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multinucleated giant cells. In addition, we provide an up-
dated overview of the role of these cells in inflammation and 
various autoimmune diseases. 
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 Introduction 

 Multinucleated giant cells are formed by the fusion of 
macrophages and play important roles in a number of 
physiological and pathological processes [reviewed in  1, 
2 ]. These cells were first described by Langhans  [3] , who 
reported the presence of polynuclear cells in tuberculoid 
granulomas. Subsequent work to these pioneering obser-
vations has shown that multinucleated giant cells are 
formed as a result of fusion of cells belonging to the 
monocyte/macrophage lineage and represent one path-
way for terminal differentiation of macrophages  [1, 2] . 
Thus, the formation of giant cells represents a process of 
natural homotypical hybridization of cells, leading to the 
modulation of synthetic and secretory functions of mac-
rophages. In healthy individuals, multinucleated giant 
cells are found in bone, where they are known as osteo-
clasts  [4] . However, the formation of giant cells in non-
skeletal tissues can arise as a result of chronic inflamma-
tion due to the presence of foreign material that is indi-
gestible/poorly digestible or persistent pathogens that are 
not killed for various reasons. The physiological role of 
multinucleated giant cells in innate immunity includes 
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 Abstract 
 Macrophages play essential roles in a wide variety of physi-
ological and pathological processes. One of the unique fea-
tures of these phagocytic leukocytes is their ability to fuse, 
forming multinucleated giant cells. Multinucleated giant 
cells are important mediators of tissue remodeling and re-
pair and are also responsible for removal or sequestration of 
foreign material, intracellular bacteria and non-phagocytos-
able pathogens, such as parasites and fungi. Depending on 
the tissue where fusion occurs and the inflammatory insult, 
multinucleated giant cells assume distinctly different phe-
notypes. Nevertheless, the ultimate outcome is the forma-
tion of large cells that can resorb bone tissue (osteoclasts) or 
foreign material and pathogens (giant cells) extracellularly. 
While progress has been made in recent years, the mecha-
nisms and factors involved in macrophage fusion are still not 
fully understood. In addition to cytokines and a number of 
adhesion proteins and receptors, it is becoming increasingly 
clear that NADPH oxidase-generated reactive oxygen spe-
cies (ROS) also play an important role in macrophage fusion. 
In this review, we provide an overview of macrophage mul-
tinucleation, with a specific focus on the role of NADPH oxi-
dases and ROS in macrophage fusion and in the function of 
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remodeling of granuloma-associated extracellular ma-
trix and clearance of foreign particles from tissues. Fur-
thermore, they can participate in clearance of apoptotic 
debris during some infections  [5] . While mononucleated 
macrophages degrade internalized targets in phagolyso-
somes, the overall role of multinucleated macrophages is 
to resorb large areas of bone tissue (osteoclasts) or foreign 
material and pathogens (giant cells) extracellularly.

  The mechanisms involved in the formation of multi-
nucleated giant cells are not well understood and are only 
recently being defined. However, it is clear that a number 
of soluble factors (such as cytokines and growth factors) 
and cellular fusion machinery (such as receptors and li-
gands) are involved [reviewed in  1, 2, 6 ]. This review fo-
cuses on recent efforts to develop a better understanding 
of the role of NADPH oxidases and reactive oxygen spe-
cies (ROS) in macrophage fusion and in the function of 
multinucleated giant cells. 

 Types of Multinucleated Giant Cells 

 Multinucleated giant cells can be classified into sev-
eral morphological variants depending on the arrange-
ment and composition of their organelles, as well as their 
functional characteristics ( fig. 1 ). These variants include 
foreign-body giant cells, Langhans giant cells, Touton gi-
ant cells, osteoclast-like cells and osteoclasts. Since all gi-
ant cell variants are derived from monocyte/macrophage 
precursors, their morphological and functional hetero-
geneity seems to be determined by the specific tissue lo-
cation and local factors present in the milieu where cell 
fusion occurs.

  Foreign-body giant cells contain many nuclei (up to 
100–200) that are arranged in a diffuse manner through-
out the cytoplasm ( fig. 2 a and b). In comparison, the nu-
clei of Langhans giant cells are located on the periphery 
surrounding the Golgi complex and other organelles 
( fig. 2 a). Touton giant cells are characterized by multiple 
nuclei that cluster together in the cell and are surrounded 
by a foamy cytoplasm ( fig. 2 c). These cells were original-
ly known as xanthelasmatic giant cells and are formed by 
fusion of macrophage-derived foam cells  [7, 8] . Touton 
giant cells are most frequently found in lesions contain-
ing cholesterol and lipid deposits, and are associated with 
various pathologic processes, such as xanthomas and 
xanthogranulomas  [9, 10] .

  Morphologically, osteoclasts are closer to foreign-
body giant cells, although they have considerably fewer 
nuclei ( fig. 1 ). Both originate from fusion of mononuclear 

phagocytes, and many functional markers are common 
to osteoclasts and giant cells  [11, 12] . The basic physiolog-
ical role of the osteoclasts is extracellular resorption of 
mineral and organic bone matrix components. In de-
scriptions of the histological structure of giant cell tu-
mors and several pathological lesions, the term osteo-
clast-like cell is often used. This term is applied on the 
basis of morphological similarities of these multinucle-
ated cells to osteoclasts; however, osteoclast-like cells 
usually have a higher number of nuclei than osteoclasts 
 [13] . 

  Formation of Multinucleated Giant Cells: Role of 
Cytokines, Membrane Receptors and Adhesion 
Proteins 

 As indicated above, multinucleated giant cells are 
formed through fusion of monocyte/macrophages that 
are recruited to bone (osteoclasts), persistent microbial 
infections (Langhans cells, immune giant cells) or non-
phagocytosable foreign material (foreign-body giant 
cells). While these various types of giant cells are charac-
terized by distinct morphological and functional features, 
their formation involves both common and variant-spe-
cific fusion mechanisms  [1, 2, 6] . On the whole, macro-
phage fusion has been shown to involve a number of sol-
uble or membrane-bond protein factors that promote hy-
drophobic contacts between cells and mediate subsequent 
membrane reorganization   and cell fusion, and these fac-
tors are briefly summarized below and illustrated in  fig-
ure 3 . Additionally, several recent reviews are available for 
further details on factors involved in macrophage fusion 
 [1, 2, 6] . Note that the experimental conditions used to 
define these factors range from in vitro to in vivo and in-
volve primary cells as well as various monocyte/macro-
phage cell lines from both human and other mammalian 
sources. Thus, consideration of these factors is required 
when making conclusions regarding their physiological 
roles in macrophage fusion in the host. For example, in 
vitro systems clearly cannot replicate the milieu and cel-
lular environment experienced by multinucleated giant 
cell precursor systems in vivo, and it is evident that a com-
plex interplay of soluble factors and substrates is involved 
in this process. Nevertheless, it is helpful to consider the 
major factors reported to be involved in macrophage fu-
sion, regardless of the experimental systems, in order to 
develop a better understanding of this process and to con-
sider points of intersection or interplay between these fac-
tors and the downstream signals induced. 
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  Fig. 1.  Types of multinucleated giant cells derived from mono-
cyte/macrophage precursors. Pathways leading to formation of 
the primary types of munlinucleated macrophages are shown. 
Major cytokines known to be involved in the differentiation/fu-
sion of monocyte/macrophage precursors are indicated. Proposed 
pathways that are not well defined are indicated by dashed lines. 
M-CSF = Macrophage colony-stimulating factor; GM-CSF = 
granulocyte-macrophage colony-stimulating factor; RANKL = 
receptor activator for nuclear factor- � B ligand; IL-3 = interleukin 
3; IL-4 = interleukin 4; IL-6 = interleukin 6; IL-13 = interleukin 
13; IFN- �  = interferon- � . See text for further details. 
  Fig. 2.  Histological images of multinucleated giant cells.  a  Lang-
hans giant cells and one foreign-body giant cell (arrow) in a gran-
uloma composed entirely of multinucleated giant cells.  b  Foreign-
body giant cell.  c  Touton giant cell from a cutaneous juvenile xan-
thogranuloma. Images provided courtesy of Yale Rosen. 
(For legend of figure 3 see next page.)
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  Cytokines 
 Cytokines play a key role in macrophage fusion; how-

