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Abstract
This work investigates the use of the self-organizing map (SOM) technique for predicting lung
radiation pneumonitis (RP) risk. SOM is an effective method for projecting and visualizing high-
dimensional data in a low-dimensional space (map). By projecting patients with similar data (dose
and non-dose factors) onto the same region of the map, commonalities in their outcomes can be
visualized and categorized. Once built, the SOM may be used to predict pneumonitis risk by
identifying the region of the map that is most similar to a patient’s characteristics. Two SOM
models were developed from a database of 219 lung cancer patients treated with radiation therapy
(34 clinically diagnosed with Grade 2+ pneumonitis). The models were: SOMall built from all
dose and non-dose factors and, for comparison, SOMdose built from dose factors alone. Both
models were tested using ten-fold cross validation and Receiver Operating Characteristics (ROC)
analysis. Models SOMall and SOMdose yielded ten-fold cross-validated ROC areas of 0.73
(sensitivity/specificity = 71%/68%) and 0.67 (sensitivity/specificity = 63%/66%), respectively.
The significant difference between the cross-validated ROC areas of these two models (p < 0.05)
implies that non-dose features add important information toward predicting RP risk. Among the
input features selected by model SOMall, the two with highest impact for increasing RP risk were:
(a) higher mean lung dose and (b) chemotherapy prior to radiation therapy. The SOM model
developed here may not be extrapolated to treatment techniques outside that used in our database,
such as several-field lung intensity modulated radiation therapy or gated radiation therapy.

1. Introduction
Lung radiation pneumonitis (RP) is one of the major toxicities experienced by cancer
patients receiving thoracic radiation therapy (RT) (Kocak et al 2005a). It occurs in
approximately 13–37% of patients who undergo radiotherapy for lung cancer (Rodrigues et
al 2004). Identification of factors that predict for the incidence of RP is important for
reducing its probability of occurrence. For example, should adjuvant chemotherapy be
identified as a risk factor, then alteration of chemotherapy regimens can be considered to
reduce RP incidence.

Various predictors have been identified to predict the risk of RP (Rodrigues et al 2004).
Three such predictors, derived from the lung dose–volume histogram, are frequently
reported to be significantly correlated with RP: Vx, the volume above x Gy, for example V20
(Kong et al 2006, Tsujino et al 2006, 2003, Chang et al 2006, Rancatiet al 2003, Jenkinset
al 2003, Moiseenko et al 2003) and V15 (Tsujino et al 2006, Schallenkamp et al 2007),
mean lung dose (MLD) (Kong et al 2006, Chang et al 2006, Graham et al 1999, Jenkins et
al 2003, Hernando et al 2001, Martel et al 1994, Kwa et al 1998, Theuws et al 1998b) and
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the Lyman (1985) normal tissue complication probability (NTCP) (Kong et al 2006, Tsujino
et al 2006, Hernando et al 2001, Seppenwoolde et al 2003,Marks et al 1997). These
predictors, while important for understanding the causes of RP, generally only have poor-to-
fair predictive ability (Rodrigues et al 2004).

Dose factors alone may not be ideal predictors (Marks 2002). Non-dose factors such as age,
gender, tumor location, chemotherapy, etc, although nonsignificant by themselves, could
likely contribute significantly when combined with other dose and non-dose factors in a
multivariate model. This synergestic enhancement of predictive capability is suggested by
the findings in Marks et al (1997), who reported that the correlation of Lyman NTCP and
V30 with RP improved when patients with the poorest pre-RT pulmonary function were
excluded. In a similar vein, Lind et al (2006) reported that the correlation of V20 with RP
was greater in patients younger than 55 years of age. This appears to warrant a predictive
model that is somehow capable of discerning and quantifying these interactions. For
example, Das et al (2007) developed a decision tree model to predict the risk of RP, and
demonstrated that the model including non-dose factors is superior to that using dose factors
alone. The aim of this work is to develop and test an RP predictor based on self-organizing
maps (SOM) (Kohonen 1995), a technique that is potentially capable of extracting and
quantifying the underlying synergistic interactions.

