feature was detected in at least 2 out of 3 technical replicates for 95.2% and 92.6% of
control and patient samples, respectively). Statistically significant differences between the
lipid profiles of patient and healthy control individuals were determined using ANOVA.
Partial least-squares (PLS) [20] was also performed using the data matrices containing either
AMT tag database matched features alone or all features (both database matched and
unmatched) that met the minimum observation threshold described above, in order to
identify lipid profiles characteristic of T1DM.

Results
Summary of data

Representative LC-FTICR chromatograms (Figure 1) of healthy control and patient lipid
extracts showed that the respective lipid profiles were generally similar. However, lipid peak
intensities in some regions do appear to differ between the two individuals, although it is
difficult to ascertain whether these differences are due to biological variation or the presence
of T1DM. Therefore, the data from all control and patient lipid extracts were processed
using the AMT tag approach in order to identify those lipids whose differential abundance
could be ascribed to T1DM.
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Chromatographic alignment of LC-FTICR datasets produced a data matrix containing
24,323 individual features that were observed in as few as 1 dataset to as many as 60. It is
important to note that the data matrix included both lipid features and features resulting from
chemical noise. In general, the abundances of lipid features among technical replicates for
each individual were very similar, based on Pearson correlation coefficient (Table 3). These
values are a reflection of the day-to-day precision of our method, since the average time
between the first and third technical replicate was ~16 hr, and the entire time required for the
analysis of all samples was 10 days. However, Replicate B for Patient 10 appeared to be an
outlier. Inspection of the raw data corresponding to this sample revealed that the intensity of
the total ion chromatogram (TIC) was lower by an order of magnitude than the average
intensities of the TICs from the other samples (data not shown), likely due to a pipetting
error during sample preparation or an injection error during sample analysis; otherwise, the
chromatography appeared normal for this replicate. The lower TIC intensity for this sample
resulted in fewer identified features: 2503 versus an average of 4441 for the other 59
samples. Indeed, the data was found to be an outlier with a p < 0.01 when using Grubb’s test
for outliers, based on the total number of lipid features identified in each LC-FTICR dataset.
Thus, data from this replicate were excluded from further downstream processing and
analysis to avoid compromising the final results.

Central tendency normalization was used to correct for systematic biases in the data caused
by changes in LC-MS performance over time (Figure 2), and subsequent application of the
minimum observation filter resulted in a final data matrix containing 2014 lipid features
(both AMT tag database matched and unmatched). The minimum observation filter served
to retain as many reproducibly observed lipid features as reasonable while filtering out those
lipid features due to chemical noise. ANOVA was then performed to identify those lipid
features (both AMT tag database matched and unmatched) that were significantly different
between control and diabetic samples. This analysis revealed 559 candidate lipid markers of
T1DM with q < 0.05 (Supplemental Table 1), of which 55 matched entries in the lipid AMT
tag database (Table 4). The q value is a false discovery rate (FDR)-based measure of
significance for genome-wide studies [21] and is essentially an adjusted p value. Thus a q
value less than 0.05 indicates a FDR below 5%.