ever, exposure of cells to different cytokine combinations 
induces distinct types of multinucleated giant cells ( fig. 1 ; 
 table 1 ). For example, osteoclasts arise from treatment of 
bone marrow-derived macrophages with macrophage 
colony-stimulating factor (M-CSF) and receptor activa-
tor for nuclear factor (NF)- � B (RANK) ligand (RANKL) 
 [14] . In contrast, stimulation of macrophages with inter-
leukin (IL)-4  [15]  or IL-13  [16] , or a combination of IL-4 
and granulocyte-macrophage colony-stimulating factor 
(GM-CSF)  [17] , leads to formation of foreign-body giant 
cells. On the other hand, the formation of Langhans giant 
cells requires interferon (IFN)- �  and IL-3  [18] , and the 
formation of foam cells is promoted by M-CSF, IL-6 and 
IFN- �   [19, 20] . Based on the role of these cytokines in the 
formation of other multinucleated macrophages, it is 
plausible that they are involved in Touton giant cell for-
mation; however, the role of these cytokines in foam cell 
fusion has not been described.

  RANKL induces Ca 2+  oscillations, activation of c-Jun 
N-terminal kinase (JNK) and activation of NF- � B and 
nuclear factor of activated T cells (NFAT)  [21, 22]  ( fig. 3 ). 
Furthermore,  � -calpain, a Ca 2+ -dependent protease, is 
has been reported to participate in the regulation of 
RANKL-mediated macrophage multinucleation via NF-

 � B  [23] . While mice lacking RANKL or RANK cannot 
form osteoclasts [reviewed in  24 ], RANKL-independent 
systems for activation of macrophage multinucleation 
have also been reported. For example, various combina-
tions of TNF- � , lipopolysaccharide (LPS) and peptido-
glycan have been reported to promote macrophage fusion 
and osteoclast formation  [25] . Note, however, that it is 
possible that these mediators may serve to mimic RANKL-
 induced signaling via their ability to activate JNK and 
NF- � B.

  Based on the types of cytokines and environmental 
factors encountered, monocyte/macrophages have been 
shown to assume polarized functional characteristics 
and are broadly classified into 2 groups: M1 and M2 mac-
rophages [reviewed in  26, 27 ]. This classification parallels 
the Th1/Th2 nomenclature, whereby M1 macrophages 
are defined as classically activated cells that are stimu-
lated by inflammatory cytokines, such as IFN- �  alone or 
in combination with microbial products (for example, 
LPS) or other cytokines (for example, TNF- � , GM-CSF 
and IL-6) and have a pro-inflammatory phenotype. In 
contrast, M2 macrophages result from alternative activa-
tion of monocyte/macrophages that are induced by expo-
sure to IL-4 and IL-13, and exhibit an anti-inflammatory 
phenotype that is thought to participate in the resolution 
of inflammation  [27] . According to the M1/M2 para-

  Fig. 3.  Molecular mechanisms contributing to macrophage fu-
sion. Schematic representation of the process of monocyte/mac-
rophage fusion indicating factors reported to be involved, signal-
ing events and possible roles of NADPH oxidase-generated ROS. 
A number of fusogenic proteins are involved, including interac-
tions between CD200 and CD200R; CD47 and signal regulatory 
protein  �  (SIRP � ); CD36 and phosphatidylserine (PtdS); DC-
STAMP and CD44, CD47 (not shown), SIRP �  (not shown) and 
monocyte chemoattractant protein-1 (MCP-1). In addition,  �  1  
and  �  2  integrins play a role in the fusion process by binding to 
their ligands (example shown is the  �  2  ligand CD54 or intercel-
lular adhesion molecule 1, but there are other potential ligands for 
these integrins involved in macrophage fusion). Macrophage ac-
tivation and adhesion of cells to each other leads to membrane-
membrane interactions. The events causing actual membrane fu-
sion are complex, but may be facilitated by action of P2X 7  recep-
tors, which form membrane pores that would allow cell contents 
to interconnect. The d2 isoform of vacuolar ATPase V 0  domain 
(Atp6v0d2) may also contribute to these events by regulating or-
ganelle pH and somehow facilitating fusion (not shown). In addi-
tion to extracellular fusion factors, additional intracellular sig-
naling events also are important, including activation of the re-
ceptor activator for nuclear factor  � B (RANK) by its ligand 
(RANKL), which leads to intracellular Ca 2+  flux, activation of c-

Jun N-terminal kinase (JNK) and TNF receptor-associated factor 
6 (TRAF-6), and downstream induction of CD200 expression. 
Activation of TRAF-6 eventually leads to activation of transcrip-
tion via nuclear factor- � B (NF- � B) and nuclear factor of activated 
T cells (NFAT). Note that the RANK/RANKL pathways are spe-
cific for osteoclast formation and do not participate in formation 
of other multinucleated giant cells. Cleavage of activated CD44 by 
presenilin 2 (PS2) also contributed to NF- � B activation via release 
of CD44 intracellular domain (CD44ID), which moves to the nu-
cleus. NADPH oxidase (Nox)-generated ROS play a role in many 
of these events by inducing expression of integrins and fusion 
proteins, inducing RANKL expression in a positive feedback 
loop, and activating redox-sensitive transcription factors (for ex-
ample, NF- � B and NFAT). In addition, ligation or activation of 
fusion factors (such as P2X 7 , CD44 and SIRP � ) can also induce 
ROS production, thereby enhancing the positive feedback loop 
involving ROS (not shown). Intracellular signaling induced by the 
various ligand-receptor interactions involve additional signaling 
molecules and transcription factors [activator protein 1 (AP-1), 
Janus kinase (JAK), Lyn tyrosine kinase, mitogen-activated pro-
tein kinases (MAPK), phosphoinositide 3-kinase (PI3K), SH2-
containing inositol phosphatase (SHIP), and signal transducers 
and activator of transcription (STAT)], as indicated. See text for 
further details.       



 Role of NADPH Oxidase in 
Multinucleated Giant Cells 

J Innate Immun 2009;1:509–526 513

digm, formation of Langhans giant cells, Touton giant 
cells and osteoclasts results from fusion of M1-polarized 
macrophages, whereas foreign-body giant cells form from 
fusion of M2-polarized macrophages. Note, however, 
that M1 and M2 macrophages actually represent extreme 
ends of the continuum of macrophage polarization, and 
the relative level of polarization in the precursors for the 
various types of multinucleated giant cell precursors may 
vary. For example, Anderson et al.  [28]  reported that 
monocyte/macrophages adherent to biomaterials (pre-
cursors to foreign-body giant cells) exhibited a profile 
that was neither M1 nor M2, but somewhere in between. 
Furthermore, polarized macrophages can also be repro-

grammed. For example, macrophage reprogramming 
from an M1 to an M2 phenotype is associated with chron-
ic or persistent infectious diseases [reviewed in  26 ]. Thus, 
M2-polarized macrophages are likely to be involved in 
the formation of Langhans giant cells during chronic 
phases of mycobacterial infection. 