SOM is a type of artificial neural network that is trained using unsupervised leaning, capable
of projecting and visualizing high-dimensional data in a low-dimensional space (Kohonen
1995). The SOM technique clusters and classifies patients into neurons based on similarities
in the patient input data, unlike other techniques which additionally take patient outcomes
into consideration. By searching for data similarities, the SOM is capable of extracting
synergistic interactions between factors that are more powerfully predictive than the
individual factors (Guyon and Elisseeff 2003). SOM has been previously applied in
medicine (e.g. computer-aided detection of breast cancer (Markey et al 2003, Chen et al
2000)). To the best of our knowledge, SOM has never been applied to predict the risk of
radiation pneumonitis.

In this work, the SOM model was built with input features selected from the total available
set of factors, using a unique methodology. Predictive capability of the model was
realistically tested using ten-fold cross validation (Hastie et al 2002). The effect of non-dose
variables on predictive capability was assessed by comparing the SOM model built from
dose alone to that including non-dose factors. Model comparison used receiver operating
characteristic (ROC) curves (Das et al 2005, Lind et al 2002, Swets and Pickett 1982).
Lastly, the importance of individual input features in the SOM model was evaluated.

2. Materials and methods
2.1. Input data

The patient database used in this study was previously described by Kocak et al (2005b).
The database consists of 235 patients with lung cancer who received three-dimensional
conformal, external-beam RT at Duke University Medical Center on an Institutional Review
Board approved protocol (protocol title: prospective study of the influence of external beam
radiation on pulmonary function (whole organ and regional) with radiographic correlations;
protocol number: IRB 1698). Table 1 lists the patient and treatment characteristics. The
patient population in this database was treated with RT delivered via parallel opposed
anterior–posterior fields, followed by off-cord oblique fields. Most patients (70%) were
treated at 1.8–2.0 Gy/fraction, once daily. The remaining were treated at 1.25 Gy/fraction to
the clinical target volume and 1.6 Gy/fraction to the gross volume, twice daily (minimum
interval was 6 h between two fractions). Dose distributions were three-dimensionally
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computed based on computed tomography (CT) scans of patients in the treatment position.
The left and right lungs were considered as a paired organ (excluding planning target
volume).

Radiation-induced symptomatic pneumonitis was assessed at 1, 3 and then every 3–4
months post-RT. Based on the modified National Cancer Institute Common Toxicity
Criteria (NCICTC) (table 2), pneumonitis was graded from 0 to 4. These NCICTC criteria
are similar to the Southwestern Oncology Group (SWOG) toxicity criteria (Green and Weiss
1992) (table 2), often used in other studies (Kwa et al 1998,Seppenwoolde et al 2003). The
toxicity endpoint of this study, Grade 2+ pneumonitis, is equivalent in both sets of criteria.
Of the 235 patients in this analysis, 37 and 13 patients experienced Grade 2 and Grade 3 RP,
respectively, and none experienced Grade 4 RP. Among patients with Grade 2 RP, 16
patients were classified as ‘hard-to-score’ due to uncertain diagnosis (Kocak et al 2005a).
For the purpose of this study, 34 patients (excluding hard-to-score patients) were considered
as having contracted Grade 2+ pneumonitis.

A large number of factors were extracted from the patient database, explained next. This
large set comprised all factors that we believed might have potential to be selected as factors
by the SOM. No preliminary prospective analysis was employed to include/exclude factors,
since such an analysis may not necessarily identify factors that could be selected by the
SOM as strongly synergistic with other factor(s) in the database.

A total of 27 non-dose factors (biological, clinical and other factors) were collected for each
patient. These factors included race, age, gender, tumor stage, tumor location (central
(mediastinal) or peripheral; upper, middle or lower lobe; right or left lung), chemotherapy
schedule (none, pre-RT, concurrent, pre-RT and concurrent, post-RT or concurrent and post-
RT), histology type (squamous cell, adenocarcinoma, non-small cell, small cell, large cell or
other), surgery (yes versus no), once or twice daily RT, pre-RT FEV1 (forced expiratory
volume in 1 s), FEV1% (as percentage of predicted normal), pre-RT DLCO (carbon
monoxide diffusion capacity in lung) and pre-RTDLCO%(as percentage of predicted
normal). FEV1 and DLCO% were not collected for approximately 20% of patients. In
accordance with statistical treatment of missing values (Hastie et al 2002, Setiono 2001),
they were assigned the average of non-missing values.

