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Abstract
We derive a new numerical approach to solving the linearized Poisson Boltzmann equation (PBE)
by representing the protein surface as a collection of spheres in which the surface charges can then
be iteratively solved by new analytical multipole methods previously introduced by us [Lotan &
Head-Gordon, 2006]. We show that our Poisson Boltzmann semi-analytical method, PB-SAM,
realizes better accuracy, more flexible memory management, and at reduced cost relative to either
finite difference or boundary element method PBE solvers. We provide two new benchmarks of
PBE solution accuracy to test the numerical PBE solutions based on (1) arrays of up to hundreds
of spherical low dielectric geometries with asymmetric charges in which mutual polarization is
treated exactly, and (2) two overlapping spheres with increasing charge asymmetry by solving the
PB-SAM method to very high pole order. We illustrate the strength of the PB-SAM approach by
computing the potential profile of an array of 60 T1-particle forming monomers of the bromine
mosaic virus.

INTRODUCTION
The formation of protein complexes is ubiquitous in a crowded, salty cellular environment.
Since electrostatic forces dominate the earliest of protein-protein recognition events in the
cell, various analytical and numerical continuum theories of bulk electrolytes have been
adapted for use to describe protein complexation mechanisms on the supramolecular scale.2
One popular continuum mean-field theory is the Poisson-Boltzmann (PB) treatment, which
forms the basis of Gouy-Chapman theory3,4 in electrochemistry, and under the low field
linearized PB (LPB) approximation, the Debye-Hückel theory in solution chemistry5 and
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in colloid chemistry6,7. Numerous
techniques for solving the PB equation exist1, 6, including both analytical or numerical
methods, and each has its drawbacks and its strengths.

Analytical methods typically allow rapid solution of the PB equation using multipole
expansions under specialized geometries such as spheres or cylinders. A complete PB
solution comprising one spherical macromolecule was developed by Kirkwood8 more than
70 years ago, but generalization of this complete solution to two or more spherical
macromolecules proved to be more difficult, and many different partial and approximate
solutions have been proposed9–12. We have recently achieved a fundamental result in
deriving an analytical PB solution for computing the screened electrostatic interaction
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between arbitrary numbers of spherical proteins of arbitrarily complex charge distributions,
separated by arbitrary distance1. While such idealized protein geometries will typically be
inappropriate for describing complexation on a supermolecular scale, this new analytical
solution is a novel component of our new numerical PB solver for arbitrary protein shape. It
also serves as a benchmark for the accuracy of the numerical solutions in certain idealized
test cases.

By contrast, numerical methods (see reference [13] for a recent survey) such as finite-
difference (FD)14–19 and finite-element (FE)20–22 methods can handle arbitrary dielectric
boundaries by solving for the PB potential on a 3-D grid or mesh. However there are
limitations of the FE or FD formulations, such as singularities in the potential solution due
to point charges, that electric displacement continuity could not be enforced across dielectric
boundaries (thereby reducing the solution accuracy and convergence rate), and forces must
be estimated from finite-difference calculations.13 But most importantly, the requirement
that the solution be solved on a grid limits its practical application to spatial domains of
either two to three typical macromolecules at reasonably high resolution (~0.2Å), or to
larger numbers of macromolecules with greatly diminished resolution and thus solution
accuracy. For example, the PBE solution for an assembled 50S ribosomal subunit has been
evaluated at 0.45Å resolution14, at the limit of machine memory, but to describe the
preceding assembly process that occur over much larger spatial distances, the spatial
resolution and consequently the solution accuracy would greatly deteriorate. As such,
computational and memory cost in FD and FE methods are strictly functions of the number
of grid points, and not the number of macromolecules described.

Boundary element (BE) methods22–29 are an attractive alternative since they satisfy both the
Dirichlet and von Neuman boundary conditions by construction, singular charges can be
correctly treated, and most importantly the 2D solutions on the macromolecular surface
removes spatial resolution limitations imposed by the 3D grid of the FD or FE solvers.
However increasing the number of boundary surface element results in an increasingly large
dense matrix to be solved with severe memory requirements, a problem which scales with
the number of macromolecules. Recent acceleration of the BE approach24,26 by
incorporating fast multipole methods have rendered BE computational times comparable to
state-of-the-art software packages like the Adaptive Poisson Boltzmann Solver (APBS)14

based on FD solutions.