  Dendritic Cell-Specific Transmembrane Protein 
 Dendritic cell-specific transmembrane protein (DC-

STAMP) is a membrane receptor that has been shown to 
be required for fusion of osteoclasts and foreign-body gi-
ant cells; however, the signaling pathways involved seem 
to be distinct in these two types of multinucleated giant 
cells  [29] . For example, c-Fos and NFAT are both required 
for DC-STAMP expression and cell-cell fusion in osteo-
clasts, whereas these factors are not essential for giant cell 
formation  [29] . On the other hand, the myeloid-specific 
transcription factors PU.1 and NF- � B appear to be in-
volved in regulating DC-STAMP expression in foreign-
body giant cell formation induced by GM-CSF and IL-4 
 [29] . Thus, such differences in regulatory signaling path-
ways seem to facilitate formation of the distinct types of 
multinucleated macrophages. Currently, the ligand for 
DC-STAMP involved in cell-cell fusion is not known. 
Since DC-STAMP shares structural similarity with che-
mokine receptors, it has been suggested that a chemokine 
could be a potential ligand. Monocyte chemoattractant 
protein-1 (MCP-1) is one such chemokine, and it has been 
shown that expression of MCP-1 is induced by RANKL 
 [30] . MCP-1 can promote osteoclast fusion, and the forma-
tion of foreign-body giant cells is compromised in MCP-
1-deficient animals  [31] . Additional candidate ligands that 
have been proposed for DC-STAMP include signal-regu-
latory protein  �  (SIRP � ; also known as macrophage fu-
sion receptor), CD47 and CD44 [reviewed in  2 ].

  SIRP �  
 SIRP �  is a transmembrane protein belonging to the 

immunoglobulin superfamily of proteins and is expressed 
primarily on myeloid cells [reviewed in  32 ]. CD47 is a li-
gand for SIRP � , and CD47-SIRP �  interactions can medi-
ate cell-cell adhesion events  [33]  ( fig. 3 ). Indeed, Han et 
al.  [34]  reported that CD47 expression was induced at the 
onset of macrophage fusion and contributed to multinu-
cleated giant cell formation via its interaction with SIRP �  
during cell fusion.

   �  Integrins 
  �  Integrins play important roles in mediating cell-cell 

and cell-extracellular matrix adhesive interactions [re-

Table 1. Summary of factors reported to participate in fusion of 
multinucleated giant cells

Foreign-body
giant cells

Langhans/im-
mune giant cells

Osteo-
clasts

Soluble mediators
GM-CSF X X
IFN-� X
IL-3 X
IL-4 X
IL-6 X
IL-13 X
MCP-1 X X
M-CSF X
Muramyl dipeptide X
TNF-� X
Vitamin E X
Vitronectin X X

Receptors
� Integrins X X
CD36 X
CD44 X X X
CD200 receptor X
DC-STAMP X X
Mannose receptor X
RANK X
SIRP� X X
Tetraspanins X X

Other factors
ATP6V0D2 X X
CD47 X X
CD200 X
P2X7 receptor X X X
RANKL X

Factors reported to contribute to fusion of the indicated giant 
cell variants are noted [6, 28].



 Quinn/Schepetkin J Innate Immun 2009;1:509–526514

viewed in  35 ], and McNally et al.  [36]  demonstrated that 
 �  1  and  �  2  integrins participate in macrophage-macro-
phage adhesion during IL-4-induced foreign-body giant 
cell formation. Both types of integrins were highly upreg-
ulated on fusing macrophages, and antibodies against 
these integrins inhibited fusion. Subsequently, this group 
reported that the specific integrin subtypes involved in fu-
sion included  �  M  �  2 ,  �  X  �  2 ,  �  5  �  1 ,  �  V  �  1 ,  �  2  �  1  and  �  3  �  1   [37] . 
In addition, Rao et al.  [38]  reported that  �  9  �  1  participated 
in macrophage fusion during osteoclast formation.

  CD36 
 CD36 is a member of the scavenger receptor family 

and binds to a wide range of ligands  [39] . Recently, Helm-
ing et al.  [17]  showed that CD36 is also involved in mac-
rophage fusion and giant cell formation induced by GM-
CSF and IL-4. Furthermore, their studies indicated that 
localized areas of exposed phosphatidylserine were rec-
ognized by CD36, implicating this interaction in the fu-
sion process  [17]  ( fig. 3 ). Note, however, that CD36 was 
not sufficient for macrophage fusion and additional IL-
4-inducible factors were required.

  CD44 
 CD44 is an integral membrane glycoprotein that plays 

an important role in cell-cell and cell-substrate adhesive 
interactions [reviewed in  40 ]. Sterling et al.  [41]  reported 
that expression of CD44 was significantly, but transient-
ly induced on macrophages exposed to fusogenic condi-
tions and that addition of CD44 ligands interfered with 
macrophage multinucleation. More recently, this group 
found that the intracellular domain of CD44 (CD44ICD) 
is cleaved in macrophages undergoing fusion, CD44ICD 
promotes the fusion of macrophages, and CD44ICD lo-
calizes to the nucleus of macrophages and induces NF- � B 
activation ( fig. 3 ). In addition, they found that presenilin 
2 (PS2) expression is also induced at the onset of fusion, 
and that inhibitors of PS prevented macrophage fusion 
and formation of CD44ICD  [42] . Thus, PS2-mediated 
cleavage of CD44 represents an important mechanism 
contributing to macrophage fusion and multinucle-
ation.

  CD200 
 CD200 is a member of the immunoglobulin super-

family of proteins and is expressed on a variety of cells, 
although not normally on myeloid cells, whereas its re-
ceptor (CD200R) is expressed predominantly in myeloid 
cells  [43] . Recently, Cui et al.  [44]  showed that CD200 ex-
pression was significantly induced at the onset of macro-

phage fusion and that multinucleation was defective in 
CD200-deficient osteoclasts due to interruption of sig-
naling downstream of RANK ( fig. 3 ). Thus, these studies 
suggest that CD200 also plays a central role in macro-
phage fusion and osteoclast formation. 

  d2 Isoform of Vacuolar ATPase V 0  Domain 
(ATP6V0D2) 
 The vacuolar type H + -ATPase (V-ATPase) is a ubiqui-

tously expressed enzyme complex that plays a role in 
acidification of a wide array of intracellular organelles.  
Multiple isoforms of some V-ATPase subunits have been 
identified, including two isoforms of the V 0  subunit (des-
ignated as ATP6V0D1 and ATP6V0D2). Lee et al.  [45]  
showed that Atp6v0d2-deficient mice exhibited osteope-
trosis and that this was due to diminished osteoclast fu-
sion. They concluded that Atp6v0d2 serves as a regulator 
of macrophage fusion, but also showed that this regula-
tion did not involve DC-STAMP, RANK or NFAT. More 
recently, Wu et al.  [46]  confirmed this conclusion by 
showing that RNA interference knockdown of Atp6v0d2 
in murine bone marrow macrophages not only impaired 
osteoclast multinucleation but also interfered with the 
extracellular acidification required for bone resorption 
by murine osteoclasts. 

