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ABSTRACT

Mutations in the Werner gene promote the segmen-
tal progeroid Werner syndrome (WS) with increased
genomic instability and cancer. The Werner gene
encodes a DNA helicase (WRN) that can engage in
direct protein-protein interactions with DHX9, also
known as RNA helicase A or nuclear DNA helicase I,
which represents an essential enzyme involved in
transcription and DNA repair. By using several syn-
thetic nucleic acid substrates we demonstrate that
WRN preferably unwinds RNA-containing Okazaki
fragment-like substrates suggesting a role in
lagging strand maturation of DNA replication. In
contrast, DHX9 preferably unwinds RNA-RNA and
RNA-DNA substrates, but fails to unwind Okazaki
fragment-like hybrids. We further show that the pref-
erential unwinding of RNA-containing substrates by
WRN is stimulated by DHX9 in vitro, both on Okazaki
fragment-like hybrids and on RNA-containing
‘chicken-foot’ structures. Collectively, our results
suggest that WRN and DHX9 may also cooperate
in vivo, e.g. at ongoing and stalled replication
forks. In the latter case, the cooperation between
both helicases may serve to form and to dissolve
Holliday junction-like intermediates of regressed
replication forks.

INTRODUCTION

The progeroid human disease Werner’s syndrome (WS) is
a widely used model for studying molecular aspects of
human aging [for recent reviews see e.g. (1,2)]. WS repre-
sents a monogenic disease with mutations in the WRN
gene, which encodes a member of the superfamily 2
(SF2) subgroup of RecQ helicases with 3'-5 unwinding
and a unique 3'-5-exonuclease activity [see e.g. (3)].

Initially, the recQ gene product was identified in bacteria
as an enzyme presumed to be involved in recombination
repair and that, among others, clears replication block-
ades from stalled or collapsed replication forks (4,5).
Similarly, mutants in the SGSI1 gene, the only RecQ
helicase in Saccharomyces cerevisiae, display replisome in-
stability and replication fork collapses (6). In addition,
Sgsl helicase is necessary to maintain the DNA polymer-
ases o and e at stalled replication forks (7). Cells from
WS patients show a retarded progression through the
S phase of the cell cycle (8,9), and in normally
proliferating primary human fibroblast, about 60% of
replication foci contain WRN (10,11). Together, this indi-
cates an important but non-essential role in unperturbed
DNA replication. Yet, whenever a replication fork comes
to a halt, WRN is preferentially attracted to these sites
(12). In line with this, WRN syndrome cells are hypersen-
sitive to drugs that block ongoing replication forks, such
as 4-nitroquinoline-N-oxide (4-NQO) or camptothecin
(13,14). Apparently, WS cells display defects in the
resolution of homologous recombination intermediates,
particularly Holliday junctions (HJs) and ‘chicken-foot’
structures that result from collapsed replication forks
(15,10).

Recently we have demonstrated that WRN functionally
cooperates with DHX9 (17) [unofficial HUGO nomencla-
ture used; other names are nuclear DNA helicase I1 (NDH
II) or RNA helicase A (RHA)], another member of the
SF2 family helicases with a 3’-5" directionality (18). DHX9
coprecipitates with WRN and stimulates its 3'-5" exonucle-
ase activity, whereas DNA unwinding is inhibited (17).
Moreover, a fraction of WRN and DHX9 colocalizes at
centrosomes during interphase (19), and both enzymes
interact with the mediator of homologous recombination
BRCALI (20,21). In addition, WRN and DHX9 interact
with DNA-dependent protein kinase (22,23) and
Ku70/Ku80 (24,25) that together form a checkpoint
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kinase involved in DNA damage signaling. Both helicases
also bind to the sliding clamp for replicative DNA poly-
merases PCNA (26,27), while until now only WRN has
been shown to interact with DNA polymerase 6 (28), flap
endonuclease I (FEN-1) (29), and the single-strand
DNA-binding protein RPA (30), all of which are compo-
nents of the Okazaki fragment maturation apparatus [see
e.g. (31)]. Collectively, these findings suggest a joint role
for both enzymes in lagging strand maturation as well as
in the rescue of stalled replication forks. Since every
Okazaki fragment starts with a short piece of RNA, typ-
ically 8-12nt in length (32), we tried to mimic this
situation by designing appropriate template-primers
and exploring the influence of 5-RNAs on the unwinding
kinetics of WRN. Using this approach we could show that
WRN preferentially unwinds Okazaki fragment-like
hybrids in a reaction that was stimulated by DHXO9.
Although WRN has been well characterized
enzymologically, this new function further elucidates the
role of WRN in DNA replication and lagging strand mat-
uration. Based on our data we also suggest a model for the
formation and dissolution of chicken-foot structures by
the joint action of WRN and DHX9 that may facilitate
a recombinational bypass of DNA damages.