The lung cumulative dose–volume histogram (DVH) was calculated for each patient, for a
bin size of 2 Gy. The lung DVH was also reduced to the generalized equivalent uniform
dose (EUD) (Niemierko 1999) with the equation

(1)

where υi is the lung volume receiving dose Di. EUDs were generated for the exponential
parameter a ranging from 0.4 to 4, in increments of 0.1. Note that for a = 1, EUD is
equivalent to MLD. In addition to the lung DVH and lung EUDs, the biological mean lung
dose (NTDmean) was also included as a factor. NTDmean was calculated by normalizing the
lung DVH to a fraction size of 2 Gy (Lebesque and Keus 1991):

(2)

Chen et al. Page 3

Phys Med Biol. Author manuscript; available in PMC 2010 August 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where n is the number of fractions, di is the dose per fraction for lung volume υi and α/β is
the linear quadratic model parameter (assumed to be α/β = 3 Gy (Dubray et al 1995, Kwa et
al 1998) in this study). Similar to the physical mean lung dose, the biological mean lung
dose, NTDmean, was calculated as

(3)

Thus, the lung dose factors considered in this analysis were the DVH points, Vx (volume
above x Gy), for x ranging from 6 Gy to 60 Gy in increments of 2 Gy, EUDs for the
exponents a = 0.4 to 4 (increments of 0.1) and NTDmean.

Luijk et al (2005) reported that the tolerance dose for early lung function damage also
depends on the concomitant irradiation of the heart. Consequently, we included the mean
dose received by the heart as a factor in this analysis.

2.2. Data partitioning for model creation and testing: cross validation
For small datasets, K-fold cross validation is the recommended method to assess the
performance of a prediction model (Hastie et al 2002). In this technique, the data are
randomly split into K approximately equal-sized groups. K − 1 groups (training data) are
used to create (train) the model and the remaining group (cross-validation data) is used as a
test to measure the performance of the prediction model. The procedure is repeated K times,
with each group, in turn, serving as the cross-validation data. The typical choices of K are 5
or 10 (Hastie et al 2002). In this analysis, we chose ten-fold cross validation (K = 10).

2.3. Model creation and testing: self-organizing map
The basic idea behind the SOM is to construct a nonlinear transformation to project high-
dimensional input data onto a low, often two-dimensional space, termed a feature map. This
makes it particularly useful for patient data, i.e. since it is difficult to search for similarities
in high dimensions, SOM provides a ‘collapsed’ view that is easier to interpret. The
disadvantage of SOM is that this reduction from high to low dimensions might also
inadvertently conceal similarities that exist in high dimensions. In this work, similar patient
input vectors in the higher dimensional input space were clustered into the same region or
neuron of the feature map. The entries in the input vector, termed features, are a subset of all
available factors. The algorithm for selection of input features is detailed later in this
section. For example, if the input features constituting the input vector are ‘a’ and ‘b’,
patients with similar values of a and b were clustered into the same region (neuron). Each
neuron in the map contains two parts of information. The first part is its relative physical
location, i.e. proximity to other neurons, and the second part is its reference vector or weight
vector, which can be thought of as the ‘typical’ feature values for that neuron.

During the course of SOM training, patients were assigned to neurons with reference vectors
most similar to the patient input vector. Following each such patient assignment, the
reference vector of the assigned neuron and its immediate neighboring neurons were
updated to reflect the change to the patient population at the neuron. The neighboring
neurons were identified as neurons whose distances to the assigned neuron were less than
the neighborhood distance (nd). The neighborhood distance (nd) decreased from a large
number to 0 during training, such that the neighborhood neurons included all neurons at the
beginning and only the assigned neuron at the end. The learning rate (lr) determined the
amount of information passed from the patient input vector to the assigned neuron, which
decreased from 1 to 0 during training. Similarity was judged by the Euclidean distance
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between a patient input vector and the neuron reference vector (a smaller distance implies
greater similarity). Since SOM is an unsupervised learning method, patients were assigned
to each neuron without knowledge of their toxicity classification (RP versus no RP). The
training algorithm for SOM with M neurons is briefly summarized by the following steps:

1. Initialize the reference vector of each neuron to random values, and set the initial
neighborhood distance (nd) and initial learning rate (lr).

