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Abstract
PURPOSE—To validate a two-regression model for predicting energy expenditure (EE) from
ActiGraph GT1M accelerometer generated activity counts using a whole-room indirect
calorimeter and the doubly-labeled water (DLW) technique. We also investigated if a low-pass
filter (LPF) approach would improve the model’s accuracy in the minute-to-minute EE prediction.

METHODS—Thirty-four healthy volunteers (age 20-67 yrs, BMI-19.3-52.1 kg/m2) spent ~24-h
in a room calorimeter while wearing a GT1M monitor and performed structured and self-selected
activities followed by overnight sleep. The EE predicted by the models and expressed in metabolic
equivalents (MET-min) during waking times was compared to the room calorimeter measured EE.
A subset of volunteers (n=22) completed a 14-day DLW protocol in free-living while wearing an
ActiGraph. The average daily EE predicted by the models (MET-min) was compared to the DLW.

RESULTS—Compared to the room calorimeter, the two-regression model over-predicted EE by
10.2±11.4% (1,282±125 and 1,174 ± 152 MET-min, p<0.001) and time spent in moderate physical
activity (PA) by 36.9 ± 46.0 min while underestimating the time spent in light PA by - 48.3 ± 55.0
min (p<0.05). The LPF reduced the squared and mean absolute error in the EE prediction
(p<0.05), but not the prediction error in time spent in moderate or light PA (both p>0.05). The EE
measured by DLW (2,108±358 MET-min/day) and predicted by both filtered and unfiltered
models (2,104 ± 218 and 2,192 ± 228 MET-min/day, respectively) were similar (p>0.05).

CONCLUSIONS—The two-regression model with LPF showed good agreement with total EE
measured using room calorimeter and DLW. However, the individual variability in assessing time
spent in sedentary, low, and moderate PA intensities and related EE remains significant.
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Introduction
Accelerometers are a common research tool used to assess physical activity (PA) in various
populations. The accurate characterization of the relationship between accelerometer output,
reflecting body movements over selected time intervals, and the energy expenditure (EE)
related to these movements has been a challenge (12). Early efforts focused on developing a
single linear relationship between EE and activity recorded in arbitrary units (counts)
(6,10,23), which has been shown to be challenging (19). Recently, several alternative
approaches such as multiple linear regressions (9), power models (3), polynomial fits
(20,28), and machine learning (16,18,22,29) have been developed. These models have
utilized more information about PA, such as one-second averaged or raw activity data
(5,16,18,22,29) and have the potentials to generate a more accurate prediction of EE
associated with PA.

One such method is the two-regression model developed for estimating EE of PA using
GT1M ActiGraph accelerometer (ActiGraph, Pensacola, FL) recordings measured in one
second epochs (5). The two-regression method used the coefficient of variation (CV =
standard deviation / mean * 100) and the sum of six 10 sec epochs to categorize each minute
of accelerometer data into resting, walking and jogging, and lifestyle activities. Separate
regression equations for walking/jogging and lifestyle activities were then used to estimate
minute-to-minute EE. In a study conducted using a portable indirect calorimeter (K4b2 by
Cosmed, Rome, Italy) to measure the EE, this model showed significant improvement in the
estimation of EE in several lifestyle and sports-related activities relative to previously
published regression equations for the ActiGraph in adults. Although the model
development procedure included common lifestyle, leisure-time, and sports-related activities
all performed at self-selected rates, these activities were completed over relatively short time
intervals (5-10 min) and, in many cases, in an unfamiliar environment while wearing a
device that includes a facemask and analyzer system that weighs approximately 2 kg (5). We
believed that the two-regression model could benefit from an independent validation test
which includes a free-living component. Consequently, we examined its prediction ability
and accuracy using a whole-room indirect calorimeter (12) and the doubly-labeled water
(DLW) technique (21). We also investigated if applying a low pass filter to the predicted EE
would improve the two-regression model’s estimation of the minute-to-minute EE without
compromising its predictive accuracy for total EE.