  Purinergic Receptor P2X 7  
 The P2X 7  receptor is an ATP-gated ion channel that is 

expressed on a variety of cells, including macrophages 
[reviewed in  47 ]. Activation of P2X 7  receptors by ATP 
leads to the reversible formation of membrane pores that 
are permeable to large molecules  [48]  ( fig. 3 ). However, 
long-term activation leads to ATP-dependent lysis of 
macrophages through the formation of membrane pores 
permeable to large molecules  [47] . Interestingly, it has 
been shown that P2X 7  receptors contribute to the process 
of macrophage fusion during the formation of multinu-
cleated giant cells  [49] . Indeed, the P2X 7  receptor has 
been reported to participate in the formation of all main 
types of multinucleated giant cells and is proposed to rep-
resent a common molecular feature required for macro-
phage fusion [reviewed in  6 ]. 

  Role of ROS in Macrophage Fusion 

 Although ROS are known to participate in macro-
phage multinucleation, the mechanisms involved are not 
well defined. Note that many factors reported to partici-
pate in macrophage fusion are also known to modulate 
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ROS production in monocyte/macrophages ( fig. 3 ,  ta-
ble 2 ), which could participate in the fusion process. For 
example, addition of exogenous H 2 O 2  to bone marrow-
derived monocyte/macrophages or osteoclast precursor 
HD-11EM cells has been shown to enhance macrophage 
fusion and osteoclast formation  [50–52] . Furthermore, 
the formation of osteoclasts from murine bone marrow-
derived monocyte/macrophages can be suppressed by 
addition of catalase, which metabolizes H 2 O 2   [50] . Like-
wise, Kyung et al.  [53]  recently reported that rutin, an 
ROS scavenger, inhibited osteoclast formation in bone 
marrow-derived macrophages treated with M-CSF and 
RANKL. Finally, Lee et al.  [54]  found that inhibition of 
RANKL-mediated ROS production with a dominant-in-
terfering mutant of TNF receptor-associated factor 6 
(TRAF6), treatment with an ROS scavenger (N-acetyl-
cysteine) or NADPH oxidase inhibitor (diphenylene io-
donium), or interfering with NADPH oxidase activity by 
depleting NOX1 using RNA interference or expressing a 
dominant-negative mutant of Rac1 all blocked osteoclast 
differentiation, suggesting that ROS act as an intracellu-
lar signal mediator for osteoclast differentiation. Thus, it 
is clear that ROS play regulatory roles in osteoclast fusion 
and multinucleation of other cells; however, the function 
of ROS in the formation of foreign-body giant cells or 
Langhans giant cells still remains to be determined.

  Although the exact mechanisms involved in ROS reg-
ulation of macrophage fusion have not been established, 
several possible pathways have been implicated. For ex-
ample, ROS (H 2 O 2  or O2

–�) have been reported to stimulate 
RANKL expression in murine osteoblasts and human os-
teoblast-like MG63 cells, which enhanced osteoclast for-
mation  [55] . This process was mediated by activation of 

extracellular signal-regulated kinase and cAMP response 
element-binding protein in murine cells and extracellu-
lar signal-regulated kinase and heat shock factor 2 in hu-
man cells  [55] . As indicated above, Rac GTPases play im-
portant roles in osteoclast differentiation, which is due in 
part to their role in NADPH oxidase function. Recently, 
Wang et al.  [56]  evaluated osteoclastogenesis in Rac1- and 
Rac2-deficient mice and found that while Rac1 and Rac2 
play different and nonoverlapping roles in osteoclasto-
genesis, Rac1 was the primary Rac isoform responsible 
for regulating ROS generation and the actin cytoskeleton 
during the various stages of osteoclast differentiation. In 
addition, ROS induce expression of  �  integrins and their 
ligands  [57, 58] , which also contribute to fusion events 
 [36] .

  As discussed above, studies with RANKL- or RANK-
deficient mice indicate that the RANKL/RANK pathway 
is required for osteoclast multinucleation [reviewed in 
 24 ]. Thus, it is difficult to explain the mechanisms behind 
the RANKL-independent systems that have been report-
ed. One suggestion is that these inflammatory signals ob-
viate the need for RANK by directly activating the NF- � B 
pathway, which would lead to multinucleation when the 
right combination of additional signals is present. One of 
these signals may be the local presence of ROS, since both 
NF- � B and NFAT are oxidative stress-responsive tran-
scription factors  [59] . Indeed, it is well known that ROS 
alone or in cooperation with cytokines, such as TNF- � , 
can activate NF- � B and subsequent downstream signal-
ing cascades  [60] .

  Lipid capture by cell surface receptors may be a gen-
eral feature of cell fusion, and Helming et al.  [17]  showed 
that macrophages display localized areas of phosphati-
dylserine on the cell surface and that lipid recognition by 
CD36 is required for efficient fusion of macrophages 
treated with GM-CSF and IL-4. Note that CD36 activa-
tion also leads to the induction of ROS production and 
MCP-1 and membrane lipid rafts are ordered structures 
of membrane microdomains enriched in cholesterol, 
 glycosphingolipids and glycosylphosphatidylinositol-an-
chored proteins [reviewed in  61 ]. Interestingly, lipid raft 
expression has been shown to increase during osteoclast 
formation, and TRAF-6 is recruited   to osteoclast lipid 
rafts during RANKL stimulation  [62] . Furthermore, Ishii 
et al.  [63]  reported that RANKL-induced expression of 
CD9, a member of the tetraspanin superfamily proteins, 
in lipid rafts was required for macrophage fusion during 
osteoclast formation. While there are no reports investi-
gating the role of ROS in lipid raft function during mac-
rophage multinucleation, it is a reasonable possibility 

Table 2. Effect of giant cell fusion factors on monocyte/macro-
phage ROS production

Factor/receptor Effect on ROS production

BzATP/P2X7 d
Hyaluronic acid/CD44 d
CD47/SIRP� d
GM-CSF/GM-CSF receptor d
IL-4/IL-4 receptor f
LPS/Toll-like receptor 4 d
MCP-1/CCR2 d
M-CSF/M-CSF receptor d
Phosphatidylserine/CD36 d
RANK/RANKL d
TNF-�/TNF-� receptor d
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based on studies showing that lipid rafts can serve as a 
scaffold for NADPH oxidase assembly  [64]  and that ROS 
promote lipid raft formation  [65] .

  ROS Production and NADPH Oxidase Expression in 
Multinucleated Giant Cells 

 Multinucleated giant cells arise from macrophage pre-
cursors and, although their differentiation modulates the 
unique range of enzymes that are expressed, these cells 
also retain some characteristics of mononucleated mac-
rophages. Based on their cellular origin, it is not surpris-
ing that the various types of multinucleated giant cells 
have been shown to generate ROS, as ROS production is 
one of the hallmarks of all professional phagocytes, in-
cluding neutrophils and monocyte/macrophages [re-
viewed in  66 ]. Among the multinucleated giant cells 
known to generate ROS are osteoclasts  [67, 68]  and mul-
tinucleated giant cells of noninfectious and infectious 
granulomas  [69–71] . Note, however, that multinucleated 
giant cells generally exhibit an enhanced ROS-generating 
capacity (20- to 30-fold) compared with unfused macro-
phages  [69] .

