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Wegeneralize the simplest kinetically constrainedmodel of a glass-
forming liquid by softening kinetic constraints, allowing them to
be violated with a small rate. We demonstrate that this model sup-
ports a first-order dynamical (space–time) phase transition be-
tween active (fluid) and inactive (glass) phases. The first-order
phase boundary in this softened model ends in a finite-tempera-
ture dynamical critical point, which may be present in natural sys-
tems. In this case, the glass phase has a very large but finite
relaxation time. We discuss links between the dynamical critical
point and quantum phase transitions, showing that dynamical
phase transitions in d dimensions map to quantum transitions in
the same dimension, and hence to classical thermodynamic phase
transitions in d þ 1 dimensions.

critical behavior ∣ supercooled liquids

As a liquid is cooled through its glass transition, it freezes into
an amorphous solid state, known as a glass (1, 2). The transi-

tion from fluid to solid typically requires only a small change in
temperature and is accompanied by characteristic large fluctua-
tions, known as dynamical heterogeneity (3). Based on these ob-
servations, several theories invoke analogies between the glass
transition and phase transitions that occur in model systems
(4–8). Some theories are based on equilibrium phase transitions
at finite temperatures (4, 5, 7), although these seem to be unob-
servable in experiments and computer simulations. An alternative
idea (8) is that supercooled liquids and certain model systems
both exhibit dynamical phase transitions (9–14), controlled by
biasing fields that drive the system away from equilibrium. Here,
we demonstrate the existence of a nontrivial critical point asso-
ciated with such a dynamical transition.

The phase transition that we consider occurs in trajectory
space. We bias the system toward an “ideal glass” phase by en-
hancing the probability of trajectories where particle motion is
slow. The parameter that controls this bias—the field s—can
be varied continuously in computer simulations. For models of
glass-forming liquids, the response to this change can be large
and discontinuous, corresponding to a first-order phase transi-
tion. Such transitions between an active state (analogous to a
fluid) and an inactive state (analogous to a glass) were first de-
monstrated (11) for kinetically constrained lattice models
(KCMs) (15). More recently, evidence for such a transition
has been found in the molecular dynamics of an atomistic model
of a supercooled liquid (13).

In KCMs, the transition to the inactive phase takes place when
the biasing field s is infinitesimally small, and this result is inde-
pendent of the temperature. However, very general arguments
based on ergodicity breaking, e.g., refs. 14, 16 and 17, indicate
that transitions in ergodic molecular fluids should take place
at nonzero s. In this context, the essential difference between
KCMs and molecular systems is that forces constraining dynamics
in the former are infinite (i.e., hard) whereas those in the latter
are finite (i.e., soft). Infinitely long-lived inactive metastable
states exist in KCMs because the constraints are hard. The
dynamic first-order phase transition detailed in refs. 11 and
12 coincides with a nonequilibrium biasing that stabilizes these
inactive states. But because constraints in molecular systems
are soft, it is not obvious that this first-order transition will persist

in natural systems. Here, we address this issue by considering the
effects of softening constraints in the simplest of all KCMs—the
one-spin facilitated Fredrickson–Andersen (FA) (18) model.

In this softened FA (sFA) model, we find two main results, illu-
strated in Fig 1. Firstly, we prove that the dynamic phase transi-
tion found in the original FA model still occurs when the
constraint forces are finite, but the transition now takes place
at nonzero s. Thus, the sFA model—a system with finite short-
ranged forces of interaction, one that exhibits long relaxation
times and dynamic heterogeneity without equilibrium thermo-
dynamic transitions of mode-coupling theory (7) and random
first-order theory (4, 5)—has a dynamical nonequilibrium glass
transition. The solution of the sFA model is therefore a concrete,
if overly simplified, illustration of the picture of the glass transi-
tion proposed in refs. 9 and 21, and later supported by the results
of refs. 10–13. This study demonstrates all of these features in a
single model.