Partial Least-Squares
We further assessed trends within the data using partial least-squares (PLS) to identify lipid
profiles specific for T1DM. PLS is a chemometrics method for identifying the fundamental
relations in a matrix of predictors in which there are more variables than observations, as in
the case of omics data. For example, there are typically thousands to tens of thousands of
features (variables) detected in an omics experiment compared to the usual tens or hundreds
of samples (observations) analyzed. The resulting PLS scores plots are used to visualize any
natural clustering of observations, in this case samples, within the data matrix. PLS analysis
of the 559 lipid features (both AMT tag database matched and unmatched) that differed
significantly (q < 0.05) between control and diabetic samples resulted in segregation of
control samples away from patient samples (Figure 3). This observation implies that the
significantly different features (both AMT tag database matched and unmatched) may be
useful as a profile for diagnostic purposes since, on average, the significantly different lipid
features were detected in 96% of the datasets examined. We further performed PLS analysis
of the 55 significantly different (q < 0.05) lipid features that matched entries in the lipid
AMT tag database. This analysis indicated that these identified lipids might also be used as a
profile characteristic of T1DM, since the patient samples were reasonably segregated from
the control samples (Figure 4).
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Discussion
In a previous proteomics study, we reported that ZAG, a member of the immunoglobulin
superfamily [6] that displays lipid mobilization activity [7,8], was strongly upregulated in
individuals with T1DM [5]. Because patients enrolled in the DASP provide samples within
14 days of diagnosis, increased levels of ZAG in patients relative to controls may be an
indication of a system-wide mobilization of lipids for energy production via the induction of
lipolysis in adipose tissue [9–11]. We hypothesized that perturbations may be present in
individual molecular species of the blood lipidome of individuals with newly diagnosed
T1DM. In general, dyslipidemia is well-established in diabetes mellitus, particularly in
individuals with type 2 diabetes. In individuals with T1DM, especially those with poorly
controlled blood glucose, triacylglycerol-rich lipoproteins (e.g. chylomicrons; very low
density lipoprotein, VLDL; and LDL) are often elevated because of (1) increased VLDL
production related to increased circulating glucose and free fatty acids due to lack of insulin,
and (2) a reduction in the activity of chylomicron- and VLDL-catabolizing lipoprotein
lipase, an insulin-regulated enzyme [22]. In contrast, T1DM patients who have well-
controlled blood glucose levels and no renal damage have serum lipid and lipoprotein levels
similar to those of healthy controls [22]. Indeed, the type 1 diabetic individuals in the DASP
sample subset in our study had a normal lipid panel relative to controls (Table 2). Many
studies have characterized the dyslipidemia associated with newly diagnosed T1DM in
terms of the affected lipoproteins and in terms of general lipid class [23,24]; however, very
few, have considered the perturbations present on the level of individual lipid molecular
species [25].

We applied LC-MS and the AMT tag approach in a preliminary lipidomics analysis of a
DASP sample subset. While the chromatograms corresponding to healthy controls and
recently diagnosed T1DM individuals are fairly similar, downstream analysis of the
lipidomics data revealed several molecular species whose abundances were significantly
altered between the two conditions. Further, application of PLS resulted in the segregation
of control individuals from those with T1DM when using those lipid features that were
identified as statistically significant (Figure 3). These data support that there is a lipid profile
characteristic of newly diagnosed T1DM and that this profile may be useful in the diagnosis
of the disease and exploration of potential beta-cell lipotoxins.

The lipid species that were most different between healthy controls and patients with T1DM
belong to phosphatidylcholine-containing classes, such as lysoglycerophosphatidylcholine
(LPC), glycerophosphatidylcholine (PC), and sphingomyelin (SM) (Table 4). Nine SM
species were significantly decreased in individuals with T1DM relative to controls (Figure
5). Previous studies have also reported decreased plasma and serum SM levels in patients
with T1DM relative to controls. Watała and Jóźwiak reported decreased levels of SM in
both plasma and isolated LDL and HDL fractions from patients with T1DM relative to age-
and sex-matched controls, based on thin layer chromatography [26]. Decreased levels of SM
have also been reported by others studying the phospholipid composition of HDL and
apolipoprotein B-containing lipoprotein particles[27], [28]. Similarly, Orešič and colleagues
reported a decrease in SM molecular species in type 1 diabetic patients relative to controls
[25]. In that paper, LC-MS-based lipidomics was applied in the study of serum samples
from children enrolled in the Type 1 Diabetes Prediction and Prevention (DIPP) study. The
authors consistently detected 8 molecular species of SM, with 4 species (d18:1/16:0,
d18:1/23:1, d18:1/24:0, and d18:1/25:1) detected in significantly (Wilcoxon rank-sum test, p
< 0.05) lower abundance in type 1 diabetic children before and after the appearance of
autoantibodies, relative to healthy controls [25]. In contrast, we found d16:1/24:0,
d18:1/18:0, d18:1/18:1, d18:1/18:2, d18:1/20:0, d18:1/20:1, d18:1/24:1, d18:1/24:2, and
d20:1/22:3 SM to be significantly decreased in patients relative to controls. In general, there
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was not a high degree of overlap in the SM molecular species identified between our study
and that of Orešič and colleagues; however, this is not unexpected, as the ionization of
molecules by ESI and their subsequent detection is a stochastic process that depends, among
other things, on the efficiency of the front-end LC separation. The discrepancy in identified
SM species may also be due to dietary differences among the individuals participating in the
DASP and DIPP. Importantly, the overall trend of decreased SM in individuals with T1DM
remains consistent between the two studies and is supported by other previous work [27,28].