MATERIALS AND METHODS
Expression and purification of recombinant proteins

Recombinant human DHX9 and WRN proteins were
produced and purified from baculovirus-infected
High-Five™ cells as described previously (17).

Radioactive labeling and annealing

5’-end labeling was achieved by T4 polynucleotide kinase
from Fermentas (St. Leon-Rot, Germany) and y-P-ATP
(5000 Ci/mmol) (Hartmann Analytical, Braunschweig,
Germany) in ‘forward’ reaction buffer (80 mM Tris—HCI,
pH 7.4, 10mM MgCl, and 5SmM DTT) from Fermentas.
Unincorporated material was removed from the labeled
oligonucleotide using Microspin TM-25 columns from
GE (Amhearst, UK), and, if necessary, by a successive
run through an RNase-free Micro Bio-Spin P-30 column
(Bio-Rad, Munich, Germany), equilibrated with 10 mM
Tris-buffer, pH 8.0.

Table 1. Oligonucleotides used in this study
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Helicase substrates

Highly purified oligonucleotides (listed in Table 1) were
purchased from Purimex (Grebenstein, Germany).
Oligonucleotides were synthesized in a 1000 nmol scale
and subsequently purified either by polyacrylamide elec-
trophoresis (RNA) or by HPLC (DNA). Oligonucleotide
primers were designed to form a series of DNA structures
as follows: Simple hybrids: 1-10 pmol/ul M1, M2, R1, R2,
RID, R4D and R8D (Table 1) were 5'-labeled with
[y-**PJATP and annealed to oligonucleotides containing
a complementary region of 17nt and a 3’-overhang. HJs
were prepared by mixing the labeled oligonucleotide
with a 2-fold molar excess of the complementary un-
labeled strands. Samples were heated to 100°C for 5min
followed by incubation at 25°C for 3—4 h or cooling down
overnight to room temperature.

Helicase assays

The helicase assays contained the **P-labeled substrate in
10 pl of 20 mM Tris—HCI, pH 7.5, 3.5 mM MgCl,, 3.5mM
ATP, 0.1mg/ml BSA, 5mM dithiothreitol and 10%
glycerol. Reactions were initiated by the addition of
enzyme; incubation was between 0 and 30 min at 37°C.
DNA unwinding was terminated by rapid cooling on ice
and by the addition of 3.5ul stop buffer (0.2% SDS,
S50mM EDTA, 0.1% bromophenol blue, 0.1% xylene
cyanol, 40% glycerol) along with the addition of 10-fold
excess of unlabeled oligonucleotide to prevent reannealing
of the unwound strand. The products were separated
by electrophoresis through 10-12 % non-denaturing poly-
acrylamide gels at 4°C, and visualized using a
Phosphorlmager and quantified using the ImageQuant
software (GE Healthcare). WRN and DHX9 helicase
were inactivated using 50 mM N-ethylmaleimide that, by
forming irreversible cysteine bonds, knocked-down
helicase activities (33). The rate of unwinding was
calculated as (ssDNA/total DNA) x nM substrate/uM
enzyme/time. The percentage of unwound substrate was
determined as [(% unwinding) = 100 x (P/(S+ P)], where
P is the product and S is the residual substrate as obtained
from the PhosphorImager (34,35). The values of P and S
were corrected after subtracting background values as
obtained from controls with no enzyme. Unwinding
rates were determined using a linear regression through
the initial linear part of the time course.