Our second main result is that the sFA model supports a new
finite-temperature critical point that only appears when the con-
straints are softened. More specifically, we show that the first-
order dynamical phase boundary in the sFA model ends at a
critical point, with universal scaling behavior that maps to that
of a quantum-Ising model in a transverse field (19), and hence
to a classical liquid–vapor (or liquid–liquid) critical point. The
existence of such a critical point is consistent with the require-
ment that models of glass formers should recover simple liquid
behavior at high temperatures. It also means that the relaxation
time in the inactive (glass) phase of the sFA model must be finite,
although it may be many orders of magnitude larger than the
relaxation time of the active phase. This contrasts with the beha-
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Fig. 1. Space–time phase diagrams. (A) Generic space–time phase diagram
for KCMs (11). There is a first-order phase boundary that occupies the s ¼ 0

axis, separating an active fluid phase from an inactive “glass.” The critical
point s ¼ T ¼ 0 is identified with a filled circle: No motion takes place in this
state, and the approach to this point is characterized by scaling behavior and
slow dynamical relaxation (22, 23). (B) Sketch of the space–time phase dia-
gram for the softened FA model, under the assumption that the probability
of violating constraints ϵ has an Arrhenius form, as described in themain text.
The first-order phase boundary moves away from the s ¼ 0 axis and ends in a
new finite-temperature critical point, identified with an open circle. The scal-
ing behavior in the vicinity of this point is analogous to the critical behavior
near liquid–vapor transitions and is different from the scaling near s ¼ T ¼ 0.
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vior in other model systems, where the inactive phase never
relaxes (11, 12, 14).

Softened FA Model
Dynamics in supercooled liquids is heterogeneous (3): Particle
motion is relatively significant in some regions of space, and re-
latively insignificant in others. We associate mobile regions with
“excitations” that facilitate local motion. Near such excitations,
motion takes place through fast processes with rate λ, whereas
motion in immobile regions takes place with a slower rate λ ϵ.
To arrive at KCMs, one sets ϵ ¼ 0, for which the physical picture
is that relaxation in the system is dominated by correlated
sequences of fast processes and that the slow processes are irre-
levant (21, 20).

The sFA model consists of a set of binary variables (spins)
ni ¼ 0, 1, where ni ¼ 1 denotes the presence of an excitation.
The rate for flipping spin i from 1 → 0 is ½ri�1→0 ¼ λCi, where
Ci is a constraint function that depends on the neighbors of spin
i, taking a value of order ϵ if the site is in a slow region, and a
value of order unity if the site is in a fast region. The reverse
process, 0 → 1, takes place with a slower rate ½ri�0→1 ¼ γλCi.
To ensure detailed balance at a temperature T, we take γ ¼
expð−J∕TÞ ¼ c∕ð1 − cÞ, where J is the energy associated with
creating an excitation, and c ¼ hnii0 is the equilibrium average
concentration of excitations. (We use units of temperature such
that Boltzmann’s constant kB ¼ 1.) The case ϵ ¼ 0 would be a
KCM, and we refer to models with ϵ > 0 as “softened” KCMs.
We expect that violating a kinetic constraint should require a
large activation energy U > J, so that ϵ ∝ expð−U∕TÞ.

In the sFA model, we take Ci ¼ ∑j∈nnðiÞ½nj þ ðϵ∕2Þ�, where the
sum runs over the nearest neighbors j of site i. We also allow ex-
citations to hop (diffuse) between adjacent sites: The process
where the state (1,0) of two nearest neighbors changes to (0,1)
occurs with rate λD. The value of the (dimensionless) diffusion
constant D has no qualitative effect on the behavior of the model,
but it makes some of our later calculations more tractable
because it allows us to solve analytically for the position of the
critical point shown in Fig. 1 B. (This technical aspect is detailed
below and in the SI Text.) We fix the units of time by setting λ ¼ 1,
so the state of the sFA model is specified by the three dimension-
less parameters γ, ϵ, and D. The one-spin facilitated FA model is
recovered by setting ϵ ¼ D ¼ 0. In constructing Fig. 1, we as-
sumed that γ and ϵ both depend on temperature as described
above, and we take U > 3 J, so that the model behaves as a
KCM in the limit where T → 0.

Finally, we specify an observable K , which measures the (ex-
tensive) amount of dynamical activity in a trajectory. We work in
continuous time where successive configurations differ by exactly
one local change (diffusion of an excitation or flipping of a spin).
We define the dynamical activity K (9, 11, 24–27) to be the total
number of such configuration changes in a trajectory.