We also identified perturbations in other glycerophosphatidylcholine lipids, including LPC,
PC, and ether PC. Orešič and colleagues [25] reported decreased levels of ether PC in
individuals with T1DM relative to controls; we identified 4 ether PC molecular species that
were significantly decreased in recently diagnosed T1DM. In contrast, no solid conclusion
could be drawn regarding LPC and PC. For LPC, half of the identified species were either
significantly increased or decreased in T1DM. Similarly, we identified 6 molecular species
of PC as significantly decreased in T1DM relative to controls, while 7 molecular species
were identified as significantly increased in T1DM.

Consistent with our observations, other studies have reported perturbations in the
glycerophosphatidylcholine lipid (lecithin) content of serum or isolated lipoprotein fractions,
although these reports do not always agree in terms of increases or decreases in this lipid
class in T1DM. For example, Ziegler et al. [29] reported a depletion of
glycerophosphatidylcholine lipids in serum and apolipoprotein B-containing lipoprotein
fractions in individuals with T1DM who otherwise presented with a normal lipid profile
relative to controls. Similarly, Bagdade and Subbaiah [28] reported decreased SM, PC, and
LPC in the HDL-containing fraction of plasma in women with T1DM relative to controls.
These patients also presented with normal triglycerides, total and HDL-cholesterol, and
lipoprotein phospholipids in whole plasma. However, in a separate study, the same authors
reported significantly (p > 0.025) increased SM and PC in the HDL fraction of plasma in
men with T1DM relative to controls [28]. Rabini and colleagues also reported increased
concentrations of LPC in plasma of T1DM individuals [30]. These contradictions suggest
that, aside from dietary differences and biological variation between healthy controls and
patients, reported differences in glycerophosphatidylcholine lipid content of individuals may
be due to differences in general phospholipid composition of individual lipoprotein particles
as a result of T1DM. It is conceivable that these species originate from different lipoprotein
particles, resulting in perceived increases or decreases in abundance depending on the
composition of the parent particles. The work by Watała and Jóźwiak supports this
hypothesis [26]. They analyzed various lipid classes in total plasma lipid extracts from
control and T1DM patients, as well as in the LDL and HDL fractions. While SM was
decreased in patients in all fractions (see above), LPC was decreased in patients in total
plasma (p < 0.001) but increased in patients in the HDL fraction (p <0.002). In contrast,
glycerophosphatidylethanolamine lipids (PE) were increased in patients in total plasma (p <
0.05) but were unchanged in the LDL and HDL fractions (similar to Watała and Jóźwiak, we
identified 2 LPE and 1 PE molecular species as significantly increased in T1DM versus
control). Glycerophosphatidylserine and glycerophosphatidylinositol lipids were decreased
in patients in the LDL fraction (p < 0.001) but were unchanged in total plasma and not
detected in the HDL fraction. Thus, lipidomic analyses of total lipid extracts should ideally
be complemented by lipidomic analyses of isolated lipoprotein fractions in order to identify
perturbations in the lipid compositions of the lipoproteins themselves. Ziegler and
colleagues suggested that subtle abnormalities in the composition of atherogenic apo-B-
containing lipoproteins may be a factor in the increased rate of atherosclerosis in diabetic
patients, despite the existence of an otherwise normal lipid profile [29]. Bagdade and
Subbaiah propose that such abnormalities may compromise reverse cholesterol transport in
diabetic patients and promote atherosclerosis [28]. Along these lines, we identified 7
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molecular species of oxidized PC that were significantly increased in T1DM. Oxidized
phospholipids are implicated in many inflammatory diseases such as atherosclerosis [31–
33], and their observed increase in individuals with recently diagnosed T1DM may be an
indication of oxidative stress in these individuals. Finally, we identified 5 molecular species
of triacylglyecerol (TAG) that were significantly decreased in T1DM, possibly indicating a
recruitment of TAGs for energy production.