Name of the oligonucleotide Length Sequence

DNA M1 17 5'CCTGCAGGCATGCAAGC3

DNA M2 34 5'GCTTGCATGCCTGCAGGCCAGCCTCAATCTCATCY
DNA M3 34 5'CTACTCTAACTCCGACCGCTTGCATGCCTGCAGG3
DNA M4 34 5’ATCCTCTCTAGAGTCGACCTGCAGGCATGCAAGC3’
DNA-S1 34 SYGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCCY
DNA-S2 34 SYGGCTACAGTAACTTTTCTCGACTCTAGAGAGGAT?Y
RNA RI 17 5"CCUGCAGGCAUGCAAGC3

RNA R2 34 5'GCUUGCAUGCCUGCAGGCCAGCCUCAAUCACAUCS
RNA-DNA R8D 17 5'rCrCrUrGrCrArGrGdCdAdTdGdCdAdAdGdC3’
RNA-DNA R4D 17 5'rCrCrUrGrdCdAdGdGdCdAdTdGdCdAdAdGdC3’
RNA-DNA RI1D 17 5'rCdCdUdGdCAdAdGdGdCdAdTdGdCdAdAdGdC3’
RNA-DNA R8M4 34 5'tArUrCrCrUrCrUrCdTdAdGdAdGdTdCdGdAdC

dCdTdGdCdAdGdGdCdAdTdGdCdAdAdGdC3’
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Electrophoretic mobility gel shift assay

DNA-binding reactions were performed in 10 pul 20 mM
triethanolamine-HCl, pH 7.5,2mM MgCl,, with or
without 1mM ATPyS as indicated, 0.1 ug/ml BSA,
1 mM dithiothreitol, DNA and protein concentrations as
given. Following incubation at room temperature for
30min, the reaction was stopped with loading buffer
(6% Ficoll, 0.1% bromophenol blue, 0.1% xylene
cyanol, 40% glycerol) and the products were separated
by electrophoresis through 4% nondenaturing polyacryl-
amide gels at 4°C for 2h. Gels were dried, scanned and
quantified as described above. The percentage of binding
was calculated as the ratio between bound and unbound

A WRN
A NEO 3 57 101215
"ddhba
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radiolabeled substrate. The Ky values were estimated from
Scatchard analyses.

RESULTS

Both WRN and DHX9 preferably unwind RNA-
containing heteroduplexes

We constructed several homo- and heteroduplexes with
DNA and RNA (Table 1) and determined the activities
of WRN and DHXY9 in parallel. To avoid different GC
contents and a potential formation of stable secondary
structures within one strand we always used the same
sequence for DNA and RNA substrates in direct
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Figure 1. Unwinding of short fully hybridized strands. Time course for the unwinding of M2:M1 by WRN (A) or DHX9 (B), unwinding of R2:R1
by WRN (C) and DHX9 (D), and melting of M2:R1 by WRN (E) or DHX9 (F) 28 1M of WRN or of DHX9 and 1 nM of substrates were used for
each experiment. Triangle represents heat-denatured DNA substrate control, NE no enzyme. The positions of the substrates and reaction products
are indicated; double lines depict RNA containing strands. The asterisk represents the 5'-labeled nucleotide. Quantifications of duplex unwinding by
WRN (G) and DHX9 (H) are also depicted. Error bars indicate SD as derived from three independent experiments.