Active and Inactive Space–Time Phases
Fig. 1 shows two space–time phase diagrams. The idea of a space–
time phase is at the heart of this work. In statistical mechanics, a
“phase” (such as a liquid or crystal) is a region of phase space in
which configurations are macroscopically homogeneous and
share similar qualitative properties. By analogy, a “space–time
phase” is a region of trajectory space (a set of trajectories) with
similar qualitative features.

Two space–time phases are depicted in Fig. 2 A. Using com-
putational methods that we will discuss below, we obtained many
trajectories for the sFA model, covering a wide range of K .
Keeping (γ, ϵ, D) constant, we then restrict ourselves to trajec-
tories where the value of K is equal to approximately half of
its equilibrium average. For the parameters of Fig. 2 A, this re-
striction leads to “phase separation in time”: the trajectory that
we show is representative of the ensemble, and it has an early part
that is inactive (very few spin flips), whereas its later part is much
more active (many spin flips). (The ensemble is time-reversal
symmetric, so one might similarly have observed a trajectory
where the early part is active and the later part inactive.)

In ref. 11, it was proven that phase separation in time occurs
for the FA model (i.e., the model with ϵ ¼ 0). The main subject
of our current article is how this behavior is affected by a finite
value for ϵ, because this relaxes the assumption of infinite
forces of constraint that was used in ref. 11. The three panels
of Fig. 2 summarize these effects. Phase separation in time is
clear in Fig. 2 A, even though ϵ is nonzero. On the other hand,
there is no such effect in Fig. 2 C: Whatever restriction we
place on K , phase separation never occurs for the values of
γ, ϵ, and D used in that figure. The qualitatively different si-
tuations shown in Fig. 2 A and C are separated by a critical
point in space–time: A representative trajectory from the criti-
cal system is shown in Fig. 2 B. There are active and inactive
domains with a range of sizes, and the interfaces between them
are diffuse and complex.

Biased Ensembles of Trajectories. We introduce a biasing field s
which couples to K in the same way that the inverse temperature
couples to the energy in the canonical ensemble of equilibrium
statistical mechanics. In so doing, we define nonequilibrium en-
sembles of trajectories (9–11, 24, 25, 28) known as s ensembles,
that can be studied both analytically and computationally. A
detailed description of the application of our methods to KCMs
is given in ref. 12. In the s ensemble, hAis denotes the mean value
of a function of system history, A. Denoting unbiased equilibrium
averages by hAi0, we have

hAis ¼ hAe−sKi0
1

Zðs; tobsÞ
; [1]
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Fig. 2. Trajectories obtained by constraining the activity K, for the three state points identified in Fig. 3. Active sites (ni ¼ 1) are colored; inactive sites (ni ¼ 0)
are white. (A) For small ϵ, we observe phase separation in time. (B) At a specific value ϵ ¼ ϵc, the system is critical, with large self-similar clusters of active sites.
(C) For large ϵ, the system exhibits only one phase, and all correlations have finite range.
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where Zðs; tobsÞ ¼ hexpð−sKÞi0 is the partition function for the s
ensemble. The ensemble with s ¼ 0 is simply the unbiased equi-
librium dynamics of the sFA model.

We define a dynamical free energy (per unit time)

ψðsÞ ¼ lim
tobs→∞

1

tobs
logZðs; tobsÞ: [2]

With these definitions, ensembles with fixed K and biased ensem-
bles with fixed s are equivalent, in the same sense as equivalence
of ensembles in statistical mechanics. Thus, although the field s
does not have a direct physical interpretation, it plays the same
role as a constraint on the activity K .

In the sFA model, this formalism yields ensembles of trajec-
tories that depend on four parameters γ, ϵ, D, and s. Such
ensembles may exhibit phase coexistence in space–time. For
an sFA model specified by γ, ϵ, and D, we show in the SI Text that
ensembles of trajectories have a hidden symmetry if s ¼ s�, where
s� satisfies

1þ γ

1þ ϵ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − γ −Dð1 − e−s� Þ�2 þ 4e−2s�γ

q
− ð1 − e−s� ÞD: [3]

If themodelsupportscoexistingactiveandinactivephasesthenthey
are related by this symmetry, and the coexistence point is s ¼ s�,
with the inactive phase being found for s > s� and the active one for
s < s�. We emphasize that the symmetry condition s ¼ s� is neces-
sary for space–time phase coexistence, but it is not sufficient.