  The source of ROS generated by multinucleated giant 
cells has been investigated by a number of groups, and 
most studies suggest that NADPH oxidases are among 
the primary systems responsible for O2

–� production  [67, 
71–75] . The phagocyte NADPH oxidase is a multiprotein 
enzyme complex that plays an essential role in innate im-
munity [reviewed in  66 ]. It is composed of a plasma mem-
brane-associated flavocytochrome b, which is comprised 
of gp91 phox  (now known as NOX2) and p22 phox , and 4 cy-
tosolic proteins (p40 phox , p47 phox , p67 phox  and Rac2), and 
catalyzes the transfer of electrons from NADPH to O 2 , 
resulting in the formation of O2

–� and other ROS important 
for defense against microbial pathogens [reviewed in  76 ]. 
Originally, it was thought the NADPH oxidase was spe-
cific to phagocytic cells; however, subsequent studies re-
vealed the presence of analogous systems and homolo-
gous proteins in nonphagocyte tissues [reviewed in  76 ]. 
These enzymes are functionally distinct from the phago-
cyte NADPH oxidase and can be distinguished by their 
unique NOX2 homolog. Currently, there are 6 such 
 homologs, designated as NOX1, NOX3, NOX4, NOX5, 
DUOX1 and DUOX2  [77] . The various NOX proteins are 
homologous in size and domain structure to NOX2; how-
ever, their patterns of tissue expression are distinct [re-
viewed in  76 ]. 

  Although monocyte/macrophages and neutrophils 
express the same phagocyte NADPH oxidase compo-
nents, NADPH oxidase activity seems to be regulated dif-
ferently in these cell types  [59] . For example, monocytes 
show a gradual increase in O2

–� production after stimula-
tion with soluble agonists  [78] , whereas the response in 
neutrophils is much faster  [79] . In addition, the monocyte 
oxidase can be reactivated after sufficient recovery, which 
is typically not the case for neutrophils  [80] . Finally, dif-
ferent types of stimuli can activate the monocyte/macro-
phage and neutrophil NADPH oxidases [reviewed in  59, 
81 ]. Thus, differences in NADPH oxidase regulation have 
been proposed to contribute to the distinct roles of mono-
cyte/macrophages and neutrophils in chronic versus 
acute inflammation, respectively  [82] , and some of these 
differences may be important in the formation and func-
tion of multinucleated giant cells. Previously, we found 
that the genes encoding NOX2, p47 phox  and p67 phox  were 
induced in TNF- � -treated monocyte/macrophages via 
activation of NF- � B, resulting in increased NADPH oxi-
dase protein expression and activity  [83] . Based on these 
studies, we proposed that a positive feedback mechanism 
may exist, whereby NF- � B activation leads to upregula-
tion of NADPH oxidase expression and subsequent O2

–� 
production, which in turn can further activate NF- � B in 
the same cells (autocrine) and neighboring phagocytes 
(paracrine). As a consequence, this positive feedback loop 
would result in sustained production of O2

–� and contribute 
to the pathogenesis of chronic inflammatory diseases. 
Given the intricate relationship between NF- � B and O2

–� 
in chronic inflammation, establishing the pathways that 
regulate the NADPH oxidase activity in multinucleated 
giant cells may eventually help to identify critical events 
associated with disease pathogenesis.

  The level of Nox2 expressed in murine osteoclasts is 
almost double of that in phagocytes, suggesting that the 
NADPH oxidase complex is highly expressed in osteo-
clasts  [72] , which may explain the higher levels of O2

–� gen-
erated by these cells  [68, 84, 85] . O2

–� has been detected at 
the ruffled border of osteoclasts, which suggests that ROS 
are produced at sites of resorption and may participate in 
matrix degradation. Interestingly, it has been observed 
that osteoclasts from Nox2-deficient mice still produce 
similar levels of O2

–�, and Yang et al.  [73]  demonstrated that 
this activity was due to the presence of Nox4 in these cells. 
Subsequently, this group reported that Nox4 was upregu-
lated during osteoclast differentiation  [74] . Thus, a NOX2 
to NOX4 transition may be one of the important features 
of osteoclasts. NOX4 requires p22 phox  but does not re-
quire the additional cytosolic cofactors that are essential 
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for the NOX2-based NADPH oxidase  [86] . In addition, 
the NOX4/p22 phox  system produces large amounts of 
H 2 O 2  that are released extracellularly  [86] . These features 
of NOX4 are consistent with the functional requirement 
for ROS in bone resorption  [84, 87] . Note that NOX1 has 
also been proposed to play a role in osteoclast differen-
tiation, and depletion of NOX1 by RNA interference was 
found to block osteoclast differentiation  [54] . Liberman 
et al.  [75]  recently reported that macrophage foam cells 
produced higher levels of ROS at sites of aortic valve cal-
cification (rabbit or human) and proposed this may re-
flect ROS signaling in cellular processes, including the 
formation of multinucleated giant cells. These cells ex-
hibited increased expression of NADPH oxidase subunits 
NOX2 and p22 phox , as well as increased message for 
NOX4, but not NOX1  [75] . Interestingly, NOX4 has been 
reported to have an anti-apoptotic effect  [88] , and this 
property could possibly contribute to the persistence of 
multinucleated giant cells in inflammatory diseases.

  Whether NOX1 and NOX4 play a role in the function 
of other multinucleated giant cells remains to be deter-
mined, as expression of NOX1 and NOX4 in foreign-body 
or immune giant cells has not been reported. This is an 
especially important question in relation to chronic gran-
ulomatous disease (CGD). CGD is a rare genetic disease 
caused by defects in NOX2, p22 phox , p47 phox  or p67 phox , 
and results in an inactive NADPH oxidase [recently re-
viewed in  89 ]. As a result, patients with CGD experience 
severe, recurrent bacterial and fungal infections and de-
velop granulomas, which are characterized by the pres-
ence of multinucleated giant cells  [90, 91] . CGD is char-
acterized by excessive inflammation, which is thought to 
be due to several factors that result from loss of NADPH 
oxidase activity, including the persistence of pathogens 
due to defective phagocyte killing, excessive generation 
of IL-8 by CGD neutrophils, and delayed apoptosis of 
CGD neutrophils [reviewed in  92 ]. Although neutrophils 
from CGD patients are unable to generate ROS, they are 
still able to kill a number of pathogens, presumably 
through the action of other phagocyte antimicrobial 
components, and Kobayashi et al.  [93]  showed that neu-
trophils from individuals with CGD have increased levels 
of transcripts encoding proteins that participate in host 
defense. Thus, it is clear that compensatory microbicidal 
mechanisms do exist in phagocytes from patients with 
CGD. If ROS are indeed important or necessary for mac-
rophage multinucleation and the formation of osteoclasts 
and foreign-body giant cells, which are present in indi-
viduals with CGD, then compensation must be provided 
by other ROS-generating systems, such as NOX1- and 

NOX4-based NADPH oxidases and possibly xanthine 
oxidase. Not much is known regarding the expression of 
NOX2 homologs in CGD. Baniulis et al.  [94]  reported 
that NOX1, NOX3 and NOX4 were not expressed in neu-
trophils obtained from CGD patients. However, expres-
sion of these proteins in monocyte/macrophages or giant 
cells was not evaluated. Thus, it will be interesting to 
evaluate this issue in the future, given that Nox4, and per-
haps Nox1, appears to compensate for Nox2 in osteoclasts 
from murine models of CGD. Likewise, the role of xan-
thine oxidase in the formation or function of giant cells 
also needs further investigation. Segal et al.  [95]  showed 
that xanthine oxidase could contribute to host defense in 
a murine model of autosomal CGD and thus partially 
compensate for loss of phagocyte NADPH oxidase activ-
ity. Interestingly, Mizuno et al.  [96]  reported that the xan-
thine oxidase inhibitor, allopurinol, inhibited the forma-
tion of multinucleated giant cells from human mono-
cytes, partly through the downregulation of intercellular 
adhesion molecule-1 and P2X 7 . As discussed above, P2X 7  
plays an important role in the fusion process leading to 
macrophage multinucleation. Although there are no re-
ports regarding a link between NADPH oxidase activity 
and P2X 7  in macrophage fusion, stimulation of P2X 7  has 
been reported to enhance NADPH oxidase activity in hu-
man monocytes  [97] . This group also showed that ATP 
stimulation of THP-1 monocytes enhanced translocation 
of p47 phox  with p67 phox  to the membranes where oxidase 
assembly occurs and that this process was blocked by a 
P2X 7  receptor antagonist  [97] . Likewise, ligation of CD44 
or SIRP �  has also been reported to induce NADPH oxi-
dase-dependent ROS production  [98, 99] . Based on these 
observations, it is possible that fusogenic events leading 
to activation of P2X 7 , CD44 and SIRP �  could enhance 
NADPH oxidase assembly and ROS production in mac-
rophage membranes, thereby contributing to cell fusion.