comparisons. Also, a 10-fold molar excess of the unlabeled
oligonucleotide was used to mask out a potential
reannealing of the unwound strand. Both enzymes
unwound DNA:DNA duplexes with unwinding rates of
about 0.24 and 0.08nM (17-mer) min~'uM~' enzyme
for WRN and DHXO9, respectively (Figure 1A and B).
WRN unwound an RNA:RNA 17-mer duplex with a
17-mer 3’ single-strand extension extremely poorly
(Figure 1C), whereas DHX9 melted RNA:RNA strands
with a rate of 0.72nM min~' pM~' enzyme (Figure 1D),
which confirms and extends earlier findings (36,37).
DHX9 unwound the double-stranded (ds) RNA substrate
R2:R1 within Smin to about 80% and the DNA:RNA
hybrid, M2:R1, to 72%. If one of the two strands con-
sisted of DNA, DHX9 was slightly slower than WRN
yielding unwinding rates of 0.74 and 0.86nM (17-mer)
min~'pM~!,  respectively (Figure 1E and F).
Quantifications of duplex unwinding by WRN and
DHX9 are depicted in Figure 1G and H, respectively. In
summary, both enzymes unwound RNA-containing
heteroduplexes considerably faster than dsDNA.

WRN helicase preferably unwinds Okazaki
fragment-like structures

Since WRN acted best on RNA-DNA hybrids, we next
looked at Okazaki fragment-like substrates, consisting of a
mixed 17-mer with an 8-mer of RNA at the 5-end followed
by a 9-mer of DNA that was hybridized to a 34-mer DNA
template (R8D:M2, Table 1). Unexpectedly, DHX9
unwound R8D:M2 poorly (Figure 2A, lanes 8-12), even
at a lower rate than the corresponding DNA:DNA sub-
strate (Figure 1B), and about 10-fold slower than the cor-
responding RNA:DNA hybrid (Figure 1D). In striking
contrast, 28nM WRN dissociated half of the R8D:M2
construct in 1.5 min (Figure 2A, lanes 3-7), yielding an un-
winding rate of ~1.5nM (17-mer)min~' uM~' enzyme.
Hence, WRN displaced Okazaki fragment-like primers
6.2- and still 1.8-fold faster than the comparable
DNA:DNA or RNA:DNA constructs (see also
Supplementary Figure S1A).

Next we examined the size of RNA that stimulated un-
winding by WRN. To this end we designed 17-mer oligo-
nucleotides with 5'-ends consisting of four (R4D) and only
one (R1D) ribonucleotide and measured the efficiency of
unwinding. Compared to R8D:M2, DHX9 unwound
R4D:M2 and R1D:M2 even slower (Figure 2B and C,
lanes 8-12). On the other hand, WRN displaced R4D
and RID from DNA in 3min (Figure 2B and C,
lanes 3—7), which was 2-fold slower than the unwinding
of R8D but similar to the unwinding of a 17-mer RNA
strand. 28§nM WRN melted R8D:M2 completely within
3min while R4D:M2 and R1D:M2 became unwound to
60 and 49%, respectively (Figure 2D).

Therefore, apparently only one ribonucleotide at the
5’-end sufficed to mark the corresponding oligonucleotide
for a rapid unwinding by WRN. On the first glance this
may indicate that WRN recognizes the transition from
RNA to DNA on one of the two strands. Alternatively,
5-RNA-DNA hybrids or their assumed A-conformation
may better fit into the active site of WRN and thereby
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Figure 2. Unwinding of Okazaki fragment-like structures. (A) Time
course of unwinding of R8D:M2. (B) Time course of unwinding of
R4D:M2. (C) Time course of unwinding of RID:M2. Unwinding of
either construct by 28nM WRN (left) or DHX9 (right) and 1nM
of substrate is shown in a 10-min time scale. Triangle represents,
heat-denatured control; NE, no enzyme. 8R, 4R and IR indicate the
numbers of ribonucleotides at the 5 ends. (D) Quantification of un-
winding of R8D (diamonds), R4D (squares) and R1D (triangles) by
WRN. Error bars indicate SD as derived from three independent
experiments.

facilitate unwinding. This scenario would also explain
why full hybrids were better unwound than DNA
double-strands.