In this work we derive a new numerical approach to solving the PB equation by combining
the advantages of both the boundary element and our analytical model1 formalism. In
particular, we replace the discretization of the molecule surface into a large number (tens of
thousands) of boundary elements, by a discretization involving a smaller number (tens to
hundreds) of spheres. The surface charges can then be iteratively solved using analytical
multipole methods1. We show that our Poisson Boltzmann semi-analytical method, PB-
SAM, converges to the analytical solution with better accuracy and at greatly reduced cost
relative to the readily available public domain PB solver APBS.14 Furthermore, we define a
high quality benchmark using 140 poles to describe the electrostatic potential for two
overlapping spheres that are models for the sharp features that are sometimes present in real
protein geometries, in which we show that our PB-SAM solution converges to the correct
solution with the same computational cost or better than the finite difference solution.
Finally we illustrate the strength of the PB-SAM approach by computing the potential
profile of an array of 60 T1-particle forming monomers of the bromine mosaic virus (PDB
code 1YC6).
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THEORY
Mathematical Preliminaries

Our theory makes extensive use of the spherical harmonics (SH) family of functions. The
spherical harmonic function of order n and degree m, at polar angle θ and azimuthal angle φ,
is defined per the convention from Gumerov and Duraiswami30 as

(1)

where Pnm (x) is the associated Legendre polynomial. Note that this definition of Ynm(θ,φ)
differs from the common convention by a  factor. The complex conjugate of
Ynm(θ,φ) will be denoted as .

We shall utilize two important properties of spherical harmonics – their addition theorems
and orthogonality. Let r1 = [r1,θ1,φ1] and r2 = [r2,θ2,φ2] be two points in 3D space specified
by spherical coordinates, where r2 > r1. The Euclidean distance |r1−r2| between them then
obeys the addition theorems24,31:

(2a)

and for the screened Yukawa potential Eq. (2a) is modified to read as

(2b)

where κ is the inverse Debye Huckel screening length (described later), and k̂n(z) and în(z)
are adapted modified spherical Bessel functions defined as

(3a)

(3b)

In(z) and Kn(z) are the modified Bessel functions of the first and second kind respectively.
Detailed properties of k̂n(z) and în(z) have been described in ref 1.

The spherical harmonic functions are also orthogonal over the surface of a unit sphere (S1):
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(4a)

Hence a square-integrable function g(θ,φ) on S1 can be expanded using {Ynm} as the basis
set:

(4b)

with the coefficients Gnm determined through the reciprocal transform

(4c)

Setting up the boundary value problem
We seek to set up a boundary value problem for a system of Nmol macromolecules immersed
in an implicit aqueous salty solvent. Figure 1 gives an example of the spatial domain for
which we solve the linearized PB equation (LPBE). Each macromolecule I is embedded

with  fixed partial charge and represented as a collection of  overlapping spheres with
dielectric constant εin. For simplicity we consider in this paper the same εin for all
molecules, but the model can handle different dielectric constants. The solvent is treated as a
continuum with dielectric constant εout, with screening effects due to mobile ions captured
via the inverse Debye length κ. The LPBE gives the potential Φ at any point r in space ℜ3

as

(5)

where ε is the relative dielectric function, ρfixed is the charge density due to the fixed protein

partial charges, and , where n̄ is the bulk concentration of monovalent
salt in the solution, e is the fundamental electronic charge, kB the Boltzmann constant, and T

the absolute temperature. Inside each macromolecule I, the potential  satisfies the
Poisson equation

(6a)

while in the region outside all macromolecules, the potential Φout(r) satisfies the Helmholtz
equation

(6b)
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We first express the potential  anywhere inside molecule I as the sum of the potentials
due to the embedded fixed charges and a single-layer of yet unknown reaction charges f(I)(r)
on the surface dΩ(I) 23,32

(7)

In our new approach, the surface of molecule I is discretized into  spheres. We consider
each sphere k of molecule I of radius a(I,k) in turn, and all position vectors and coefficients
are defined with the center of sphere k as the origin. We apply the first addition theorem (Eq.
(2a)) to Eq. (7) to obtain

(8)

with the coefficients defined as

(8a)

(8b)

(8c)

