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Spatial autocorrelation (SAC) is the dependence of a given var-
iable’s values on the values of the same variable recorded at
neighboring locations (Cliff and Ord 1973; Fortin and Dale
2005). When high values are associated with relatively high
values at neighboring locations, SAC is said to be positive
and, conversely, where high values correspond to relatively
low values at neighboring locations, SAC is negative. SAC
can be a property of the variable itself (inherent or intrinsic
SAC) or it can arise due to the dependence of the variable of
interest on another spatially autocorrelated variable (induced
SAC) (Legendre et al. 2002; Fortin and Dale 2005). Because it
lies at the core of most spatial models, SAC is a fundamental
concept of spatial analysis (Getis 2008).

During the last 2 decades, mostly after Pierre Legendre pub-
lished his seminal paper ‘‘Spatial autocorrelation: trouble or
new paradigm’’ (Legendre 1993), SAC received considerable
attention from ecologists—in particular biogeographers inves-
tigating macroecological patterns of species distributions
(Kissling and Carl 2008)—and from population geneticists
investigating small-scale spatial genetic structure of popula-
tions (Guillot et al. 2009). These circumstances prompted
Arthur Getis, in a review on the evolution of the SAC concept,
to conclude that ‘‘Nearly all the major journals that concern
themselves with the ecological aspects of their subjects print
articles having a spatial autocorrelation foundation’’ (Getis
2008). In stark contrast, the issue of SAC has hitherto been
largely ignored in behavioral ecology, despite the fact that
many studies in this field deal with a spatial component.
Thus, despite its recognized importance in adjacent fields of
ecological research, even very basic topics in behavioral ecol-
ogy remain unexplored with respect to SAC, and we could
only find a handful of studies (van der Jeugd and McCleery
2002; Laiolo and Tella 2006; Duraes et al. 2007; Aarts et al.
2008; Giesselmann et al. 2008; Holdo et al. 2009), which
included SAC in their research paradigm.

The general aim of this paper is to draw the attention of be-
havioral ecologists to the phenomenon of SAC. Specifically, we
aim 1) to provide examples of spatially autocorrelated varia-
bles, indicating that SAC is widespread in variables commonly
used in behavioral ecology studies, 2) to show why it is impor-
tant to take SAC into account, and 3) to point to some tools to
explore and model it.

CAN SAC BE DETECTED IN BEHAVIORAL ECOLOGY
DATA SETS?

To illustrate the nature of SAC, let us consider territory size
(Figure 1). The size of an animal’s territory is usually the
outcome of a well-understood behavioral process, namely
the competition among neighboring individuals. This compe-

tition is reflected on the one hand, in the spatial distribution
of individuals, whereby increased competition results in an
increased spatial regularity (assuming—for simplicity—a uni-
form distribution of resources; Campbell 1992), and on the
other hand, in the strength and number of interactions at
the territory boundaries, whereby the degree of exclusion of
the neighbors from the focal territory determines the amount
of overlap between territories (Maher and Lott 1995).
Because the size of an individual’s territory is a result of in-
terindividual competition, it can be predicted that territory
size is intrinsically positively spatially autocorrelated (Valcu
and Kempenaers 2010). Using both a simulation approach
and a meta-analysis, we showed that all widely used measures
of territory size are bound to be spatially autocorrelated due
to the nature of territory formation (Valcu and Kempenaers
2010). SAC of territory size can be further increased if terri-
tory size is also a function of the amount of available resources
(e.g., mating partners or food) and if those resources are
themselves spatially autocorrelated at a scale larger than the
scale of territory size (e.g., resources distributed along a gradi-
ent or in large patches across the study area).

The rationale previously applied to territory size can be
straightforwardly generalized. We can thus argue that variables
measuring processes such as competition, song matching, or
extrapair paternity, which all reflect inter-individual interac-
tions, are probably spatially autocorrelated (Table 1). Simi-
larly, variables measuring processes driven by environmental
(extrinsic) factors, such as clutch size decisions or brood sex
ratio adjustment, can be spatially autocorrelated due to their
dependency on an already spatially autocorrelated factor
(Table 2). We therefore postulate that: 1) every measure of
a process that results from interactions of (spatially distrib-
uted) individuals is potentially intrinsically spatially autocorre-
lated (i.e., inherent SAC) and 2) every measure of a process
that is linked with a spatially distributed resource is potentially
extrinsically spatially autocorrelated (i.e., induced SAC).

In most empirical data sets, intrinsic and extrinsic factors are
likely to interact. Thus, SAC of a given variable can be caused by
both extrinsic and intrinsic factors. Moreover, an extrinsic fac-
tor can modulate the intensity of an intrinsic spatially autocor-
related variable (e.g., SAC of territory size can increase under
limited resource availability due to increased competition).
Conversely, the SAC of an extrinsically spatially autocorrelated
variable can be masked by environmental variables covarying at
the same spatial scale.

WHY SHOULD BEHAVIORAL ECOLOGISTS BE
CONCERNED WITH SAC?