  In addition to NOX-based enzymes, osteoclasts and 
activated macrophages also express tartrate-resistant 
acid phosphatase (TRACP), which contains a binuclear 
iron center and can also generate ROS  [100] . ROS gener-
ated by TRACP have been reported to participate in bone 
matrix degradation, degradation of foreign material dur-
ing antigen presentation, and bacterial killing  [101] . In-
terestingly, Halleen et al.  [100, 102]  reported that TRACP 
colocalized in macrophage compartments containing 
phagocytosed  Staphylococcus aureus  and that macro-
phages from TRACP-overexpressing mice exhibited in-
creased bacterial killing capacity. Thus, TRACP seems to 
be an important component of macrophage function by 
generating intracellular ROS which could be targeted to 
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destroy phagocytosed pathogens and/or foreign material. 
It is reasonable to suggest that NADPH oxidase and 
TRACP represent complementary mechanisms utilized 
by mononucleated and multinucleated macrophages. 

  Role of Multinucleated Giant Cells in Inflammation 
and Autoimmune Diseases 

 Giant cells are one of the characteristic features of 
granulomas and play an important role in regulating 
granuloma formation by generating cytokines and other 
mediators  [103] . Macrophage fusion results in the forma-
tion of cells large enough to resorb or sequester extracel-
lular material, such as bone and foreign bodies  [2, 6] . In 
addition, macrophages may also be able to fuse with so-
matic cells during tissue repair or with tumor cells, there-
by contributing to metastasis  [104] . Here, we briefly de-
scribe the involvement of multinucleated giant cells and 
the potential role of NADPH oxidases in some of these 
inflammatory processes.

  Immune Granulomas 
 Granulomas are organized collections of mononucle-

ar phagocytes formed in a ball-like structure with the 
goal of destroying or isolating foreign substances [re-
viewed in  105 ]. Thus, granulomas represent a specialized 
inflammatory reaction that is common to a number of 
diseases. The formation of granulomas can represent a 
specific, inflammatory response induced by a pathogen 
(immune or infectious granuloma) or can represent the 
containment and possible degradation of a foreign par-
ticle or substance (nonimmune or noninfectious granu-
loma)  [105, 106] . Granulomatous inflammation is highly 
effective in destroying many pathogens; however, some 
pathogens can avoid destruction, such as facultative or 
obligate intracellular organisms, and they become se-
questered in mature granulomas. Furthermore, multinu-
cleated giant cells are present in immune granulomas 
formed in association with a number of infectious dis-
eases, including tuberculosis  [71] , brucellosis  [107] , asper-
gillosis  [108] , cryptococcosis  [109] , leprosy  [110]  and oth-
ers (see  fig. 2 a).

  It is thought that immune granulomas play an impor-
tant role in control of bacterial growth and dissemination 
 [111] . For example, tuberculosis-associated Langhans gi-
ant cells have been found to restrict cell-to-cell spread of 
mycobacteria  [112] . One of the distinguishing features of 
immune granulomas is the presence of T cells, and these 
lymphocytes are found surrounding and in close contact 

with the aggregate of macrophages and multinucleated 
giant cells  [113] . Note, however, that recent studies in T 
cell-deficient mice suggest that T cells are not absolutely 
required for the foreign-body giant cell formation and 
that compensatory pathways can be invoked  [114] . Gran-
uloma-associated T lymphocytes appear to be sensitized 
to microbial antigens, altered cellular structure or dam-
aged basement membrane/matrix, resulting in the gen-
eration of cytokines that recruit and activate additional 
macrophages, as well as promote macrophage fusion  [1] . 
In addition to leukocyte-derived innate immune media-
tors, pathogen-derived products also appear to partici-
pate in macrophage fusion. For example, Okamoto and 
coworkers  [115, 116]  reported that muramyl dipeptide, a 
peptidoglycan portion of bacterial cell walls, acted in 
concert with inflammatory cytokines to induce Lang-
hans cell formation, possibly involving P2X 7  receptors in 
the fusion process. Furthermore, Lay et al.  [71]  reported 
that high-virulence mycobacterium  (Mycobacterium tu-
berculosis)  induced large multinucleated giant cells with 
 1 15 nuclei per cell, whereas multinucleated giant cells 
formed in response to low-virulence mycobacterium spe-
cies ( M. avium  and  M. smegmatis ) had fewer nuclei per 
cell ( ! 7) and did not progress to become giant cells. Note, 
however, that both types of multinucleated cells expressed 
NADPH oxidase activity  [71] . In addition, multinucleat-
ed giant cells in tuberculin granulomas also have been 
shown to accumulate nitrotyrosine, indicating formation 
of both O2

–� and NO in these lesions  [117] . Thus, it is clear 
that NADPH oxidase-dependent ROS production is im-
portant in the function of multinucleated giant cells as-
sociated with immune granulomas. Likewise, phagocyte-
generated ROS are important inflammatory mediators in 
many other granulomatous diseases  [118, 119] , although 
the role of ROS produced by multinucleated giant cells is 
not well understood in these cases.

  As described above, phagocytes from individuals with 
CGD lack NOX2-based NADPH oxidase activity [re-
viewed in  89 ]. Thus, the question arises as to the potential 
sources of ROS and/or their role in macrophage fusion 
and granuloma formation associated with this disease. In 
addition to the possible contributions of other NOX sys-
tems and xanthine oxidase described above, it is also pos-
sible that pathogen-derived ROS may at least partially 
substitute for the loss of the NOX2-based oxidase, there-
by providing a source of ROS. Indeed, it has been pro-
posed that the microbicidal capacity of CGD phagocytes 
depends, to some degree, on H 2 O 2  produced by the patho-
gen itself, and that this explains why catalase-positive or-
ganisms cause many of the infections in CGD patients 
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(such as  Aspergillus  spp. or  Staphylococcus  spp.), while 
catalase-negative organisms rarely infect these individu-
als  [120] . Note, however, that this paradigm is not abso-
lute, and other host- or pathogen-specific factors must 
also be involved  [121] . Interestingly, the incidence of in-
fection in patients with CGD has been shown to be de-
creased by prolonged treatment with IFN- � , although 
this treatment did not improve NADPH oxidase activity 
 [122] . Given that this cytokine plays an important role in 
macrophage fusion to form giant cells, one might specu-
late that part of the benefit could be due to enhanced for-
mation of multinucleated giant cells to improve contain-
ment of persistent pathogens.