(8d)

Notice that we have scaled the terms with  and  dependence by (a(I,k))n and (a(I,k))−n

respectively. This is to avoid machine imprecision as n becomes large. Coefficients with (rα/
a(I,k))n dependence, such as , are known as multipole (external) coefficients, while those
with a(I,k)n/rαn +1 dependence (  and ) are known as Taylor (local)
coefficients. The first sum in Eq. (8) represents the potential due to fixed charges, where

 sums over  fixed charges inside sphere k of molecule I, while  sums over the
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remaining  fixed charges outside sphere k. The second sum in Eq. (8) gives the
potential due to the unknown surface charge f(I)(r);  and  account for represents
reactive charges on sphere k, and on other spheres in molecule I, respectively.

In the solvent region outside the molecules, the potential Φout(r) can be represented as the
sum of Yukawa potentials due to each molecule’s yet unknown effective surface charges
h(I)(r)23,32

(9)

The above equation valid for the exposed portion of sphere k of molecule I. Applying
addition theorem 2 (Eq. (2b)) to Eq. (9), the potential on the exposed surface can be
expressed as

(10)

where the coefficients are defined as

(10a)

(10b)

(10c)

The multipole coefficient  represents effective polarization charges on sphere k of
molecule I’s exposed surface. The local coefficients  and  represent effective
polarization charges on other spheres in molecule I, and on other molecules, respectively.

With equations (8) and (10) in hand, we can impose boundary conditions at the dielectric

boundary surface  between each sphere k in molecule I exposed to
solvent:

(11a)
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(11b)

The Dirichlet boundary condition (Eq. 11a) enforces potential continuity across the
boundary

(12a)

while the von Neumann boundary condition (Eq. 11b) enforces electric displacement
continuity

(12b)

We have introduced . We continue to simplify Eqs. (12a) and (12b) by
rearranging

(13a)

(13b)

where

(14a)
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(14b)

The boundary equations above are valid on the solvent-exposed surfaces of sphere k on
molecule I. We need another set of boundary equations on the buried surface

. We shall utilize the fact that there is no polarization charge on
the buried surface, i.e. f(I,k)(rB) = h(I,k)(rB) = 0, since there is no dielectric discontinuity. It
follows that scaled versions of the charge distributions, f̃(I,k)(θ,φ) ≡ (a(I,k))2 f(I,k)(a(I,k),θ,φ)
and h̃(I,k)(θ,φ) ≡ (a(I,k))2 h(I,k)(a(I,k),θ,φ), are also zero on the buried surface. Separately, we
can express f̃(I,k) and h̃(I,k) in terms of  and  using Eqs. (4c), (8d) and (10a),

(15a)

(15b)

so the ‘zero-charge’ requirement at the buried boundary can be imposed as

(16a)

(16b)

Equations (13a), (13b), (16a) and (16b) specified the complete boundary value problem,
from which  and  can be solved.

Solution of the boundary value coefficients and interaction energy

To solve for  and , we need to cast the boundary value problem as a linear system
of equations. The infinite expansion series must first be truncated at a maximum pole order
p, chosen depending on the desired level of accuracy versus computational cost (see
Results). The obvious approach is to set up the boundary equations as a linear least square
problem (Figure 2a), by discretizing sphere k into MB buried and ME exposed grid points,
and then finding solutions of vectors F(I,k)and H(I,k ) that best satisfy the appropriate
boundary equations on all grid points. Using the DGELSY routine (complete orthogonal
factorization) in LAPACK for (ME + MB)= 10,000 and p = 60, each sphere is solved in
approximately 10 minutes. This is computationally intractable if the LPBE needs to be
solved repeatedly for tens to hundreds of spheres during dynamics simulations.
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Instead, we formulated a novel approach that makes use of spherical harmonics’ orthogonal
property (Eq. 4). It converts the problem to a direct matrix-vector multiply operation (Figure
2b), which can be evaluated two-orders of magnitude faster than the LLS approach. We first

add  to both sides of Eq. (13a) and divide by 4π to arrive
at:

(17a)

where

(17b)

Similarly, we add  to both sides of Eq. (13b) and then divide
by 4π:

(18a)

(18b)