DHX9 stimulates WRN-catalyzed unwinding of Okazaki
fragment-like structures

Since DHX9 and WRN copurified and influenced each
other’s activities (17) we looked at possible cooperative
effects on Okazaki fragment-like substrates. Unwinding
of R8D:M2 by WRN (Figure 3A, lanes 3 and 6) was
stimulated by DHX9 (Figure 3A, lanes 5 and 8§), in a
time-dependent manner, while 14nM DHX9 alone
did not unwind the same template-primer (Figure 3A,
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Figure 3. DHXO stimulates the unwinding of Okazaki fragment-like structures by WRN. (A) Unwinding of 1 nM R8D:M2 catalyzed by 14nM
WRN (lanes 3 and 6), 14nM DHXO (lanes 4 and 7) or 14nM each of WRN and DHXO9 (lanes 5 and 8) after 3 min (lanes 3-5) or 5min (lanes 6-8)
incubation at 37°C. (B) The same experiment as shown in panel A except that | nM R1:M2 was used as substrate. (C) The same experiment as shown
in panel A except that | nM M1:M2 was used. (D) Quantification of the unwinding of R8D:M2 by 14nM WRN in the presence of 14nM DHXO.
(E) Unwinding of 1nM R8D:M2 catalyzed by 21nM poisoned WRN (w, lane 3), 21nM poisoned DHX9 (d, lane 4), and 21 nM each of
NEM-poisoned WRN and DHX9 (wd, lane 5). Poisoning could be rescued by adding 0.1M DTT together with NEM (lanes 6-8).
(F) Unwinding of 1nM R8D:M2 catalyzed by 21 nM WRN (lane 3), DHX9 (lane 4), WRN plus DHX9 (lane 5), NEM-poisoned WRN plus
untreated DHX9 (w, lane 6), NEM-poisoned DHX9 plus untreated WRN (Wd, lane 7), and poisoned WRN plus poisoned DHX9 (wd, lane 8). Error

bars indicate SD as derived from three independent experiments.

lanes 4 and 7). Interestingly, DHX9 did not stimulate
WRN on simple DNA:RNA (Figure 3B, lanes 3-8) or
DNA:DNA substrates (Figure 3C, lanes 3-8) neither did
it with RNA:RNA hybrids (data not shown). Taken
together, DHX9 stimulated WRN on Okazaki
fragment-like substrates about 2-fold (Figure 3D). Since
this had not been observed with the RNA containing
substrate M2:R1 (Figure 3B), we conclude that the stimu-
lation was due to protein—protein interactions rather
than to the trapping of melted pieces of RNA by
DHX9. To decide whether this enhancement was due to
a DHX9-mediated stimulation of WRN or, alternatively,
due to the stimulation of DHX9 by WRN, we treated
both helicases with 50 mM N-ethylmaleimide for 10 min.
This procedure inactivated the unwinding activity of
both enzymes (Figure 3E, Ilanes 3-5). However,
NEM-inactivation could be rescued by supplementing
the inactivation buffer with 100mM DTT (Figure 3E,
lanes 6-8). An amount of 14nM each of NEM-treated
WRN (w) and untreated DHX9 (D) did not unwind
R8D:M2 (Figure 3F, lane 6). Instead, addition of 14nM

of poisoned DHX9 (d) stimulated WRN (W) as efficiently
as untreated DHX9 did (cf. Figure 3E, lane 8 with
Figure 3F, lane 7). This indicates that DHX9 exerts a
stimulatory effect onto WRN independent of its helicase
activity. Because of its high affinity for dsSRNA, DHX9
should be well suited to resolve any potential RNA sec-
ondary structures at the 5'-end of an Okazaki fragment,
which otherwise may prevent cleavage by FEN1 and/or
unwinding by WRN (38).