2. for i = 1 to N (N is the number of patients used to train SOM)

a. Randomly select one unused patient (input vector x).

b. for j = 1 to M, calculate the Euclidean distance (dj ) between the patient
and the reference vector for neuron j (wj ), dj = ‖x − wj ‖.

c. Determine the best matching neuron o with the minimal distance,

.

d. for j = 1 to M, update the reference vector of the neuron j : wj → wj + lr · f
(doj) · (x − wj)

where doj is the Euclidean distance between neuron j and the best
matching neuron o.

e. Decrease the neighborhood distance (nd) and the learning rate (lr):nd = nd
− Δnd, and lr = lr − Δlr.

3. Repeat step 2 until convergence.

The default values of SOM toolbox in MATLAB (Math Works, Inc., Natick, MA) were
used for the initial neighborhood distance (nd), the initial learning rate (lr), step Δnd and
step Δlr.

Input features were selected from the list of 93 dose and non-dose factors by a trial addition/
substitution process, as follows. In the ten-fold cross-validation scheme described in the
previous subsection, nine groups of data were used to train the SOM. To optimally select the
input features, the SOM was trained (MATLAB, The Math Works, Inc., Natick, MA) using
eight of the nine training groups and then evaluated on the remaining training group by ROC
analysis (greater model accuracy implies a higher area under the ROC curve, which plots
sensitivity versus 1-specificity for varying values of the threshold separating cases with and
without RP (Swets and Pickett 1982)). The eight training groups used to build the SOM
were collectively termed the training-construction set, and the one training group used for
evaluation was termed the training-evaluation set. This evaluation process was internal to
the training group and only served to build the list of selected features, i.e. it was not used as
an unbiased test of SOM performance. The added or substituted factor was accepted as an
input feature if the area under the training-evaluation ROC curve increased. SOM
construction was stopped if no new factor was accepted as an input feature. To prevent the
selection of multiple highly correlated dose factors as features, the SOM disallowed
selection of any dose factor having correlation >0.95 with any of the already selected
features.

Once the SOM was trained, the probability of RP at every neuron was computed as
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(4)

where Nn and Np are the numbers of patients suffering RP and not suffering RP,
respectively, at that neuron. For prospective use (i.e. to predict the risk of RP for patients
outside the database used to build the SOM), the SOM-predicted risk of a patient suffering
RP is the probability associated with the closest matched neuron (neuron most resembling
the patient).

Unbiased testing of the SOM followed construction, wherein each test group was evaluated
using the SOM built from the training set. Since each of the ten patient groups sequentially
served as the test group, ten SOMs were built for the purpose of unbiased testing. The
combined results of all ten test groups were then analyzed to evaluate SOM predictive
ability using the metrics: area under the ROC curve (AUC), sensitivity and specificity.

2.4. Model comparison and evaluation of importance of input features
To evaluate the influence of non-dose factors in modeling the risk of RP, two SOM models
were built: SOMdose and SOMall, with input features selected from dose factors alone and all
factors, respectively. ROCKIT software (Metz et al 1998) from the Department of
Radiology, University of Chicago, was used to evaluate the statistical significance of the
difference in areas between the ROC curves from the two models. Statistical significance
was based on a univariate z-score test (null hypothesis: the datasets arose from binormal
ROC curves with equal areas beneath them).

The importance of input features was evaluated in the SOMall model by individual
exclusion. Each time a feature was excluded from SOMall, the model was retrained and
tested. The cross-validated ROC area decrement resulting from feature exclusion was used
to rank its importance: a larger decrement signifies a more important feature. Statistical
significance of the feature was judged by statistical significance of the area decrement
(ROCKIT (Metz et al 1998)).

3. Results and discussion
3.1. Model building

The optimal SOM configuration was chosen as a 4 × 3 neuron map after evaluating various
configurations (see table 3). The AUC for training data continuously increases with
increasing neurons, whereas the AUC for training-evaluation data decreases beyond 12
neurons (the 4 × 3 map). Training evaluation provides an effective way to avoid model
under-training (model is not complex enough) or over-training (model is too complex—it
fits the signal as well as the noise).

The input features selected by models SOMall and SOMdose are shown in table 4. The table
displays the input features selected by all ten of the SOMs used for cross validation (one
SOM for each test set). Since the training data for each SOM is slightly different (two of
nine groups are different for any two SOMs), the selected input features vary slightly
between the SOMs. Statistical significance of the features selected by model SOMall is
discussed in the next subsection.