Equations (17a) and (17b) (and similarly (18a) and (18b)) now completely describe
functions wH̃(θ, φ) (and wF̃(θ, φ) over the entire surface of sphere k:

(19a)

(19b)

The above equations now have the familiar form of spherical harmonic expansion of Eq.
(4b), so we can directly evaluate the coefficients in square parentheses via the reciprocal
transform Eq. (4c). We show below the derivation for H(I,k)

Yap and Head-Gordon Page 9

J Chem Theory Comput. Author manuscript; available in PMC 2011 June 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(20)

where IE, the exposed surface integral matrix, is computed using quadrature method with
Mgrid uniform surface grid points:

(21)

A similar transform to Eq. (20) can be written for . Finally, we truncate the series at
pole order p to get the iterative equations

(22a)

(22b)

Equations 22(a–b), along with Eqns. 14(a–b), represent a key result of this paper. The
equations are iteratively evaluated, until the values of F(I,k) and H(I,k) converge to a
stipulated tolerance. The operations are simply matrix-vector multiply, y=Ax, where the
vector x is constantly updated using the latest values of F(I,k) and H(I,k). During

computation, the surface integral coefficients , and fixed charge coefficients  and
 are pre-computed for each sphere (I,k) prior to simulation; while , and

 are updated via multipole-to-local operations (see implementation section below).

In summary, our approach to solve the LPBE is as follows: (1) For each sphere k in
molecule I, we apply the addition theorems to express the potentials Φin(r) and Φout(r) as
spherical harmonic expansions containing unknown coefficients (  and )
representing sphere k’s polarization charges. (2) We impose boundary conditions on the
sphere surface to derive boundary equations. (3) We account for charges from other spheres
and molecules by re-expanding their polarization coefficients (  and ) about the
center of sphere k using ‘multipole-to-local’ operations. (4) We then solve the boundary
equations for  and  iteratively using a novel fast iterative method (‘inner-
iteration’). (5) We repeat steps (1)–(4) for all other spheres (‘outer-iteration’) until the
convergence criteria is reached.

Convergence is monitored using relative change in H(I,k)between the tth and (t−1)th outer
iterations
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(23)

We now can calculate the interaction energies from converged values of H. The interaction
energy of sphere k is the inner product of its effective charge distribution with the potential
due to external sources. The interaction energy W(I)of each molecule I is the sum of
interaction energies of its constituent spheres

(24)

Implementation of re-expansion operations
To solve for F(I,k) and H(I,k), we need to first account for the polarization charges from all
other spheres via LF(I,k), LH(I,k), and LHN(I,k). To do this, we convert source multipoles F
and H from other spheres to target local expansions centered at c(I,k). If the source and target
spheres are well-separated (see criterion below), the re-expansion can be accomplished
analytically through multipole-to-local operators T0 and Tκ. The procedure for computing
coefficients of T0 and Tκ has been previously detailed in reference [1]. For intra-molecular
re-expansions (i.e. from spheres j to center of sphere k in the same molecule I)

(25)

or inter-molecular re-expansions (i.e. from spheres l on molecule J to center of sphere k in
the same molecule I)

(26)

The analytical re-expansion operators are only valid when the target center c(I,k) lies outside
the bounding sphere of the source charge distribution, so they cannot be used in cases where
source and target spheres overlap. Nonetheless, the local expansions LF(I,k) and LH(I,k) are
still well-defined and could be directly computed using discrete versions of Eqs. (8c) and
(10b) – a procedure we termed ‘numerical re-expansion’, as described below. To our
knowledge this method of circumventing the restriction by analytical re-expansion has not
been previously documented.

We first discretize the surface of source sphere j uniformly into Mp patches, with each patch

b centered at . We then compute the surface charge on the bth patch
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, where q̃(I, j) = f̃(I, j) or h̃(I, j) from Eqs. (15a) and (15b). The
local expansions of sphere j’s multipoles re-centered on k are then approximated from Eqns.
(8c) and (10b) as

(27a)

(28b)

where . The re-expansion becomes exact as Mp approaches
infinity, although in practice we find that a value of Mp ≈ 2.5p2 adequately captures features
of the surface charge distributions. Numerical re-expansion is also used in cases where the
source and target spheres are non-overlapping but not well-separated, which we defined as
when the distance between sphere surfaces is less than 5Å. At such short distance, analytical
re-expansion requires a high number of poles for a stipulated level of error. Since both
computational time and memory for T scales with p3 it is more efficient to perform the re-
expansion using direct numerical method.