Methods
Overview

To rigorously validate the two-regression model, we examined its prediction ability and
accuracy using a whole-room indirect calorimeter (12) and the doubly-labeled water (DLW)
technique (21). The whole-room indirect calorimeter allows for accurate minute-to-minute
EE measurement over a longer time period than portable calorimeters (usually 24-h) and
does not require participants to wear a face mask or a mouthpiece during the measurement
(3,18). The DLW technique measures total EE over a 10-14 day period in a free-living
environment but it does not provide data about PA performed during this period. Therefore,
a combination of these two techniques offers a robust validation of models developed to
estimate EE from data generated by PA monitors (15).
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In the laboratory validation phase, minute-by-minute and total EE predicted with the two-
regression model was compared with EE measured simultaneously by the room calorimeter
during the waking period of a 24-h stay. In the second phase conducted for 14 days in free-
living conditions, average daily EE predicted by the model was compared with the DLW
measured EE. Our null hypothesis was that individual EE predicted by the models will not
be different from EE measured by both room calorimeter and DLW techniques. We also
investigated if applying a low pass filter to the predicted EE would improve the two-
regression model’s estimation of the minute-to-minute EE without compromising its
predictive accuracy for total EE.

Participants
Thirty-four adult volunteers (11 males, 23 females) with a wide range of age (20 - 67 yrs)
and BMI (19.3 - 52.1 kg/m2) were recruited from the middle Tennessee area using flyers and
email distribution lists. Before participation, all volunteers signed an informed consent
document approved by the Vanderbilt University Committee for the Protection of Human
Subjects. All 34 subjects completed the room calorimeter study. A subsample of 7 males
(age 47 ± 19 yrs, BMI 25.2 ± 4.5 kg/m2) and 15 females (age 39 ± 11 yrs, BMI 30.8 ± 9.8
kg/m2) completed the DLW phase of the study. Participants were free of diseases and
medications known to alter metabolic rate, major orthopedic limitations, and were non-
smokers. The characteristics of the participants are shown in Table 1.

Experimental Procedures
Anthropometric measurements—Body weight was measured to the nearest 0.05 kg
with a digital scale (Detecto-Medic, Detecto Scales, Inc, Northbrook, IL) with the
participants wearing light clothing and no shoes. Height was measured using a wall-mounted
stadiometer (Perspective Enterprises, Portage, MI).

Whole-room indirect calorimetry protocol—Each participant was asked to stay in the
whole room indirect calorimeter for approximately 24-hours while second-by-second
activity movement in the vertical direction was recorded using ActiGraph GT1M worn at the
hip, wrist, and ankle. The room calorimeter is an airtight room measuring 2.5 × 3.4 × 2.4 m
capable of measuring energy expenditure (EE) on a minute-by-minute basis using room O2
and CO2 concentrations. Housed within the Vanderbilt Clinical Research Center, it is
equipped with a toilet and sink, desk, chair, telephone, television, DVD player, stereo
system, bed, treadmill, and exercise bike. A computerized system with a touch monitor and
an audible signal prompted participants to start and finish each scheduled activity. Technical
details of the room calorimeter have been reported previously (24).

Each participant was asked to engage in two sessions of structured activities. The morning
session included several self-paced walking and jogging bouts performed on the room floor
and on the treadmill. The afternoon session contained several sedentary activities, such as
deskwork, along with stationary biking, and stepping onto a block. Each activity was
performed for 10-min followed by a 10-min rest to allow the metabolic rate to return to
baseline and help with post hoc discrimination between activity types. During periods when
no specific activity was scheduled, participants were encouraged to engage in their normal
daily PA routine as much as possible. Details of the exercise protocols conducted in the
room calorimeter have been previously described (18).