  Nonimmune Foreign-Body Granulomas 
 In an effort to isolate foreign material from the host, 

foreign-body giant cells surround these materials and ei-
ther dispose of them or sequester them if they cannot be 
destroyed. For example, foreign-body giant cells seques-
ter various inorganic particles, such as metals (Co, Al, Ba, 
Be, Zn) and minerals (talc, asbestos), as well as aggregates 
of endogenous substances, such as uric acid, keratin, he-
mosiderin and insoluble fat deposits  [123] . The formation 
of foreign-body giant cells may also be the result of re-
sponses to antigenic structures developed as a result of 
interaction between self-macromolecules and the surfac-
es of implanted material and/or the charge characteristics 
of such foreign surfaces. Macrophages adherent to sur-
faces of endoprostheses or implanted biomaterials often 
fuse to form foreign-body giant cells, which are believed 
to be primary cellular mediators of the chronic inflam-
matory response to foreign materials [reviewed in  28 ]. In 
addition, the type of material present in the granuloma 
and macrophage inflammatory status also have been 
shown to be key factors involved in macrophage fusion 
 [1, 124] . Anderson and Jones  [124]  found that hydropho-
bic surfaces on foreign biomaterials supported macro-
phage adhesion and fusion, whereas hydrophilic/neutral 
surfaces inhibit adhesion and fusion. Clearly, the ability 
to adhere also had significant effects on macrophage ac-
tivation, cytokine production and fusion. For example, 
vitronectin and E-cadherin have been shown to be im-
portant in adhesion events during IL-4-induced foreign-
body giant cell formation  [125, 126] .

  Currently, the role of ROS in degradation of foreign 
material is an area of intensive investigation, as prolonged 
inflammation and ROS generation by macrophages, for-
eign-body giant cells and osteoclast-like cells around im-
planted biomaterial is one of the main causes of the for-
eign-body response [reviewed in  28 ]. Over time, wear of 

the implants generates particles capable of activating 
macrophages and giant cells, resulting in the release of 
ROS and reactive nitrogen species that contribute to bone 
resorption and aseptic loosening of implants  [127, 128] . 
In addition, ROS may attack biomaterials directly and 
enhance their degradation  [129] . Thus, to decrease the 
impact of ROS on biomaterials, various approaches have 
been suggested, including protection of the implanted 
material by addition of antioxidants  [130] , surface-bound 
superoxide dismutase mimetics  [131] , titanium oxide 
coatings  [132]  or fluorpolymer surface modifications 
 [133]  to the biomaterials. 

  Sarcoidosis 
 Sarcoidosis is a multisystem, autoimmune granulo-

matous disease that affects the pulmonary, cutaneous 
and lymphatic systems [reviewed in  134 ]. Sarcoidosis 
consists of multi-organ granulomas comprised of macro-
phages, epithelioid cells and multinucleated giant cells, 
although there may also be lymphocytes and fibroblasts 
 [135] . The pathogenesis of sarcoidosis involves inflam-
matory cytokines, such as IL-6 and TNF- � , and the pri-
mary treatment is corticosteroids  [134] . Recently, TNF- �  
inhibitors have been used to successfully treat this dis-
ease  [134] . Note, however, that anti-TNF- �  therapy has 
also been implicated in the development of drug-induced 
sarcoidosis. In addition, tuberculosis can apparently 
mimic  [136]  or coexist with sarcoidosis  [137] , therefore, 
making anti-TNF- �  treatment problematic in some pa-
tients.

  The role of ROS in sarcoidosis is not well defined, al-
though it is clear that increased phagocyte ROS produc-
tion is associated with this disease  [138] . Macrophages 
from patients with sarcoidosis exhibited increased ex-
pression of  �  2  integrins, which correlated with increased 
NADPH oxidase activity  [138] . As described above, 
monocyte/macrophage fusion involves a number of fu-
sion proteins, and monocytes from sarcoidosis patients 
expressed higher levels of P2X 7  receptors and fused more 
readily than those from healthy controls  [116] . Further-
more, pharmacological agents that affect sarcoidosis, 
such as tranilast, allopurinol and captopril, inhibited gi-
ant cell formation in vitro by inhibiting the expression of 
adhesion proteins and P2X 7  receptors. Since activation of 
P2X 7  may enhance monocyte/macrophage NADPH oxi-
dase assembly and ROS production, this could represent 
a feedback mechanism that facilitates macrophage fusion 
and further ROS production in sarcoidosis. 
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  Rheumatoid Diseases 
 Multinucleated giant cells have been reported to play 

a role in the pathogenesis of some rheumatoid diseases, 
such as rheumatoid arthritis and rheumatic heart dis-
ease. Multinucleated giant cells are commonly present in 
inflamed synovium, often in close association with the 
intimal layer, and Wilkinson et al.  [139]  found that two 
types of multinucleated cells were present in synovial tis-
sue from patients with rheumatoid arthritis, one related 
to synoviocytes and one derived from macrophages. In 
addition, the latter cells exhibited osteoclast markers and 
characteristics. Weinberg et al.  [140]  showed that syno-
vial tissue from patients with rheumatoid arthritis con-
tained higher numbers of cells than healthy tissue, in-
cluding many macrophages and multinucleated giant 
cells, and these cells also produced higher levels of TNF-
 �  and IL-1 in vitro. Further analysis of the nature of these 
cells showed that the multinucleated bone-resorbing gi-
ant cells in synovial fluids of patients with rheumatoid 
arthritis were indeed osteoclasts and that the fusion in-
dex and bone-resorption functions of these cells were en-
hanced significantly in patients with rheumatoid arthri-
tis  [141] . Furthermore, synovial pannus tissue is charac-
terized by high levels of RANKL versus osteoprotegrin, 
which is proposed to favor local generation of bone-re-
sorbing osteoclasts at the site of erosion in rheumatoid 
arthritis  [142] .

  ROS likely play a number of roles in the pathogenesis 
of rheumatoid arthritis. As described above, osteoclasts 
generate significant levels of ROS, and NOX2 and/or 
NOX4 is localized in their ruffled membranes, such that 
ROS are generated at the sites of bone resorption and ma-
trix degradation  [67, 74] . Furthermore, phagocytes, and 
possibly multinucleated giant cells, from patients with 
arthritis have a significantly increased ability to produce 
ROS, and this phenomenon has been attributed in part to 
priming by TNF- �   [143] . Pharmacological agents that de-
stroy or inhibit the production of ROS, such as apocynin 
 [144] , methotrexate  [145] , or diphenylene iodonium  [146] , 
can suppress the development of inflammation and 
symptoms associated with arthritis. On the other hand, 
joint inflammation and bone erosion are worse in p47 phox - 
and Nox2-deficient CGD mice with experimentally in-
duced arthritis, and the authors concluded that ROS 
might actually play a role in limiting the disease process 
under certain conditions  [147] . Olofsson and coworkers 
 [148, 149]  reported that a polymorphism of the gene en-
coding p47 phox   (NCF1)  regulates the severity of arthritis 
and proposed NADPH oxidase-derived ROS reduced ar-
thritis by regulating arthritogenic T cells. Thus, it may be 

that under healthy conditions, ROS work to prevent ar-
thritis and other autoimmune conditions, whereas, once 
these conditions develop, oxidants can contribute direct-
ly to pathogenesis. Since p47 phox  is expressed in osteo-
clasts as well, additional mechanisms of ROS-dependent 
regulation may be involved at the level of these cells; how-
ever, further research in this area is needed.