Computational Sampling of Space–Time Phases. We have investi-
gated the s ensemble computationally, using transition path sam-
pling (TPS) (29). The procedure is similar to that used in ref. 13:
We run standard TPS simulations with shooting and shifting
moves, and a Metropolis acceptance criterion based on values
of s and K . As discussed above, the behavior of the sFA model
does depend on the parameter D, but qualitative features are
largely independent of D. We have verified this by performing
numerical simulations for several values of D, including D ¼ 0.
However, in Figs. 2–4, we take advantage of this adjustable para-
meter. We fix γ and vary ϵ, taking

D ¼ 1

2

�
1 − γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − γÞ2 þ 4e−s�γ

q �
; [4]

where the value of s� is obtained by solving Eq. 3 simultaneously
with Eq. 4. This leads to the phase diagram of Fig. 3 A, in which
the parameter D depends on ϵ, so that Eqs. 3 and 4 hold both on
the (solid) phase coexistence line and on the (dashed) symmetry
line. We can then solve for the position of the critical point shown
in Figs. 2 B and 3 A.

As in standard Monte Carlo simulations near phase coexis-
tence, sampling of the s ensemble may be frustrated by large
free-energy barriers between coexisting phases. To avoid this,
we work at s ¼ s� and ensure that the system explores both active
and inactive phases within each TPS run (13).

Other obstacles to accurate characterization of phase coexis-
tence include the possibility of large boundary effects. Although
periodic boundary conditions are used for the spatial degrees of
freedom in the sFA model, it is not possible to use periodic
boundaries in time within our computational approach (for an
analytic treatment, see ref. 17). If s > 0, then this means the in-
itial and final parts of the trajectory are biased toward the active
phase (12). To reduce this effect and more accurately characterize
phase coexistence in the sFAmodel, we introduce a refinement to
the method of ref. 13. We bias the initial and final conditions in
our ensembles of trajectories, arriving at a “symmetrized s ensem-
ble” that fully respects the symmetry between active and inactive
phases in the sFA model (see SI Text). Expectation values in this
ensemble are given by

hAis;sym ¼ hAe−sKþg½Nð0ÞþNðtobsÞ�i0
1

Zsymðs; tobsÞ
[5]

with Z symðs; tobsÞ ¼ hexpf−sK þ g½Nð0Þ þNðtobsÞ�gi0. Here,
NðtÞ ¼ ∑i niðtÞ is the total number of excitations in the system
at time t, and the parameter g depends on γ, ϵ, and D through
an expression given in the SI Text. For large enough tobs, bulk
properties of the s ensemble and symmetrized s ensemble are the
same. In particular, the mean activity density within the symme-
trized s ensemble is

kðsÞ≡ 1

Ntobs
hKis; sym ; [6]

which depends implicitly on N and tobs as well as the parameters
of the model. However, as tobs → ∞, then the activity densities in
symmetrized and original (unsymmetrized) s ensembles approach
the same limit, which is −N−1dψðsÞ∕ds.