Doubly-labeled water—Following the room calorimeter stay, participants received DLW
sample (0.15 g of 18O2 and 0.09 g of 2H2 per kg of body mass). Urine samples were
collected at baseline pre-dose, 4-7 hours post-dose, and on days 7 and 14 post-dose.
Analysis was conducted at the USDA/ARS Children’s Nutrition Research Center, Baylor

Rothney et al. Page 3

Med Sci Sports Exerc. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



College of Medicine, Houston, TX. The details of the technique have been described
previously (17,21).

Physical Activity Monitoring—Movement was measured using the ActiGraph GT1M
monitor, a small device (5.3 × 5.1 × 2.2 cm) that is usually worn at the hip, wrist, or ankle
(14) and measures acceleration in the vertical plane using a uniaxial piezoelectric
accelerometer. Detailed specifications of the hardware and a full description of how the
monitor acquires and filters activity counts have been described previously (27). Data output
from the ActiGraph is reported as activity counts using the manufacturer’s Actilife v.4.3.0
software (1). Only the hip data was used for this analysis.

ActiGraph two-regression model—The two-regression model proposed by Crouter et
al (5) requires the collection of ActiGraph data in 1-sec epochs. Data from each of the 10-
sec segments within each minute are summed to generate six 10-sec epochs. The coefficient
of variation (CV = standard deviation / mean * 100) and the sum (1-min count value) of the
six 10-sec epochs are then used to categorize each minute of accelerometer data into resting
(< 50 counts/min), walking and jogging (>50 counts/min and CV between 0.1 and 10), and
lifestyle activities (50 counts/min and CV equal to 0 or >10). The 1-min count value is used
to compute a predicted EE in units of metabolic equivalents (MET = total EE/resting EE)
using either an exponential model, for the lifestyle activities, or a cubic model for walking
and jogging. All resting minutes are assigned an EE value of 1 MET. A graphical
representation of the two-regression model is shown in Figure 1.

Data Analysis
The two-regression ActiGraph model was developed to estimate EE associated with PA.
Therefore, to assure best criteria for unbiased comparison we selected 780-min of each
participant’s waking (non-sleeping) period measured in room calorimeter for the analysis.
For the DLW study, accelerometer wear time was determined for each day using the criteria
specified by Troiano et al (26), where non-wear time is defined as a minimum of 60-min of
consecutive zero activity counts, allowing for 1-2 min of non-zero counts less than 100
counts/min. Valid days for the free living study were defined as consisting of at least 600-
min of wear time. During the 14-day monitoring period, participants had average 11.9 ± 2.1
valid days.

The individual room calorimeter data was converted to METs by dividing the total EE by
his/her measured resting EE. We observed high variability (noisy) data in the predicted
minute-to-minute EE (Figure 2A). Therefore, a low pass five point median filter (LPF), a
commonly used method to remove transient artifacts (7), was applied to the EE estimation
(Figure 2B).

The average individual daily EE computed using the two-regression model both with and
without the LPF were then compared to the EE measured during free-living with DLW. The
DLW energy expenditure was converted to METs by dividing average daily EE by resting
EE measured in the room calorimeter.

Statistical Analysis
Data are presented as mean, standard deviation and total range unless otherwise indicated.
The total EE, absolute percent difference in total EE, the minute-by-minute mean absolute
error, mean squared error, and the number of minutes spent in sedentary (1.0 – 1.5 METs),
light (1.5 – 3.0 METs), moderate (3.0 – 6.0 METs), and vigorous (> 6.0 METs) PA were
compared between the two-regression model and the room calorimeter data using paired t-
tests, p<0.05 was considered significant. In the DLW study, the average daily EE was
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compared between the two-regression model and the DLW measurements using paired t-
tests. Bland-Altman plots (2) were used to assess magnitude bias in average daily EE and
the average daily EE. All analyses were conducted using MatLab 2008a (Mathworks, Natick
MA).