We have also derived a formula using Greengard’s error bound33 to adaptively determine
the minimum pole order adequate for a re-expansion operation. To re-expand sphere j’s
multipole to a local expansion at target center k within an error of εX, the pole order required
is given by

(29)

where , and q̃ = f̃ or h̃ are the surface polarization charges. The optimal
pole order is a(I, j) calculated on the fly every outer iteration.

Further implementation details

The surface integral coefficients  involve numerical quadratures that are pre-computed
for each sphere (I,k); we have found that the number of quadrature points should scale with
pole number as Mgrid ~ 20p2, which we found to be adequate for capturing the spatial
features of the integrand in Eq. (21).

To prepare a target molecule for computation, we must discretize it into a collection of
overlapping spheres. To do so, we first convert its PDB file to PQR format using the
PDB2PQR webserver12–13. We then obtain its solvent excluded surface (SES) using
MSMS34 and a chosen probe radius rp in Å. We proceed with a Monte Carlo search
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algorithm to find the minimum number of spheres and corresponding radii that satisfying the
following criteria:

1. The sphere surface must be at least d (in Å) away from the outermost atom center.
The distance d can be held constant, or set to the van de Waals radius of each atom.

2. The surface of the spheres cannot protrude more than t (in Å) from the SES surface.

The search is terminated when each atom is encompassed by at least one sphere.

Finally, the code is implemented in C++, and is parallelized in a shared memory framework
using openMP 2.0. Timings for PB-SAM and APBS in Results are based on single processor
runs on an Intel(R) Xeon(R) CPU 2.27GHz processor with 24GB of physical memory; we
did this to compare PB-SAM in a serial version against the APBS serial code. Parameters
used for all APBS calculations are available in Supporting Information.

RESULTS
Non-overlapping spherical test cases

We first assess the accuracy of PB-SAM and APBS finite difference solutions against
analytical values for three test systems involving 2, 27, and 343 non-overlapping spherical
dielectric cavities (of diameter 20Å, 15Å, and 5Å, respectively) with internal charges placed
near the dielectric boundaries (Table 1). For large spheres this corresponds to a highly
asymmetric charge arrangement, while as sphere size decreases the charge distribution
approaches a monopole. The exact analytical solution of the PBE for multiple non-
overlapping spheres has only become available recently1. In all cases, the salt concentration
is set to 0.05M, corresponding to κ = 0.07374. We chose a low salt concentration to show a
worse case scenario for computational timings that can’t exploit an aggressive interaction
cutoff that would be legitimate at higher physiological salt concentrations. Convergence is

reached when the relative change  falls below 10−2 for all spheres.

For test system 1 (two non-overlapping spheres), we computed the APBS solutions at four
different grid resolutions (0.19 to 1.56 Å) that are typically used in biomolecular
applications, and compared the potential value over the entire surface against the analytical
model, as well as reporting the corresponding memory requirements and timings (Table 2).
The APBS timing scales linearly with the number of grid points, as does the memory cost
that largely reached the limit of 27GB on our computing node at the highest resolution we
tested. At the most coarse resolution we find that the APBS error can be as high as ~20% of
the theoretical result; as the APBS grid spacing decreases the APBS accuracy increases,
reaching ~5% of the true value. The range of our computed errors for APBS agree with the
error analysis performed by Moy et. al.35, who found that the errors from using finite
difference methods could range from a few percent at 0.5 Å to more than 100% at 2 Å.
Given that these commonly used grid resolutions entailed such large errors, we feel that
more systematic benchmarking should be done in the future to quantify accuracies in
numerical Poisson Boltzmann solutions to ascertain the impact on force and free energy
computations. Using the highest resolution grid but increasing the number of spheres in test
systems 2 and 3, the APBS solution gets corresponding better as the charge distribution
simplifies, with average errors of ~2% and ~1%, respectively.