We show both first- and second-order dynamical phase transi-
tions in Fig. 3. For fixed γ, we show a space–time phase diagram in
the (s, ϵ) plane, with D being adjusted as in Eq. 4. The overall
structure mirrors that of Fig. 1 B, but we are now working at fixed
γ and varying ϵ, whereas both of these parameters were varying
separately with temperature in Fig. 1 B, as discussed above. The
condition of Eq. 3 is shown as a dashed line, together with a solid
first-order phase boundary that follows this line from the origin
to the (known) position of the critical point. We also show
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Fig. 3. Space–time phase behavior of the sFA model. (A) Phase diagram of
the 1d sFA model. For γ ¼ 0.25 , we show the (s, ϵ) plane, varying the diffusion
constant D as a function of ϵ, as discussed in the text. The solid line is a
first-order phase boundary between active and inactive states. It ends at a
critical point. The dashed line shows the extension of the symmetry line
(Eq. 3) into the one phase region. The symbols show the parameters for which
we present data, which are ϵ ¼ 1.9 × 10−4, 6.3 × 10−3, and 1.9 × 10−2.
(Inset) Histograms of the (intensive) activity k ¼ K∕ðNtobsÞ, in symmetrized s
ensembles corresponding to the three symbols in the main figure. (B) Plots of
the activity kðsÞ, in the vicinity of the state points identified in A.
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histograms of the activity K obtained from s ensembles at the
coexistence point s ¼ s�, and the behavior of kðsÞ. We emphasize
the analogy between the data of this figure and the behavior of a
ferromagnetic model at phase coexistence: The bimodal distri-
bution PðKÞ is analogous to the bimodal distribution of the mag-
netization at zero magnetic field, whereas the sharp change in
kðsÞ as s is increased is analogous to the jump in the magneti-
zation as the field is varied through zero.

Pursuing this analogy with ferromagnetic phase transitions, we
expect a true jump discontinuity in kðsÞ at s ¼ s� only in the limit
N, tobs → ∞. (The order of the limits of N and tobs is discussed in
the SI Text.) We show a finite-size scaling analysis of kðsÞ in Fig. 4.
The data in Fig. 4 A show an increasingly sharp jump in kðsÞ as N
and tobs are increased. On the other hand, Fig. 4 B shows the
behavior found at the critical point, and the inset shows how
the maximal susceptibility χ� ¼ −dkðsÞ∕dsjs¼s� scales with the
system size. For ϵ < ϵc, the data in the inset are consistent with
the behavior at a first-order phase transition: χ� ¼ ðΔkÞ2Ntobs∕2,
with Δk being the size of the jump in kðsÞ at the phase transition.
For ϵ ¼ ϵc, the dependence of χ� on N and tobs is weaker,
consistent with a second-order phase transition; for ϵ > ϵc, the
susceptibility χ� is independent of the system size.

Theoretical Analysis
We now analyze the sFA model through its master equation. We
write this compactly as

∂
∂t
jPi ¼ WjPi; [7]

where jPi represents a probability distribution over the configura-
tions of the system, and W is a linear operator whose matrix ele-
ments are the transition rates of the sFA model. The s ensemble
may then be studied by defining an operator WðsÞ such that
Wð0Þ ¼ W, and the largest eigenvalue of WðsÞ is the dynamical
free energy ψðsÞ. Details are given in the SI Text. Because the
sFA model obeys detailed balance, one may write WðsÞ ¼
e−E∕2THðsÞeE∕2T , where E is an energy operator, andHðsÞ is a sym-
metric (Hermitian) operator with the same eigenvalues as WðsÞ.

These observations allow properties of large deviations in
space–time to be obtained from ground-state properties of a
quantum many-body system with Hamiltonian −HðsÞ. Such map-
pings between stochastic classical systems and deterministic
quantum ones are well established (30, 32), and a recent review
(31) covers the relevant cases for this article. As well as the math-
ematical mapping, there is also a useful physical analogy: The
phase boundaries shown in Fig. 1 are points at which the dyna-
mical free energy ψðsÞ has a nonanalytic dependence on s and on
the parameters of the model. In the quantum systems, such sin-
gularities are quantum phase transitions (QPTs) (21), which have
been studied extensively. Relations between large deviations in
classical systems and QPTs were discussed in ref. 33, and other
possible connections between QPTs and glass transitions have
also been proposed recently (34).

Mapping to Quantum and Classical Spin Systems.As discussed in the
SI Text, we use a spin-half representation of the binary spins of the
sFA model, following refs. 23 and 31. The result is

−HðsÞ ¼ NC −∑
i

ðhxσ x
i − hzσ z

i Þ −∑
hiji

∑
μν

σ μ
i M

μνσ ν
j ;λ [8]

where μ, ν ∈ fx; y; zg and the σ μ
i are Pauli matrices associated

with site i, and C ¼ ½Dþ ð1þ γÞð1þ ϵÞ�d∕2. The scalars hx and
hz and the coupling matrix M depend on the sFA parameters
γ, ϵ, D, and s, through expressions that are given in the
SI Text. The sum over hiji runs over pairs of nearest neighbor sites
on a d-dimensional lattice.