WRN prefers binding to Okazaki fragments and other
DNA-RNA substrates

To further explore the mode of binding of WRN to various
substrates we performed gel shift assays. In the absence
of ATP, WRN bound DNA-DNA (M2:M1) better than
DNA-RNA (M2:R1) with K4 values of about 1 x 107’ M
and 5x 1077 M, respectively (Figure 4A). Surprisingly,
there was little binding to the Okazaki fragment-like sub-
strate R8D:M2 that only became detectable at the highest
amount of the enzyme giving rise to a Ky of about
4x107°M (Figure 4A). But in the presence of the
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Figure 5. DHX9 stimulates the WRN-catalyzed branch migration of an RNA-primer containing HJ. (A) WRN-catalyzed (28 nM) unwinding of
I nM of the synthetic RNA-primer HJ substrate R8M4:M2*:51:S2. WRN unwound about half of the substrate within 30 min at 37°C (lane 3) while
DHXO9 failed to do so (lane 4). With 28 nM each of DHX9 and WRN complete unwinding was achieved (lane 5). The reaction products were
resolved on a native 10% polyacrylamide gel and visualized by PhosphorImaging. (B) 60 fmol radiolabeled HJ were incubated with the indicated
amounts of WRN and/or DHX9. After 20 min preincubation at 37°C in the presence of 1 mM ATPYyS, the products were separated by electro-
phoresis through a 4% non-denaturing polyacrylamide gel at 4°C and visualized using a PhosphorImager. The bands in the slots on top of the gel
were also visible in the no enzyme control (lane 1) and probably represent aggregated substrate.

poorly hydrolysable nucleotide ATPyS the affinity of
WRN for the DNA-DNA substrate decreased significant-
ly, yielding a Ky of about 3 x 10"®*M (compare Figure 4A
and B), whereas binding to the DNA-RNA substrate
appeared unaffected (5x 107"M) (Figure 4A and B).
Interestingly, in the presence of ATPyS, WRN bound
the Okazaki fragment-like oligonucleotide R8D:M?2
much better (K4 = 2 x 107" M) than without a nucleotide
cofactor (cf. lanes 3 and 4 in Figure 4A and B). This
behavior is not without precedence. The 5-3’ helicase
Pifl, which is also thought to be involved in Okazaki
fragment unwinding, bound forked DNA-DNA and
DNA-RNA substrates equally well in the absence of
any nucleoside triphosphate (39). In the presence of
ATPyS however, i.e. the condition that comes closest to
DNA unwinding, DNA-DNA forks were bound much
tighter than DNA-RNA forks (39). Despite this, Pifl
unwound RNA-DNA forks much better than the corres-
ponding DNA-DNA forks, whereas WRN unwound the
best-bound substrate R8D:M2 with the largest rate. Our
data suggest that ATP stimulates binding of WRN to
R8D:M2 and, as a consequence, its unwinding.
Therefore, ATP may facilitate initial loading of the

enzyme to this substrate and/or stabilize the enzyme sub-
strate complex after loading to stimulate any unwinding.

DHXO9 stimulated the unwinding of HJs by WRN helicase
when one strand starts with an RNA piece