Results
Phase 1: Whole Room Indirect Calorimeter Study

The two-regression model significantly overestimated the total METs measured by the room
calorimeter during waking (non-sleeping) time (1,282 ± 125 vs. 1,174 ± 152 MET-min, p <
0.001). The LPF decreased the two-regression model estimation to 1,195 ± 119 MET-min
and the difference with room calorimeter was not significant (p = 0.419).

The individual variability and magnitude bias in the total MET-min measured during the
non-sleeping minutes was assessed using Bland-Altman plots (Figure 3). The mean
difference between the room calorimeter and the two-regression model was 108 MET-min,
indicating an overestimation of 10.15 ± 11.42 %. The LPF significantly reduced the mean
difference to 21 MET-min, or 2.72 ± 10.9 % (p<0.001). Neither method demonstrated a
significant magnitude bias in the estimation of total MET-min (all p> 0.05).

Compared to the unfiltered two-regression model, the LPF model significantly decreased the
minute-to-minute mean absolute error from 0.54 ± 0.11 to 0.44 ± 0.09 MET-min and mean
squared error from 0.73 ± 0.25 to 0.49 ± 0.20 (MET-min)2 (both p< 0.01).

A comparison of time spent in sedentary (1.0 – 1.5 MET), light (1.5 – 3.0 MET), moderate
(3.0 – 6.0 MET), and vigorous (> 6.0 MET) PA intensity categories computed using the
unfiltered and LPF models and measured by the room calorimeter is presented in Figure 4.
Time spent in the sedentary PA overestimated by the LPF model (26.3 ± 54.7 min, p =
0.008). Both models significantly underestimated time spent in light PA (−48.3 ± 55.0 and
−54.6 ± 50.0 min) and overestimated time spent in moderate PA (36.9 ± 46.0 and 17.8±39.5
min; p<0.05 for all comparisons). No differences were detected between the models and
time spent in the vigorous PA intensity (p>0.05).

Stage 2: Free-living DLW Study
Both the two-regression and LPF were used to estimate the energy expenditure in free-living
and compared to the DLW-measured EE. There was no significant difference between the
group-averaged daily EE measured with the DLW (2,108 ± 358 MET-min/day) and the EE
predicted using either the unfiltered or LPF two-regression models (2,192 ± 228 and 2,104 ±
218 MET-min/day), as demonstrated in Figure 5. However, compared to the EE predicted
with unfiltered two-regression model, the EE predicted using the LPF model had a
significantly lower mean difference (84 ± 342 vs. −4 ± 336 MET-min/day, p<0.001) and
percent difference (5.97±16.0 % vs. −1.71±15.3 %, p<0.001) to the EE measured with the
DLW.

Bland-Altman plots (Figure 5) revealed that while the mean difference between the EE
predicted by the models and the average DLW-measured EE is relatively low, there is a high
inter-individual variation measured by the 95% confidence intervals (CI 670 and 659 MET-
min/day for the unfiltered and LPF models). A significant negative magnitude bias was
detected for both models (p<0.05).
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Discussion
In this study we determined the validity the two-regression model (5) to predict EE of PA
from body movements recorded by the ActiGraph GTM1 accelerometer. We found good
agreement between the average daily EE predicted by the filtered two-regression model and
EE measured using both a whole-room indirect calorimeter and free-living DLW in a group
of adults with wide range of age (20–67 yrs) and BMI (19–52 kg/m2). However, the
accuracy of the model was shown to have a large inter-individual variability.

To our knowledge this is the first reported study that independently validated the two-
regression model proposed by Crouter et al (5) using whole-room indirect calorimetry and
DLW techniques. The model over-estimated the group average total daily EE by
approximately 10.15 ± 11.42% when compared to EE measured by the room calorimeter and
by 5.97 ± 16.0% when measured by the DLW. Our data also showed that the model
underestimated the time spent in the light (1.5-3.0 MET) PA intensity and overestimated
time spent in the moderate (3.0-6.0 MET) PA intensity observed in 29 of 33 our study
participants. This suggests that the model may consistently overestimate EE prediction in
light PA intensity category triggering misclassification of time intervals (min) spent in light
into the moderate intensity PA category. This finding could be important in free-living
studies using the two-regression model and carried out in populations spending significant
amount of time in light PA intensity.