This operator may be analyzed in a mean-field approximation,
following ref. 11. We replace operators in Eq. 8 by numbers:
σ z
i → 2ρ − 1 and σ x

i → 2
ffiffiffi
ρ

p
, where ρ ≪ 1 is the mean density

of excitations. We also take D ¼ 0 and γ ≪ 1 although these con-
ditions may be relaxed at the expense of some algebra. The result
is a space–time Landau free energy:

FðρÞ ¼ dNð2ρþ ϵÞðρþ γ − 2e−s
ffiffiffiffiffi
ργ

p Þ: [9]

We have ψðsÞ ≥ −minρ FðρÞ (11, 12) and we use this bound to es-
timate ψðsÞ. The function FðρÞ is quartic in

ffiffiffi
ρ

p
, and may have

either one or twominima. At thismean-field level, the point where
the singleminimumbifurcates into two is the critical point,whereas
cases where FðρÞ has two degenerate minima correspond to
space–time phase coexistence. For fixed γ, themean-field estimate
of the position of the critical point is ðϵ; sÞ ¼ ð2γ∕5; logð ffiffiffi

5
p

∕2ÞÞ, at
which FðρÞ ¼ 2 dN½ð ffiffiffi

ρ
p −

ffiffiffiffiffiffiffiffi
γ∕5

p Þ4 þ ð2γ∕5Þ2�.
To move beyond this mean-field level, we interpret ½−HðsÞ� as a

quantum Hamiltonian and diagonalize the matrix M. That is,
we letH0 ¼ R−1HR where R is a uniform rotation of the spins (see
SI Text), so that

−H0ðsÞ ¼ NC −∑
i

ðBσ x
i − hσ z

i Þ −∑
hiji

∑
μ

Jμσ
μ
i σ

μ
j ; [10]

with B, h, and Jx;y;z being new constants that depend on (γ, D, ϵ, s)
through expressions given in the SI Text. For the quantum spin
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Fig. 4. Finite-size scaling in the s ensemble. We show the dependence of the
mean activity on the biasing field s, for various system sizes and observation
times. Dashed vertical lines show the positions of first- and second-order
transitions predicted by Eq. 3. (A) Data for ϵ < ϵc , at the state point marked
by a circle in Fig. 3 A. (B) Data for ϵ ¼ ϵc, for the state point marked by a cross
(×) in Fig. 3 A. The values of N and tobs are the same in A and B. (Inset) The
derivative of the activity with respect of the field s, evaluated at s ¼ s�, for the
three state points shown in Fig. 3 A, varying N and tobs.

12796 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1006306107 Elmatad et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1006306107/-/DCSupplemental/pnas.1006306107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1006306107/-/DCSupplemental/pnas.1006306107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1006306107/-/DCSupplemental/pnas.1006306107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1006306107/-/DCSupplemental/pnas.1006306107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1006306107/-/DCSupplemental/pnas.1006306107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1006306107/-/DCSupplemental/pnas.1006306107_SI.pdf?targetid=STXT


system described by ½−H0ðsÞ�, h and B are magnetic field terms:
We have h > 0 but B may have either sign. The most interesting
behavior of the quantum system occurs when B ¼ 0, in which case
the field h tends to align the spins along the −σ z direction, while
the ferromagnetic coupling Jx promotes ferromagnetic ordering
along �σ x directions. For B ¼ 0 and small h∕Jx, there is a single
ground state with hσ xi ¼ 0. However, for B ¼ 0 and large Jx∕h,
there are two degenerate ground states, with the symmetry of H0
under σ x → −σ x being spontaneously broken. These two regimes
are separated by a quantum phase transition.