  Rheumatic fever is an important cause of cardiac in-
jury worldwide [reviewed in  150 ]. Rheumatic fever is 
characterized by a nonspecific myocarditis, as well as le-
sions containing granulomas known as Aschoff nodules 
 [151] . In rheumatic Aschoff nodules, a central necrotic 
focus is surrounded by immune giant cells and lympho-
cytes, and these cells have been shown to participate in 
the resorption of necrotic and fibrous tissue of rheuma-
toid nodules  [152] . Fraser et al.  [153]  proposed that these 
lesions exhibit progressive phases, with the early phases 
characterized by macrophage influx and production of 
IL-1 and TNF- � , followed by later stages of T and B cell 
recruitment and activation, as well as IL-2 production. 
The recruitment and activation of macrophages, as well 
as the formation of multinucleated giant cells, suggests 
that NADPH oxidase assembly and ROS production 
would be a prominent feature of this lesion that could 
participate in tissue resorption and repair; however, the 
actual role of ROS in this pathologic process has not been 
evaluated. 

  Giant Cell Arteritis 
 Giant cell arteritis (GCA) is an innate immune dis-

ease of medium to large blood vessels and is most often 
associated with vasculature in the head [reviewed in 
 154 ]. GCA is the most common primary vasculitis in the 
West and affects older adults (average age of 75)  [155] . 
The pathogenesis of GCA typically appears to involve 
two processes, an acute-phase systemic innate response 
and an antigen-dependent immune response directed 
against arterial wall components  [154] . GCA is charac-
terized histologically by inflammatory infiltrates that 
penetrate through all layers of the vessel wall. These in-
filtrates are comprised primarily of highly activated 
monocyte/macrophages and CD4 +  T cells and can in-
clude granulomas that tend to form in the arterial media 
near the internal elastic lamina  [155] . In approximately 
50% of the cases, multinucleated giant cells are present 
 [154] . Activation of adventitial CD4 +  T cells results in 
production of IFN- � , which regulates the differentiation 
and function of recruited macrophages and likely con-
tributes to macrophage multinucleation  [156] . While it is 
accepted that GCA is a T cell-dependent, Th1-driven 
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disease  [157] , the antigens involved are not well defined 
and may be foreign or host derived. Analysis of GCA le-
sions indicated the association of foreign-body giant 
cells with calcified regions of the internal elastic lamina 
 [158] . However, some lesions also contain Langhans gi-
ant cells, suggesting the possibility that infection may 
also contribute to the pathogenesis of this disease in 
some cases  [159] . Additionally, some multinucleated gi-
ant cells stain positive for the myeloid-related protein 
S100, suggesting that dendritic cells may contribute to 
macrophage fusion during giant cell formation  [160] . It 
is also possible that giant cells could be formed through 
fusion of dendritic cells, which would be promoted by 
IFN- �   [161] . Indeed, concentrations of tissue IFN- �  cor-
relate with the formation of multinucleated giant cells in 
GCA  [162] .

  The tissue injury associated with GCA appears to be 
mediated by products of macrophage activation, includ-
ing ROS and matrix metalloproteinases  [70, 163] , which 
can damage the internal elastic lamina and contribute to 
giant cell formation  [164] . In addition, peptides generated 
during elastin hydrolysis can serve as autoimmune tar-
gets for the T cells  [165] , and it has been reported that 
adventitial CD4 +  T cells can undergo clonal expansion in 
the adventitia and that adventitial dendritic cells play a 
key role in this process by serving as antigen-presenting 
cells  [160, 162] .

  While it is clear that ROS generated by multinucleated 
giant cells and macrophages play a key role in the patho-
genesis of GCA  [70] , the enzymatic sources are not well 
defined. Based on the NOX protein expression described 
above, it is reasonable to suggest that both NOX2- and 
NOX4-based systems could be involved. In support of 
this idea, S100A8 (myeloid-related protein-8) and S100A9 
(myeloid-related protein-14) are expressed in human 
GCA, colocalized with areas of vascular calcification 
 [166] , which is also the location of giant cell formation. 
These proteins are highly expressed in myeloid cells  [167]  
and have been shown to play a role in NADPH oxidase 
activation by interacting with p67 phox  and Rac2 during 
oxidase activation and facilitating enzyme assembly 
 [168] . Nevertheless, further work is necessary to evaluate 
the expression of various NOX proteins and cytosolic 
subunits in GCA lesions. The combined production of 
ROS and NO in vascular tissue also leads to the produc-
tion of peroxynitrite, which may contribute to the vascu-
lar injury through its ability to nitrate proteins  [70] . In-
deed, protein nitration in endothelial cells of medial mi-
crovessels has been demonstrated in GCA  [169] . 

  Giant Cell Tumors of Bone 
 Giant cell tumors of bone (GCTB; also called giant cell 

myeloma or osteoclastoma) is a rare and usually benign 
neoplasm that occurs in long bones  [170] . GCTB are char-
acterized by the presence of stromal fibroblast-like cells, 
macrophages and multinucleated giant cells that exhibit 
phenotypic features of osteoclasts  [171] . Indeed, Roessner 
et al.  [172]  suggested that the multinucleated giant cells 
of GCTB were morphologically analogous to giant cells 
present in granulomas. It appears that the stromal fibro-
blast-like cells generate factors that recruit monocyte/
macrophages, and the supernatants of GCTB cell cul-
tures possess chemotactic activity for osteoclast precur-
sors  [13] . Furthermore, Zheng et al.  [13]  proposed that 
transforming growth factor- � 1 plays a key role in recruit-
ment osteoclasts and their precursors into the tumor. 

  ROS play an important role in GCTB, and proliferat-
ing GCTB is characterized by TRACP and NADH-tetra-
zolium reductase activity  [173] . Quantitatively, TRACP 
activity was found to increase with increasing cell size, 
whereas the activity of NADH-tetrazolium reductase de-
creased proportionally  [174] . Ciplea and coworkers  [173, 
174]  proposed that this change was indicative of degen-
eration of the giant cells. Since the multinucleated giant 
cells associated with GCTB are osteoclast-like cells, which 
are known to generate significant levels of ROS, it is also 
likely that some form of NOX is expressed on these cells. 
Note, however, that the role of NADPH oxidase and ROS 
in the development of GCTB has not been determined.

  Summary 

 Monocyte/macrophages are phagocytic leukocytes 
that play a multitude of functional roles in the body and 
represent key players in both innate and acquired im-
mune systems. These cells also have the unique ability to 
fuse into multinucleated cells, which is a terminal differ-
entiation pathway involved in a variety of physiological 
and pathological processes. Fusion of macrophages can 
result in the formation of osteoclasts or a variety of dif-
ferent multinucleated giant cells, each with unique prop-
erties and tissue distributions. Multinucleated giant cells 
are one of the characteristic features of granulomas and 
are able to attack extracellular material, such as larger 
pathogens and foreign material. Thus, their role in elim-
ination of foreign substances, damaged tissue, and patho-
gens is essential to host survival. Furthermore, these cells 
are able to sequester irremovable material or persistent 
pathogens to prevent further spread of infection and iso-
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late foreign particles. The formation of multinucleated 
giant cells is a complex process induced by key cytokines 
and mediated by a number of fusogenic molecules and 
their receptors. Furthermore, it is clear that most, if not 
all, multinucleated giant cells generate ROS via activation 
of various NADPH oxidases, including those involving 
NOX1, NOX2 and NOX4. Indeed, the level of ROS pro-
duced by multinucleated giant cells is much greater than 
that of unfused cells. These ROS are not only involved in 
the inflammatory responses, but they also play an impor-
tant regulatory role in macrophage multinucleation by 
inducing various fusion factors as well as modulating re-
dox-sensitive transcription factors that are important in 

cell fusion. Nevertheless, there is still a lot of work need-
ed to fully understand the function of NOX-based en-
zymes and their products in the development and func-
tion of multinucleated giant cells, especially in relation to 
their role in granulomas. 
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