Using minute-to-minute simultaneous ActiGraph and EE measurements in the room
calorimeter, we found that transient increases in EE predicted by the two-regression model
do not always correspond to changes in measured EE. We also noticed that during activities
characterized by constant intensity, such as running on the treadmill with a steady speed, the
predicted minute-to-minute EE changed more than EE measured by the room calorimeter.
This discrepancy could be considered a limitation of the model since a small change in the
number of activity counts and/or their variability can lead to much larger changes in the
predicted EE. To mitigate this effect, we applied the LPF to smooth the rapid minute-to-
minute changes in the predicted EE. This approach led to a significant reduction in the mean
absolute and mean squared error terms of the EE prediction reflecting physiological
response to the movement. The LPF also significantly reduced the average total daily error
from approximately 10% to 3% during the room calorimeter and from 6% to −2% during
the DLW free-living phases of the study. However, the significant magnitude bias identified
in both the filtered and unfiltered models during the DLW study indicate that both methods
tend to over-predict EE in individuals with lower daily EE and under-predict EE in those
with higher daily EE. The LPF model also improved the agreement between measured and
predicted time spent in moderate and vigorous PA categories. However, the LPF technique
reduced the ability of the model to accurately determine time spent in sedentary PA. This
may be an important limitation of the LPF, since there is growing interest in characterizing
the duration and intensity of sedentary PA behaviors (8,13). Nevertheless, the LPF method
may be useful because it can be applied to existing ActiGraph data sets to recalculate and
perhaps correct predicted time spent in moderate and vigorous PA intensities and improve
accuracy of the minute-to-minute predictions of EE. Future work should determine if the
threshold used for activity count variability (CV) and/or the length of the LPF (5 minutes)
used in this study should be modified to minimize the significant interindividual variability
between measured and predicted EE in the free-living found in our study.

Our results are similar to previous ActiGraph DLW free-living validation studies that used
linear regression equations to predict EE from the ActiGraph data (10-13,15). The
confidence intervals (CIs) calculated for the DLW in our study are also comparable to those
reported previously. In a similar DLW validation study reported by Leenders, et al (11)
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involving 13 healthy females wearing ActiGraph and Tritrac (Reining International, Inc.,
Madison, WI, USA) accelerometers for 7 days, the authors found that the EE predictions
using the ActiGraph equations developed by Hendelman, et al (10) and Swartz, et al (25)
based on lifestyle activities had the best agreement with EE measured by DLW, with
differences (expressed as mean ± SD [range]) of −2 ± 16.6 % [−24 to 23%] and −4 ± 16.6
% [−29 to 24%], respectively. In the current study, we observed similar differences of −1.71
± 15.3 % [−23.7 to 28.3%] and 5.97 ± 16.0% [−20.0 to 32.3%] for the filtered and unfiltered
model, respectively. This may suggest that the two-regression model is not providing
additional significant improvements in individual estimation of total EE when compared to
equations reported earlier. Potential contributors to the variability between measured and
predicted EE include individual variation in sleeping EE and sleep patterns, variability in
accelerometer wear-time during waking hours, and variable amounts of activities which are
difficult to measure using current accelerometer technology (e.g. biking, weight training,
climbing stairs, etc.). These and other factors should be considered in designing and
conducting studies in which energy expenditure and activity patterns are major outcome
variables. Using similar validation approaches, future studies should also assess the accuracy
and variability of more recently published approaches and equations (4,16,18,28) and
accelerometer placement. Similarly, many generalized prediction equation, such as two-
regression model tested in this study, have not been rigorously validated for use in
specialized populations with more unique PA patterns, including children, morbidly obese,
older adults, and subjects experiencing significant weight changes. Furthermore, the
limitations and variability of these generalized prediction equations should be taken into
consideration in designing research protocols or clinical applications in which the amount
and pattern of free-living PA or PA related EE are important outcome measures. For
example, while we found the two-regression model with LPF might be sufficient to monitor
average daily EE as a group, the original model would be better suited to identify sedentary
activities.