For model SOMall, the ten cross-validation SOMs selected three equivalent uniform doses
(EUD) as input features, with exponents a = 0.9, 1.0 and 1.1. These three dose factors, while
highly correlated to each other, were selected by different cross-validation SOMs, i.e. no
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two of these dose features were selected by the same cross-validation SOM. Since EUD a =
1 corresponds to MLD, the dose features selected by SOMall can be approximately
characterized as MLD. MLD frequently appears as a strong predictor of RP risk in the
literature (Kong et al 2006, Chang et al 2006, Graham et al 1999, Jenkins et al 2003,
Hernando et al 2001, Martel et al 1994, Kwa et al 1998, Theuws et al 1998b). For model
SOMdose, the ten cross-validated SOMs also selected EUDs similar to the MLD (exponents
a = 0.7, 0.8, 0.9 and 1.0). Additionally, SOMdose also selected three Vx values (x = 40, 42,
44 Gy). Again, no two EUD values or two Vx values with correlation >0.95 were selected by
the same cross-validated SOM. (Note that the selected features did not change for dose bin
sizes <2 Gy.) In the literature, Vx for x = 20, 30, 15 Gy, lower than those selected by
SOMdose, are reported as predictive for RP (Kong et al 2006, Tsujino et al 2006, Lind et al
2006, Chang et al 2006, Graham et al 1999, Tsujino et al 2003, Rancati et al 2003, Jenkins
et al 2003, Moiseenko et al 2003). It is likely that SOMdose selected volumes above higher
doses to complement the relatively lower MLD dose. It is also likely that SOMall, in contrast
to SOMdose, did not select Vx features because they are more weakly complementary than
the non-dose features. The distinction between MLD and Vx features is that MLD
summarizes the entire DVH curve, whereas Vx is a single point on the curve. The frequently
reported correlation of Vx to RP may be because of the association of Vx with the entire
DVH shape. It is probable that the relative diversity of treatments in our database decreased
Vx’s association with the DVH shape.

The non-dose features selected by model SOMall are chemotherapy prior to RT (yes versus
no), histology (squamous cell versus other histology) and tumor location (lower lobe versus
other location). Our results indicate that patients who underwent chemotherapy prior to RT
are more likely to have RP. Chemotherapy schedule has been previously reported as
associated with the occurrence of pneumonitis (Theuws et al 1998a, 1998b, McDonald et al
1995). McDonald et al (1995) reported that some chemotherapeutic drugs can not only
induce lung injury such as pneumonitis, but also enhance radiation-induced lung injury.
Tumor location (lower lobe) was found to be associated with increased risk of pneumonitis.
This has also been noted in the literature (Graham et al 1999, Hope et al 2006, Yorke et al
2002). Mice experiments have also suggested that tumor location is correlated to RP (Liao et
al 1995, Travis et al 1997). In our model, patients with squamous cell lung cancer have
higher risk of suffering RP (however, its correlation is weak; see discussion in the next
subsection). To the best of our knowledge, there have been no reports from outside our
institution associating tumor histology with RP (Das et al (2007), from our institution, also
report this association in a decision tree model).

3.2. Evaluation of feature importance
Table 4 lists the input features selected by model SOMall. The importance of each feature,
measured by the AUC decrement resulting from its exclusion, is summarized in table 5. The
most important features are approximately equivalent to the MLD (EUD a = 0.9, 1.0 and
1.1). Excluding these features resulted in the largest AUC drop of 0.12, from 0.73 to 0.61 (p
= 0.033). The second most important factor in our model, chemotherapy prior to
radiotherapy, resulted in an AUC decrement of 0.09 (p = 0.041). Exclusion of tumor
location or histology resulted in only small drops in the AUC (AUC decrement <0.01, p >
0.05). Because neither tumor location nor histology is individually highly correlated with
RP, their statistical significance is low. It is, however, not surprising that a more
sophisticated model such as SOM selects input features with weak univariate correlation,
since a factor that is not useful by itself can provide significant performance improvement
when taken with others (Guyon and Elisseeff 2003).
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3.3. Model testing and comparison
The cross-validated ROC curves are shown in figure 1 and figure 2 for models SOMall and
SOMdose, respectively. The results of ROC analysis are shown in table 6. The AUC for
training is notably lower than 1 because of the overfitting prevention resulting from the use
of a training-evaluation set within the training set. The cross-validated AUC of model
SOMall (0.73) is higher than that of model SOMdose (0.67), and the accuracy of model
SOMall (sensitivity: 71%, specificity: 68%) is better than that of model SOMdose
(sensitivity: 63%, specificity: 66%). The difference between the ROC areas from the two
models was significant (p =0.048), indicating superiority of model SOMall over model
SOMdose. Statistical significance also implies that the addition of non-dose factors improved
the predictive ability of the SOM model.