There is a standard exact mapping between quantum spin sys-
tems in d dimensions and classical spin systems in (dþ 1) dimen-
sions (19). One takes a small time increment δt and considers the
operators eHðsÞδt and eH0ðsÞδt as transfer matrices that generate en-
sembles of configurations for (dþ 1)-dimensional Ising systems.
We denote the ensembles defined by these two transfer matrices
as S and S0, respectively, with details given in the SI Text. The
ensembles are defined for classical Ising systems on anisotropic
ðdþ 1Þ-dimensional lattices, but we concentrate here on symme-
tries and universal properties of the models, which do not depend
on its underlying lattice. The weights of configurations in ensem-
ble S are identical to those of corresponding trajectories of the
sFA model in the s ensemble, with the time axis in the sFA model
being interpreted as the (dþ 1)th spatial axis in the classical Ising
system.

Consequences for the sFA Model.Under the mapping from H0ðsÞ to
WðsÞ, the condition B ¼ 0 in the quantum spin model corre-
sponds to a symmetry condition for the sFA model, which is
Eq. 3. If B ¼ 0 then H0ðsÞ is unchanged by the global transforma-
tion σ x

i → −σ x
i , and the classical ensemble S0 is also symmetric

under global spin inversion, except for possible boundary effects
that are discussed below. This symmetry of H0 corresponds to a
symmetry transformation of the sFAmodel that relates active and
inactive phases, and was used to derive Eqs. 3 and 5. Thus, the
dashed line shown in Fig. 3 A for the sFA model corresponds to a
zero-field condition for the quantum and classical spin systems.
When distinct active and inactive phases exist in the sFA model,
they correspond to ferromagnetic phases in these spin systems.

As usual, coexistence between ferromagnetic phases is asso-
ciated with a critical point. The ensemble S0 has the symmetry
properties of an Ising model in (dþ 1) dimensions. Thus, the
finite-temperature critical point shown in Fig. 1 B is in the uni-
versality class of a (dþ 1)-dimensional Ising model. For this cri-
tical point, the (upper) critical dimension of the sFA model is
dc ¼ 3, whereas the dynamical exponent that sets the relative
scaling of space and time is z ¼ 1 in all dimensions (21). This
is in contrast with the zero-temperature critical points in Fig. 1,
where z ¼ 2 and dc ¼ 2 (23).

The classical ensemble S0 also motivates our definition of the
symmetrized s ensemble. As we discuss in the SI Text, the s en-
semble of Eq. 1 corresponds to an ensemble S0 in which boundary
conditions are biased toward one of the ferromagnetic phases.
However, the symmetrized s ensemble defined in Eq. 5 corre-
sponds to an ensemble S0 that is invariant under global spin in-
version. Thus, the symmetrized s ensemble removes biases toward
active or inactive phases in the sFA model by ensuring that en-
semble S0 has no symmetry-breaking bias. This property enabled
the accurate finite-size scaling analysis shown in Fig. 4. Our
choice of the parameter D given in Eq. 4 is also motivated by
properties of H0ðsÞ: We show in the SI Text that, if both Eqs. 3
and 4 are satisfied, then B ¼ Jz ¼ 0. In one dimension, H0ðsÞ
may then be diagonalized by a Jordan–Wigner transformation
(31), allowing us to locate the critical point in Fig. 3.

Finally, it is useful to generalize concepts of equilibrium ther-
modynamic phases to those of nonequilibrium space–time phases
in the s ensemble. For example, if ensemble S0 contains coexisting
phases, one may calculate the surface tension Γ between them.

In the sFA model, Γ gives the value of a space–time surface ten-
sion whose interpretation will be given in the final section. Away
from phase coexistence (B ≠ 0), ensemble S0 is dominated by a
single phase, but one may still investigate metastable phases with
opposite magnetization. In particular, the free-energy difference
between phases and the spinodal limit of stability of the meta-
stable phase may be calculated approximately. Variational and
mean-field methods for estimating such space–time free-energy
differences and spinodals in s ensembles for KCMs were
discussed in ref. 12 and we summarize them in the SI Text.

Implications of These Results for the Glass Transition
The critical point we have uncovered appears as kinetic con-
straints are softened, and its discovery has implications for
natural systems even though experimental methods to directly ac-
cess the s ensemble are not yet known. To explain this, we return
to our analogy between sFA and ferromagnetic systems.

