Skip to main content
. Author manuscript; available in PMC: 2011 Jun 1.
Published in final edited form as: J Am Stat Assoc. 2010 Jun;105(490):473–481. doi: 10.1198/jasa.2009.ap08387

Table 2.

Conditional and marginal distributions for ordinal traits generated from nonproportional odds models

K = 3
P(Y <= 1 | dd) = 0.70 P(Y <= 1 | dD) = 0.30 P(Y <= 1 | DD) = 0.10 P(Y = 1) = 0.48
P(Y <= 2 | dd) = 0.90 P(Y <= 2 | dD) = 0.60 P(Y <= 2 | DD) = 0.50 P(Y = 2) = 0.26
P(Y = 3) = 0.26

K = 4
P(Y <= 1 | dd) = 0.70 P(Y <= 1 | dD) = 0.30 P(Y <= 1 | DD) = 0.10 P(Y = 1) = 0.48
P(Y <= 2 | dd) = 0.80 P(Y <= 2 | dD) = 0.50 P(Y <= 2 | DD) = 0.35 P(Y = 2) = 0.16
P(Y <= 3 | dd) = 0.90 P(Y <= 3 | dD) = 0.70 P(Y <= 3 | DD) = 0.60 P(Y = 3) = 0.16
P(Y = 4) = 0.21

K = 5
P(Y <= 1 | dd) = 0.70 P(Y <= 1 | dD) = 0.20 P(Y <= 1 | dd) = 0.05 P(Y = 1) = 0.43
P(Y <= 2 | dd) = 0.77 P(Y <= 2 | dD) = 0.45 P(Y <= 2 | dd) = 0.35 P(Y = 2) = 0.17
P(Y <= 3 | dd) = 0.85 P(Y <= 3 | dD) = 0.65 P(Y <= 3 | dd) = 0.55 P(Y = 3) = 0.14
P(Y <= 4 | dd) = 0.92 P(Y <= 4 | dD) = 0.80 P(Y <= 4 | dd) = 0.75 P(Y = 4) = 0.12
P(Y = 5) = 0.15

K = 6
P(Y <= 1 | dd) = 0.60 P(Y <= 1 | dD) = 0.20 P(Y <= 1 | DD) = 0.05 P(Y = 1) = 0.38
P(Y <= 2 | dd) = 0.68 P(Y <= 2 | dD) = 0.32 P(Y <= 2 | DD) = 0.35 P(Y = 2) = 0.12
P(Y <= 3 | dd) = 0.72 P(Y <= 3 | dD) = 0.52 P(Y <= 3 | DD) = 0.48 P(Y = 3) = 0.12
P(Y <= 4 | dd) = 0.76 P(Y <= 4 | dD) = 0.68 P(Y <= 4 | DD) = 0.60 P(Y = 4) = 0.09
P(Y <= 5 | dd) = 0.80 P(Y <= 5 | dD) = 0.80 P(Y <= 5 | DD) = 0.72 P(Y = 5) = 0.08
P(Y = 6) = 0.21