The combination of multiple dose factors and non-dose factors into a single predictive
model follows from previous works that have indicated synergism between dose and non-
dose factors (Marks et al 1997, Lind et al 2002, Das et al 2007, Rodrigues et al 2004).
Rodrigues et al (2004) reviewed 12 refereed publications and 2 conference abstracts with
regard to three dose predictors: Vx, MLD and NTCP. Their review indicated that, although
these three factors are associated with RP risk, they do not have high predictive power. This
review suggested that a model based on several factors may improve our ability to predict
the risk of clinically relevant RP. Marks et al (1997) state that ‘the use of NTCP/DVHs and
patient-specific biologic factors (e.g. PFTs) represent the state-of-the-art in predictive
measures of post-RT whole-lung function’, indicating possible synergy between dose and
non-dose factors. Previous studies from our institution have suggested that combining a
dose–volume factor with a pulmonary function test factor was more predictive than a model
based on dose–volume factors alone (Marks et al 1997, Lind et al 2002). Lind et al (2006)
observed that the area under the ROC curve for predictor V20 increased when the analysis
was restricted to patients below 55 years of age.

3.4. Impact of data splitting on ten-fold cross-validation results
To evaluate the dependence of the cross-validated results on the assignment of patients to
the ten groups, cross validation for SOMall was run 200 times (each time, the data were
randomly split ten-fold). The ROC curves for each of these 200 cross validations are shown
superimposed in figure 3. The distribution of the areas under the 200 ROC curves is shown
in figure 4 (mean = 0.724, standard deviation = 0.017). The small variance implies that the
SOMall model results are robust for ten-fold cross validation.

3.5. Biological mean lung dose (NTDmean)
The physical mean lung dose, MLD, does not take the effect of the dose per fraction into
account. To gauge the impact of this effect in predicting RP, model SOMall was run with
‘MLD’ (EUDs with exponents a = 0.9, 1.0 and 1.1) replaced by the biological mean lung
dose, NTDmean. The results with NTDmean (cross-validated AUC: 0.72, sensitivity: 71%,
specificity: 68%) were similar to those with ‘MLD’ (cross-validated AUC: 0.73, sensitivity:
68%, specificity: 71%). This would indicate that ‘MLD’ and NTDmean may be considered as
equivalent features in predicting RP.

3.6. Limitations on the applicability of the predictive model
The SOM model developed here to predict lung RP is only applicable within the scope
imposed by the limitations of the database used to build the model (number and orientation
of treatment fields, treatment field margins, total dose and fractionation). The database is
limited to lung cancer patients who received radiation therapy via parallel opposed anterior-
posterior fields followed by off-cord oblique fields. No gating technique was applied for

Chen et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2010 August 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reduction of margins. Approximately 70% of patients were treated once daily at 1.8–2.0 Gy
per fraction, and the remaining were treated twice daily at 1.6 Gy per fraction. Therefore, for
example, the SOM model may not necessarily be applicable to lung cancer patients
receiving intensity-modulated radiation therapy (IMRT) from a larger number of fields,
where much higher lung volumes are usually irradiated to low dose and lower lung volumes
receive high dose.

4. Conclusion
The self-organizing map (SOM) technique appears to be an effective, robust predictor of
lung radiation pneumonitis. The model (SOMall) developed from all factors is superior to the
model (SOMdose) developed from dose factors alone. The addition of non-dose factors
improved model predictive ability. Among the selected input features in model SOMall, the
two most important features contributing to increased radiation pneumonitis risk are: doses
approximately equivalent to the mean lung dose and chemotherapy prior to radiotherapy.
Since the SOM model was built from the database at our institution, it may be poorly
extrapolated to treatment techniques outside that contained in the database.
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Figure 1.
ROC curves for the model SVMall on training (ROC area = 0.85) and cross-validation (ROC
area = 0.73) data.
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Figure 2.
ROC curves for the model SVMdose on training (ROC area = 0.82) and cross-validation
(ROC area = 0.67) data.
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Figure 3.
The cross-validated ROC curves for model SVMall, for 200 random splits of the ten cross-
validation groups (area under ROC curves = 0.724 ± 0.017).
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Figure 4.
The distribution of the areas under the cross-validated ROC curves, for model SVMall, for
200 random splits of the ten cross-validation groups (mean = 0.724, standard deviation =
0.017).
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Table 1

Patient and treatment characteristics.