Consider an ordered ferromagnetic system, below its critical
temperature and in a small magnetic field. Within the ordered
equilibrium state (which has positive magnetization), the domi-
nant fluctuations are small domains of the minority phase (with
negative magnetization). The probability of observing such a
domain depends on the surface tension and the free-energy
difference between majority and minority phases.

Dynamical heterogeneities can occur by a similar mechanism:
The dominant fluctuations in the (active) supercooled liquid state
come from domains of the inactive space–time phase. In that
case, the probability of observing inactive behavior in a region of
space–time is set by several factors: the spatiotemporal extent of
the region and the surface tension and free-energy difference be-
tween dynamical phases. In the unbiased equilibrium dynamics
of the system, one expects the dominant contributions to this
probability to take the form (10)

Pðℓ d;τÞ ∝ expð−Γ1τ − Γ2ℓ
d − Δψℓ dτÞ; [11]

where ℓ d and τ are the spatial and temporal extents of the inac-
tive domain, Γ1;2 are surface tensions, and Δψ is the difference in
free energy between the space–time phases, evaluated at s ¼ 0.

We have shown (9, 10) that KCMs (with ϵ ¼ 0 ¼ s�) lie natu-
rally at phase coexistence so that Δψ ¼ 0. However, for models
with s� > 0 (including the sFAmodel) we expectΔψ > 0. In either
case, the probability of observing large dynamical heterogeneities
in the system is set by the space–time surface tensions and free
energies. Of course, in defining the distribution Pðℓ d;τÞ, one as-
sumes the existence of two space–time phases, which is strictly
valid only at phase coexistence. However, one may use a mean-
field spinodal condition for the classical spin model to estimate
whether the minority (inactive) space–time phase is sufficiently
stable to form fluctuating domains within the stable active state,
as in the magnetic case.

Based on these arguments, we return to Fig. 1 B. For high tem-
peratures in the sFA model, there is only a single phase, which we
identify with a simple liquid. As the system is cooled, a new in-
active phase comes into existence at a critical point, where s > 0.
Whether the inactive phase has observable consequences in the
liquid depends on its stability at equilibrium (s ¼ 0) and on the
free-energy difference and surface tension between active and in-
active phases. For the sFA model, these factors are estimated via
mean-field arguments. Within the theoretical picture presented
here, the stability of the inactive space–time phase and the para-
meters Γ1, Γ2, and Δψ are the key quantities that determine the
nature of the dynamical heterogeneities in supercooled liquids.

Finally, the phase diagram of Fig. 1 B connects our work to
different theoretical scenarios for the glass transition. First, if
cooling a supercooled liquid is analogous to reducing both γ and
ϵ in the sFA model, then both the dynamical free-energy differ-
ence and the surface tension between the phases vanish as T → 0.
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This corresponds to a zero-temperature ideal glass transition for
the liquid (22). Such transitions are accompanied by increasing
dynamical heterogeneity because the probability of large inactive
space–time regions increases, according to Eq. 11.

Second, if molecular liquids support a finite-temperature ideal
glass transition along the lines of the thermodynamic glass transi-
tion in spin glasses (4, 5), one expects the dynamical free-energy
difference and surface tension to vanish at that point. Ref. 14
provides a mean-field analysis of that case. Further, if molecular
liquids do support dynamical transitions in the presence of the
field s, this does not imply the existence of any finite-temperature
thermodynamic transition, but nor does it preclude such a
possibility.

Third, for the active–inactive phase boundary of Fig. 1 B to end
at a critical point as it does for the sFA model, the two phases
must have the same symmetry properties. (Critical points for
phase boundaries separating crystalline and liquid phases are for-
bidden for this reason.) In a molecular system, it is not clear a

priori whether the inactive phase should be a true amorphous so-
lid that spontaneously breaks translational symmetry, or a yet-to-
be-observed liquid phase with an extraordinarily large but finite
relaxation time. In the former case, the critical point shown in
Fig. 1 B cannot occur, and any active–inactive phase boundary
must separate the (s, T) plane into distinct regions. (This was
the case in the spin-glass model considered in ref. 14). However,
the latter possibility—a liquid–liquid transition that is relevant for
the glass transition (6, 35, 36)—can be consistent with the critical
point discussed here, provided that the liquid– liquid transition is
a nonequilibrium transition.
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