All our data strongly suggest that WRN plays a role in
Okazaki fragment maturation. However, WRN is not an
essential enzyme and other enzymes, such as the
5'-helicases Pifl and Dna2, have been suggested to
perform lagging strand maturation after strand displace-
ment synthesis by DNA polymerase delta (32). Also, in
normally proliferating primary human fibroblast, only
60% of replication foci contain WRN (10,11), while
WRN clearly becomes attracted to sites where replication
forks come to a halt, most likely because of an underlying
DNA damage (12). Stalled replication forks may regress
and form HJs and chicken-foot structures (40,41) that,
because of an inevitable involvement of an Okazaki
fragment, must begin with a short piece of RNA on one
of the four strands. To account for this particular situ-
ation, we designed a HJ that started with an 8-nt long
piece of RNA on one strand followed by 24 nt of DNA
(Table 1, R8M4:M2:S1:S2). WRN unwound both the
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RNA and DNA containing HJ equally well (Figure 5A,
lane 3, and Supplementary Figure S1), whereas DHX9
was not able to unwind either construct (Figure 5A, lane
4, and Supplementary Figure S2). In agreement with the
observed stimulation of unwinding of RNA-containing
pieces by WRN, DHX9 stimulated the unwinding of an
RNA-primer containing HJ by WRN at about stoichio-
metric amounts (Figure 5A, lane 5), but apparently in-
hibited it when the junction consisted only of DNA. On
this substrate an about 2-fold molar excess of WRN was
needed to overcome the inhibitory action of DHX9
(Supplementary Figure S2B). Therefore in the presence
of DHX9, WRN could only resolve HJ when these con-
tained primer RNA on one of the four arms.

The binding of WRN to an RNA-primer containing
HJ was directly determined by gel mobility shift assays
(Figure 5B). An amount of 40—-160 fmol WRN produced
a significant amount of shifted HJ products (Figure 5B,
lanes 2-4), whereas the same amounts of DHX9 did
not bind to the substrate (Figure 5B, lanes 5-7).
Approximately 80% of the RNA-HJ was bound by
160 fmol of WRN (Figure 5B, lane 4), with a K4 value of
about 5x 10"*M. Substrate binding of WRN was not
affected by the presence of 160nM DHXO (Figure 5B, cf.
lanes 2—4 and lanes 8—10). This indicates that DHXO exerts
its stimulatory effect on the branch migration activity of
WRN by enhancing its catalytic constant (kc,) rather than
by increasing its substrate affinity (K,).

DISCUSSION

WRN and DHX9 represent a pair of helicases that
copurify, coimmunoprecipitate, and cooperate at a func-
tional level. Earlier, the interaction sites had been mapped
to the N-terminal exonuclease domain of WRN as well as
to the double-strand RNA-binding domain II (dsRBD II)
and the arginine/glycine-rich RGG box of DHXO9 that are
situated N- and C-terminally, respectively. In this study,
we observed that both helicases unwound fully hybridized
DNA-strands, but with rather slow rates, whereas
DNA:RNA heteroduplexes were melted considerably
faster than DNA:DNA strands. This is remarkable since
only a few of the currently reported helicases are known to
unwind DNA-RNA hybrids efficiently. The effective un-
winding of double-stranded hybrids initially indicated to
us that RNA primers, which mark the beginning of
Okazaki fragments, might be ideal substrates for both
enzymes. This turned out to be true for WRN, since this
helicase unwound 5-RgDg-3" oligonucleotides much faster
than the corresponding DNA:DNA and even RNA:DNA
strands. A successive shortening of the RNA piece from
eight over four to only one nucleotide revealed that a
single ribonucleotide at the 5'-end was sufficient to stimu-
late the unwinding activity of WRN, although unwinding
became slower when there were fewer RNA nucleotides
at the 5-end. Nevertheless it is noteworthy that a
DNA:DNA construct with a single 5'-ribonucleotide at a
17-mer strand became unwound as fast as the correspond-
ing RNA:DNA hybrid. A single 5'-ribonucleotide remains
whenever one of the two (potential) mammalian primer