Characteristic Percentage of all patients
or mean (range)

Radiation pneumonitis 15.5

No radiation pneumonitis 84.5

Age (years) 64 (27–87)

Gender: male/female 54/56

Race: white/others 83/17

Pre-RT FEV1% 64 (15–127)

Pre-RT DLCO% 63 (11–129)

Fractionation: once/twice daily 70/30

RT dose (Gy)

  Once daily treatment 63.0 (30.0–86.4)

  Twice daily treatment 72.3 (45.0–86.4)

Histological type

  SCLC 11

  NSCLC (squamous/adeno/other) 88 (27/19/42)

  Other 1

Tumor stage

  I–II 17

  III–IV 81

  Recurrent 2

Tumor location

  Central/peripheral 61/39

  Upper/lower/middle 60/22/18

  Right/left location 58/42

Chemotherapy schedule (relative to RT)

  Concurrent with RT 14

  Pre-RT 48

  Pre-RT + concurrent RT 6

  Concurrent RT+ post-RT 3

  Post-RT 1

  No chemotherapy 28

SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer; FEV1, forced expiratory volume in 1 second; DLCO, diffusion capacity of
carbon monoxide.
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Table 2

Radiation pneumonitis grading system.

Grading system Grade Definition

The modified National 0 No increase in symptoms

Cancer Institue Common 1 Symptoms not requiring initiation or increase in steroids and/or oxygen

Toxicity Criteria (NCICTC) 2 Symptoms requiring initiation or increase in steroids

3 Symptoms requiring oxygen

4 Symptoms requiring assisted ventilation or causing death.

Southwest Oncology 1 Radiographic changes are observed but the symptoms do not require steroids

Group Toxicity Criteria 2 Requiring steroids

3 Oxygen required

4 Assisted ventilation is necessary

5 Fatal
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Table 3

The area under the ROC curve (AUC) of models SOMall and SOMdose, for various SOM topologies.

AUC of SOMall AUC of SOMdose

Topology
of SOM

Training
construction

Training
evaluation

Training
construction

Training
evaluation

3 × 2 0.76 0.67 0.72 0.63

3 × 3 0.81 0.73 0.78 0.66

4 × 3 0.85 0.82 0.82 0.74

4 × 4 0.87 0.78 0.85 0.72

Phys Med Biol. Author manuscript; available in PMC 2010 August 11.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 19

Table 4

The input features selected by model SOMall and SOMdose. Vx is the lung volume above x Gy. Higher values
of the dose variables are indicative of greater risk of radiation pneumonitis. Arrows next to the non-dose
variables indicate higher (↑) or lower (↓) risk.

SOMall SOMdose

EUD a = 0.9 EUD a = 0.7

EUD a = 1.0 EUD a = 0.8

EUD a = 1.1 EUD a = 0.9

Chemotherapy prior to RT (yes↑ versus no↓) EUDa = 1.0

Histology (squamous cell↑ versus other histology↓) V40

Tumor location (lower lobe↑ versus other location↓) V42

V44
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Table 5

Evaluation of importance of input features by individual exclusion.

Input feature excluded AUC decrement p-Value

EUD a = 0.9, 1.0, 1.1 0.12 0.033

Chemotherapy prior to radiotherapy (yes or no) 0.09 0.041

Tumor position (lower lobe or not) <0.01 0.166

Histology (squamous cell or not) <0.01 0.236
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Table 6

The results of ROC analysis for model SOMall and SOMdose.

SOMall SOMdose

Training AUC 0.85 0.82

Sensitivity 76% 71%

Specificity 76% 74%

Cross validation AUC 0.73 0.67

Sensitivity 71% 63%

Specificity 68% 66%
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