Table 3 shows that the corresponding results for our PB-SAM model. For each system, we
report the PB-SAM results for various pole orders, to demonstrate how a user would be able
to tune into a desired level of accuracy in PB-SAM’s using the pole order. From Table 3, it
is clear that we can quickly exceed the accuracy of the APBS solution at a fraction of the
cost and memory requirements for all three systems. In all three test cases, very few poles (p
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≤ 40) are needed to define a high accuracy solution, primarily because there are no
problematic deep cusp dielectric geometries in the non-overlapping sphere case.

Overlapping spherical test cases
Our second comparison involves two overlapping spheres of various sizes. In this case no
analytical solution is known, but we can define a benchmark calculation based on a high
quality PB-SAM solution computed at p=140 and Mp=200,000 (PB-SAM140). The one-time
pre-computation of the surface integral matrix (IE) scales with p4 both in timing and storage.
We stopped generating IE at 140 poles, which took 48 hours per sphere. Before using p=140
as a benchmark, we have confirmed that the overall relative difference between potential
solved using p=140 and lesser pole orders decays with increasing pole order – the overall
relative difference between the p=130 and p=140 solutions are less than 0.5%.

In Table 4, we compare the relative difference in surface potential against PB-SAM140 as
sphere size increases. We considered the worst-case scenario by placing the positive charge
close to the surface, at a fixed distance of 1.73 Å below the cusp region, so that as sphere
size grows it results in higher asymmetry of the charge distribution. For each sphere radius,
we first compared the surface potential computed by APBS against that of PB-SAM140, and
then perform the same comparison between PB-SAM of various pole orders against PB-
SAM140. For APBS at a maximum grid dimension fixed at 5133, as the system size
increases the grid resolution and accordingly the solution accuracy deteriorate. On the other
hand, the accuracy of PB-SAM is a function of the pole order and the size of constituent
spheres (‘sphere resolution’). Table 4 thus provides a handy estimate of PB-SAM error to
help guide our choice of sphere resolutions and pole order for subsequent application to
realistic protein cases. For the two overlapping sphere case, PB-SAM with 60 poles is able
to achieve relative errors comparable to APBS with comparable total solve time, and with
less memory requirements. We want to point out that the total solve time for PB-SAM
reported in Table 4 is principally dominated by the one-time cost of surface integral
computation (1140s), while the actual time for solving the iterative equations, Eq. (22a and
22b), are between 9 seconds to 2 minutes.

It is interesting to note that, for a fixed number of poles, PB-SAM’s relative error increases
with increasing sphere sizes. Since the boundary equations are formulated and solved in
scaled representations, they should be independent of sphere sizes. The two potential
sources of error are if Mp is insufficient in discriminating the positions of the source surface
charges for numerical re-expansion, or the scaled fixed charge multipole  decays more
slowly with poles with increasing charge asymmetry. While we found that increasing by a
factor of 40 resulted in no change in potential, the term (rα/a(I,k))n in  converges slower
at large sphere radii, hence more poles are needed to describe the corresponding increase in
charge asymmetry. In practice, charges in realistic biomolecules are more evenly distributed,
hence their fixed charge multipoles will converge much faster. The convergence improves
further when smaller spheres are used to define higher resolution dielectric boundaries.
Hence Table 4 shows that PB-SAM’s relative error decreases with smaller spheres and
higher pole, and our simplified case with maximum charge asymmetry provides a worse
case upper bound on the relative error for 20 < p < 60. This will inform estimates of error in
our calculation of the bromine mosaic virus in the following section.

The Bromine Mosaic Virus
We have also applied our PB-SAM method to solve for the potential around a biological
molecule, the T=1 particle of the brome mosaic virus (BMV) capsid (PBD code: 1YC6).
The virus has been shown to convert from T=3 (comprising of 180 monomers) to T=1
(comprising of 60 monomers) capsid under proteolytic conditions36. Each capsid protein
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monomer is comprised of 154 amino acids. To prepare the PDB file for calculation, we
converted chain A of the PDB file into PQR format using the PDB2PQR server37,38, which
also assigned partial atomic charges using the AMBER 99 force field39. We then discretized
the protein into a collection of overlapping spheres using an in-house algorithm (see
implementation details in Methods). Using discretization criteria that varies in spatial
resolution, we generated three representations of the protein monomer with 107, 354 and
712 spheres, and Figure 3 compares the dielectric boundary representation against the
solvent excluded surface computed using MSMS34,40 with probe radius rp = 1.4 Å. The
generation of 107, 354, and 712 spheres took 11, 30 and 43 minutes respectively, which is
typically a one-time cost if the dielectric representation does not change during the course of
a Brownian dynamics simulation, for example. The resulting rendered dielectric boundary in
each case were then used to generate a corresponding APBS solution on the maximum
allowed grid points of 5133 given our maximum memory of 24GB.