removing enzymes RNase H1 or 2 cleave off the RNA
primer from an Okazaki fragment [for a recent review
see (42)]. Thus, even one remaining 5'-ribonucleotide
sufficed to direct WRN helicase to Okazaki fragment un-
winding. Here WRN may catalyze melting of the RNase
H-cleaved fragment as a prerequisite for the subsequent
cleavage by the FEN-1 endonuclease, which in turn is ne-
cessary to remove the error-prone DNA primer inserted
by DNA polymerase o (43). Surprisingly, in vitro the
WRN-catalyzed unwinding of Okazaki fragment-like
mixed-hybrids was stimulated by DHX9 indicating that
the latter enzyme may also become loaded into these
sites in vivo. Because DHX9 preferentially removes RNA
duplexes (Figure 1D), it is particularly suited to unwind
RNA containing hairpin structures that in turn may
obstruct cleavage by FEN-1 (41) or digestion by RNase
H (42). In agreement with this view, both DHX9 and
WRN interact with PCNA (26,27) and WRN has been
shown to stimulate both the lagging strand DNA poly-
merase 0 (28) and the primer-removing endonuclease
FEN-1 (29). Therefore, WRN may play a role in
Okazaki fragment unwinding as suggested earlier [see
e.g. (44)], perhaps together with the also discussed 5'-3
helicases Dna2 and Pifl (45,46).

In addition to the discussed role of DHX9 in Okazaki
fragment unwinding this enzyme seems to aid WRN in
restarting halted replication forks. The melting of the
S’-end of the ultimate Okazaki fragment is a prerequisite
for the formation of a chicken-foot structure. At stalled
replication forks DNA polymerase 6 cannot accomplish
strand displacement synthesis that in term is required for
the loading of the 5'-3’-helicases Dna2 or Pifl. Thus a
3’—5'-helicase like WRN is necessary to displace the
5-end of the Okazaki fragment next to the stalled fork.
According to our results DHX9 would stimulate this
reaction and contemporarily prevent secondary structure
formation of the outmost 5 RNA portion (Figure 6, top).
The leading strand must also be unwound, perhaps by
Dna2 or Pifl, or alternatively by the 5-3' helicase
BACH1 (BRCA1 associated C-terminal helicase, also
known as BRIP1 and FancJ), which may become at-
tracted via the WRN- and DHXO-binding protein
BRCA1 (47), and whose activity is required for the
timely progression through S phase of the cell cycle (48).
BACH]1 senses and unwinds damages in one of the duplex
strands (49) and therefore might act as the prime candi-
date 5 helicase for chicken-foot formation on damaged
DNA. Also, fork regression either requires positive super-
coiling ahead of the stalled fork and/or the action of BLM
helicase, which interestingly is part of the BRAFT super
complex (50), comprising the BLM complex and the
Franconia anemia complex including BACHI/Fanc]
(51). Since the strand annealing activity of DHX9 is
stronger than that of WRN (unpublished observation),
DHX9 may also help to form the RNA-containing HJ
(Figure 6, center). Furthermore, once the regressed fork
becomes resuscitated, e.g. after the underlying DNA
damage has been repaired, DHX9 can stimulate dissol-
ution of the chicken-foot by WRN (Figure 6, bottom).
Hence, similar as and together with WRN, DHX9 may
play a role in the removal of replication blockades.
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Figure 6. Model for a cooperation of WRN and DHX9 at stalled rep-
lication forks. The arrowheads indicate 3’-ends, the triangle indicates a
damaged site, the double line shows primer RNA, and the gray lines
display proposed intermediate structures. See text for more details.

Collectively, our findings strongly suggest cooperative
functions for WRN and DHX9 at both migrating and
stalled replication forks, where they seem to be involved
in the removal of primer RNA-containing Okazaki frag-
ments and the removal of replication hindrances by
stimulating the dissolution and, as suggested here, also
the formation of chicken-foot structures. Therefore, like
WRN, DHX9 may significantly contribute to the main-
tenance of genomic stability. However, further investiga-
tions are warranted for a better understanding of the
mechanism(s) involved in processing chicken-foot struc-
tures and intermediates of stalled replication forks.
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