In conclusion, application of the AMT tag approach facilitated the identification of a lipid
profile comprised of a number of significant features (both identified and unidentified;
Supplemental Table 1) characteristic of recently diagnosed T1DM. While we have identified
a portion of the species significantly altered in recently diagnosed T1DM (Table 3),
additional work using targeted MS/MS to identify the remaining species may yield further
insights into the classes of lipids that become perturbed. These classes and molecular species
may eventually be targets for therapeutic intervention if they are found to mediate beta-cell
toxicity. Lastly, we propose that future studies of the lipidome of individuals with T1DM
should include analyses of both total lipid extracts and lipids extracted from isolated
lipoprotein fractions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Representative LC-FTICR base peak ion chromatograms
Shown are chromatograms of lipid extracts from control (top) and patient (bottom)
individuals.
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Figure 2. Box plots of detected lipid feature abundances
Relative abundances of detected lipid features (log2 scale) are shown for 59 samples
analyzed by LC-FTICR. Each box in the plot describes the abundance distribution (log2
scale) of an average of 4441 individual features based on five-number summaries: the
smallest observation, lower quartile, median, upper quartile, and largest observation.
Replicate B for Patient 10 is not shown and was removed as an outlier prior to
normalization. (A) Before normalization. (B) After central tendency normalization. C:
control; P: patient.
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Figure 3. Partial least squares (PLS) Score plot based on significantly different lipid features
Five hundred sixty lipid features (both AMT tag database matched and unmatched)
determined to be significantly different (q < 0.05) by ANOVA were used in a PLS analysis
in an attempt to identify natural clustering of the samples. PC 1: principal component 1; PC
3: principal component 3; Inset: % variability in data captured by the principal components.
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Figure 4. Partial least squares (PLS) Score plot based on significantly different lipids
Sixty-three lipids determined to be significantly different (q < 0.05) by ANOVA and
matching entries in the lipid AMT tag database were used in a PLS analysis in an attempt to
identify natural clustering of the samples. PC 1: principal component 1; PC 3: principal
component 3; Inset: % variability in data captured by the principal components.
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Figure 5. Vertical scatter plots of significantly different SM species
Ten SM species determined to be significantly different (q < 0.05) by ANOVA are plotted.
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Table 1

Control and patient demographic data.

Status Race Gender Age

Control Caucasian Male 18

Control Caucasian Female 18

Control Caucasian Female 19

Control Black Female 20

Control Hispanic Female 20

Control Caucasian Male 21

Control Caucasian Female 21

Control Black Female 22

Control Caucasian Female 23

Control Caucasian Male 26

Patient Caucasian Female 10

Patient Caucasian Female 12

Patient Caucasian Male 12

Patient Caucasian Male 12

Patient Caucasian Male 13

Patient Caucasian Male 16

Patient Caucasian Female 16

Patient Hispanic Female 18

Patient Caucasian Female 20

Patient Caucasian Female 29

Age Gender Race Status
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Table 2
Glucose and lipid values for control and patient individuals

Values are mean ± standard error. n.s., not significant.

Control (n = 10) Patient (n = 10) Significance

Glucose (mg/dL) 83 ± 7 200±29 P < 0.001

Total Cholesterol (mg/dL) 140 ± 10 150±24 n.s.

HDL cholesterol 24 ± 1 27±5 n.s.

LDL cholesterol 93 ± 14 90±17 n.s.

Triglycerides 112 ± 19 102±29 n.s.
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Table 3

Pearson correlation coefficients between replicate analyses from each individual.

Rep A/Rep B Rep A/Rep C Rep B/Rep C mean

Control 1 0.85 0.90 0.93 0.89

Control 2 0.92 0.95 0.93 0.93

Control 3 0.90 0.90 0.93 0.91

Control 4 0.93 0.94 0.95 0.94

Control 5 0.91 0.95 0.92 0.93

Control 6 0.90 0.93 0.94 0.92

Control 7 0.94 0.92 0.94 0.93

Control 8 0.92 0.94 0.95 0.94

Control 9 0.90 0.82 0.87 0.86

Control 10 0.95 0.95 0.97 0.96

Patient 1 0.84 0.88 0.79 0.84

Patient 2 0.96 0.96 0.95 0.96

Patient 3 0.89 0.96 0.89 0.91

Patient 4 0.96 0.96 0.95 0.96

Patient 5 0.86 0.92 0.92 0.90

Patient 6 0.90 0.94 0.90 0.91

Patient 7 0.92 0.93 0.92 0.92

Patient 8 0.91 0.95 0.91 0.92

Patient 9 0.86 0.91 0.83 0.87

Patient 10 0.60 0.91 0.61 0.71
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