Table 5 describes the computational time and memory resources for PB-SAM to calculate
the self-polarization of one 1YC6 monomer, and the mutual polarization of an array of 60
monomers that make up the unassembled BMV capsid. Since it is our intention to study the
dynamics of BMV capsid assembly via Brownian dynamics in future work, we consider the
breakdown of computational cost and memory as (1) a one time cost to prepare the surface
integral of the chosen dielectric representation of the 1YC6 monomer, (2) the one-time cost
to self-polarize each monomer, and (3) the cost to mutually polarize the 60 monomers. In the
context of a Brownian dynamic simulation, Table 5 represents the cost of the initialization
phase that will require “cold” guesses for F and H for steps (2) and (3) and the timings will
be non-optimal relative to later solutions that will provide better initial guesses as the
dynamics algorithm proceeds as the capsid assembles.

The PB-SAM computational cost depends on the number of poles and number of spheres,
and timings are faster or slower depending on how much of the calculation can be done in
memory. We use Table 4 to guide our choices of pole order and sphere resolution. We will
focus our PB-SAM solutions at a ~5–7% error by choosing pole order 20 < p < 60 and
keeping average size of spheres of the dielectric boundary representation between 2–5Å. For
step (1), Table 5 shows the one time surface integral cost of the 1YC6 monomer, which
scales as O(Mgridp4) (see methods), varies between several minutes to several hours.
However, a nice benefit is that as resolution increases the sphere size and hence Mgrid
decreases as do the number of needed poles, which together mitigates the time of calculating
more spheres. The cost to self-polarize will depend on the available memory; in memory-
saving mode the re-expansion operators T0 and Tk are computed on the fly, instead of being
stored in memory and hence increase the cost of the calculation. In Table 5, the self-
polarization timings are based on a “cold” guess of F(I,k) = 0 and H(I,k) approximated using
the fixed charges, and iterated until the relative change in H(I,k) falls below 10−2 for all
spheres.

Unlike the idealized test cases in Table 1, we do not have a benchmark ‘exact’ solution for
the 1YC6 monomer, since no analytical solution exists for non-spherical geometries, and
computation of hundreds of surface integral matrices to p = 140 for PB-SAM is currently
intractable. Instead we can obtain error estimates of APBS and PB-SAM by looking up
corresponding PBE solution parameters of grid size for APBS and pole and sphere size for
PB-SAM in Table 4. For the 1YC6 monomer, the APBS result is necessarily evaluated at a
low resolution of 0.22Å based on the maximum allowed grid points of 5133 given our
maximum memory of 24GB; Table 4 suggests that the APBS relative error would be ~10–
12% for this system. For PB-SAM, the error estimate from Table 4 for spheres between 2–
5Å solved to pole order 20 < p < 60, fall between 2.1 to 20.6%. Any direct quantitative
comparison between the errors of the APBS and PB-SAM solutions is not possible since
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there is no exact benchmark for this case, and we can only provide the numerical difference
between methods (which is ~10%), and not error between the two numerical solutions.
However, using our error estimate from Table 4, it suggests that with 30–40 poles for the
representations of 107 and 353 spheres, and 20–30 poles for 712 spheres, PB-SAM is a
higher quality solution at a comparable cpu cost and memory of the APBS solution.

Finally we have evaluated the potential of an assembly of 60 copies of 1YC6 monomers in a
5 × 4 × 3 array, corresponding to a system size of 165 Å × 220 Å × 275 Å (Figure 4). The
array configuration is intended to mimic late stage assembly, at which the entire capsid
system is compact and mutual polarization becomes significant and more difficult to
converge (as opposed to the 60 monomers being well separated). All monomers were given
the same initial guess of Fself and Hself from the converged self-polarization step, and the
computational time and memory to calculate the total (self and mutual) polarization is given
in Table 5. The memory for the 712-sphere representation required 33GB of virtual memory,
which is not as efficient if it were able to fit in the available 24GB of physical memory. The
fact that the calculation of a high quality solution is doable on a single standard commodity
node is a strength of the PB-SAM approach, although further optimization will be explored
in the future.