Although using both the room calorimeter and free-living DLW assessment as calibration
tools is a robust way to validate EE prediction equations from accelerometer data, we
recognize that these methods have some limitations. First, the effect of diet-induced
thermogenesis, which typically accounts for approximately 10% of the total daily EE, was
not specifically measured or taken into account in either validation method. Second, while
the standardization of activity bouts performed in the room calorimeter were advantageous
for the consistency of the results, they may have directed the activity profile toward certain
PA intensity categories which may not accurately represent the subjects’ normal daily PA
patterns. Third, the relatively small size of the room calorimeter (20.4 m3) limited the
equipment used and types of activities that were performed during the study. Finally,
variations in the sleeping EE and sleep patterns during the free-living phase of the study
were not accounted for and may have contributed to the variation in differences between
measured and predicted EE observed in our study.

In conclusion, the EE predicted by a low-pass filtered version of the two-regression model
proposed by Crouter et. al. (5) showed good agreement with total EE measured in laboratory
condition and in free-living using reference standards. The LPF approach offered improved
total EE prediction and minute-to-minute accuracy compared to the original model. Despite
the improvements in total EE prediction, the individual variability in assessing time spent in
sedentary, low, and moderate PA intensities and related EE remained significant.
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FIGURE 1.
Schematic illustration of the two-regression model for ActiGraph GTM1 accelerometer, as
described by Crouter, et al. (5).
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FIGURE 2.
Representative plot of energy expenditure (EE) measured during waking (8:30 am –
9:30pm) by the whole-room indirect calorimeter (black line) and estimated with the two-
regression model (gray line –Panel A) and the low-pass filtered (LPF) model (gray line –
Panel B). The plots represent data for a 45-year-old African-American female (height = 160
cm; body mass = 118 kg, BMI = 46 kg/m2).

Rothney et al. Page 11

Med Sci Sports Exerc. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 3.
Bland-Altman plots comparing the total METs measured by the whole-room indirect
calorimeter and predicted using the unfiltered two-regression model (Panel A; Two Regr.)
and the low-pass filtered model (Panel B; Two Regr. + LPF).
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FIGURE 4.
Time spent in (1.0 – 1.5 METs), light (1.5 – 3.0 METs), moderate (3.0 – 6.0 METs), and
vigorous (> 6.0 METs) physical activity (PA) intensity categories during waking period
during ~24-h stay in a whole-room indirect calorimeter.
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FIGURE 5.
Bland-Altman plots of the average daily EE measured during 14-day free living period using
doubly labeled water (DLW) technique and estimated using the unfiltered two-regression
model (Panel A; Two Regr.) and the low-pass filtered model (Panel B; Two Regr. + LPF).
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TABLE 1

Characteristics of participants in whole-room indirect calorimeter (IC) and doubly labeled water (DLW)
phases of the validation study. Participants of the DLW phase are a subsample of participants who completed
the room calorimeter phase of the study. Data are presented in mean ± standard deviation (Range)

Room Calorimeter Study DLW Study

N 34 22

Age (years) 40.1 ± 12.2 (20 – 67) 41.8 ± 13.9 (20 – 67)

Height (cm) 166.0 ± 8.7 (154.0 – 184.0) 165.1 ± 8.6 (154.0 – 184.0)

Weight (kg) 84.2 ± 22.3 (47.8 – 134.5) 79.1 ± 21.0 (47.8 – 123.5)

BMI (kg/m2) 30.7 ± 8.8 (19.3 – 52.1) 29.3 ± 8.8 (19.3 – 52.1)
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