CONCLUSION
We have developed a novel method for solving the linearized Poisson Boltzmann equation
by discretizing the protein surface as a collection of spheres, in which the surface charges
can be iteratively solved by our recent analytical solution of the PBE equations for spherical
geometries in which mutual polarization is treated exactly1. We have compared PB-SAM
and the finite difference PB solver APBS against two new benchmarks never before
available to compare numerical methods. First we show that PB-SAM converges to the
analytical solution of hundreds of spheres with better accuracy and at greatly reduced cost
relative to APBS. Second the PB-SAM solution using 140 poles allows us to define a high
quality benchmark to describe the electrostatic potential for two overlapping spheres that are
models for cusp-like features of protein active sites, in which we show that our PB-SAM
solution converges to the correct solution with the same computational cost or better than
the finite difference solution. Finally we illustrate the strength of the PB-SAM approach by
computing the potential profile of a close configuration of 60 T1-particle forming monomers
of the bromine mosaic virus (PDB code 1YC6), with clear improvements in accuracy
relative to other numerical PB solutions, given a fixed hardware configuration of physical
memory.

Further development is necessary to enable PB-SAM’s application in large-scale Brownian
dynamic simulations. The current version of PB-SAM expends significant computational
time solving Eqs. 22(a–b) iteratively. This step was implemented simply as repeated calls to
the BLAS matrix-vector multiply routine dgemv, but can be accelerated by preconditioning
Eqs. 22(a–b) and using a more sophisticated linear system solving method, such as
generalized minimal residual method. We also noted during our benchmarking studies that
when our current convergence criterion is relaxed, the resulting surface potential is
unchanged, so there is room explore a less stringent but adequate convergence criterion.
Finally, forces and torques are required for Brownian dynamic simulation. We have derived
in reference [1] how forces and torques can be computed analytically for spherical
dielectrics. The same formulation can be extended to the overlapping sphere representation
in PB-SAM via superposition, which is on-going work in our lab.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Setting up the boundary value problem
The example system is comprised of two proteins with arbitrary charge distribution, each
represented as a collection of overlapping spheres to describe an arbitrarily shaped dielectric
boundary containing no salt, immersed in a high dielectric salty continuum solvent. Salt
screening effects are captured via the Debye Huckel parameter κ.

Yap and Head-Gordon Page 19

J Chem Theory Comput. Author manuscript; available in PMC 2011 June 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Setting up the boundary equation (Eqns. 13a–b, 16a–b)
(a) As a Linear Least Square solve problem. (b) As a matrix-vector multiply operation.
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Figure 3. Representations of 1YC6 monomer based on different discretization criteria
(a) the solvent excluded surface computed using MSMS with p = 1.4Å. (b) 107 spheres with
p = 1 Å, d = 1 Å, t = 2 Å, (c) 354 spheres with p = 1 Å, d = atomic vdW radii, t = 1 Å (d)
712 spheres with p = 1 Å, d = atomic vdW radii, t = 0.5 Å.
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Figure 4. Array of 60 virus monomers
(a) Array configuration (b) Potential profile of a cross-section through the z=0 plane with
twenty monomers. Contour lines at 0.05 kT.

Yap and Head-Gordon Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2011 June 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yap and Head-Gordon Page 23

Table 1

Spherical test systems for comparison of APBS and PB-SAM to analytical model solution in Tables 2 and 3.
Cavities have surface-to-surface separation of 1Å from one another

Test System Description Charge Configuration [position from center], charge [e]

1 2 dielectric cavities of radius 20Å Cavity 1
Cavity 2

[18, 0, 0], +3
[−18, 0, 0], −3

2 27 dielectric cavities of radius 15Å All Cavities [13, 0, 0], +1; [−13, 0, 0], −1
[0, 13, 0], +2; [0, −13, 0], −2
[0, 0, 13], +1; [0, 0, −13], −1

3 343 dielectric cavities of radius 5Å All Cavities [3, 0, 0], +1; [−3, 0, 0], −1
[0, 3, 0], +2; [0, −3, 0], −2
[0, 0, 3], +1; [0, 0, −3], −1
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