From a statistical analysis perspective, SAC can lead to several
types of spurious results. 1) Increased type I error rate. In com-
mon bivariate tests, such as the Pearson correlation coefficient,
the risk of type I error increases when SAC is present in both
variables, even at small levels (Lennon 2000; Legendre et al.
2002; Legendre et al. 2004). Likewise, one of the important
assumptions of general and generalized linear models
(GLMs) and of their extensions, the independence of residual
errors (e.g., Hill 2007), will be violated when SAC is present
in the residuals of the fitted model (Haining 1990). SAC can
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thus bias model selection because spatially autocorrelated
variables will get narrower confidence intervals and conse-
quently be picked up as having a significant contribution to
the fitted model more often than by the desired significance
level (Lennon 2000). Hence, SAC can be seen as a form of

pseudoreplication (Hurlbert 1984), whereby the effective
sample size is smaller than the observed sample size (Dutilleul
1993). It has further been suggested that the presence of SAC
can also reduce the power of a test statistic (Legendre et al.
2002, 2004). 2) Bias in parameter estimates. Neglecting SAC
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Figure 1
Examples of inherent and induced SAC of territory size at different spatial scales. Inherent SAC results solely from interindividual interactions
and space partitioning without any influence of the habitat (A). The corresponding correlogram (C) shows positive and significant* SAC only
at the scale of the nearest neighbors. Induced SAC appears as a result of the negative correlation between territory size and habitat quality (B).
The corresponding correlogram (D) shows significant* SAC at all spatial scales. In both scenarios, the same number of territories (bivariate
normal kernels) were generated; for simulation procedures see Valcu and Kempenaers 2010). The correlograms show Moran’s I coefficient 6
standard deviation at 6 distance classes (distance 1 refers to closest neighbors; distance 2 refers to second-order neighbors, and so on). Moran’s I
coefficient is comparable with a Pearson’s correlation coefficient; it takes values between 0 and 1 in the case of positive SAC and between 21 and
0 in the case of negative SAC (Fortin and Dale 2005). The horizontal line is the expected value of Moran’s I under the null hypothesis of no
autocorrelation. (*after Bonferroni correction).

Table 1

Examples of possible scenarios leading to inherent SAC

Behavioral process Variables Possible reasons for SAC

Competition for breeding space Territory size Competition at territory boundaries and the
spatial distribution of individuals.

Song as a signal Song type, frequency Song matching between close neighbors.
Extrapair mate choice Number of extrapair young Spatial distribution of potential extrapair mates

leads to local ‘‘hot spots.’’
Conspecific/heterospecific attraction Breeding synchrony (e.g., in lay date), breeding

density
Conspecific/heterospecific attraction leads to
differences in breeding onset and/or breeding
density across the landscape.

Aggregation of territories into hidden leks Extrapair paternity rates, breeding density Extrapair mating behavior leads to aggregations
of territorial males with particular characteristics.
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can lead to a large upward bias in parameter estimates as
shown in a recent meta-analysis of species distribution studies
(Dormann 2007). Because SAC is expected to occur at all
spatial scales, behavioral ecologists should be aware that some
of the large highly significant effect sizes could be generated
by SAC instead of reflecting a causal relationship or a treat-
ment effect.

However, SAC need not be seen as a nuisance; it can be a
useful method for data analysis both during the descriptive
stage and during hypotheses testing. Understanding and mod-
eling SAC may lead to a deeper biological understanding of
the investigated variables. For example, a visual inspection
of a correlogram (a graph where SAC values are displayed on
the y axis and e.g., neighborhood relations, distance classes, or
nearest neighbors are shown on the x axis; see Figure 1C,D)
(Legendre and Fortin 1989; Bivand et al. 2008, p. 267) will allow
to explore SAC of a given variable at multiple spatial scales
(Figure 1).

Although the effects of SAC on most empirical data sets will
be difficult to predict, by corroborating the information ex-
posed by the correlogram with detailed knowledge of the stud-
ied system (including the distance over which intrinsic and
extrinsic factors operate) one can make further predictions
and design experiments at the correct spatial scale. For exam-
ple, when SAC is only apparent on a small spatial scale (e.g.,
among close neighbors), as depicted by the correlogram
(Figure 1C), it can be hypothesized that it is caused by in-
terindividual interactions and the strength of the SAC will
reflect the strength of these interactions (e.g., competition)
(Figure 1A). Alternatively, when SAC is gradually decreasing
with distance (Figure 1D), it can be hypothesized that the
studied variable depends on an environmental variable dis-
tributed along a gradient and SAC reflects the habitat hetero-
geneity (Figure 1B). Modeling SAC can thus inform us or lead
us to hypothesize about, for example, the scale at which hab-
itat quality is heterogeneous, the distance (scale) over which
males influence each other through vocal communication, or
the distance over which females sample mates.

TOOLS FOR EXPLORING AND MODELING SAC

Due to the recent advances in spatial statistics and geograph-
ical information systems a wide range of tools are now available
to model SAC (e.g., Haining 1990; Fortin and Dale 2005;
Bivand et al. 2008). Describing a general framework for deal-
ing with SAC is beyond the scope of this note; hence, we will
just highlight a few points that may be of interest to behavioral
ecologists.

The prerequisite of spatial data analysis and thus of SAC
analysis is the existence of geographical coordinates (ideally
transformed in a projected coordinate system like Universal
Transverse Mercator to ensure a constant distance relation-
ship throughout the map) associated with each variable. Once
the data set is augmented with the geographical coordinates,
the investigator can proceed to the first step of exploratory
data analysis, which is mapping the target variables. To get
further insight into the data, a graphical representation of
SAC at increasing spatial scales, for example, a correlogram
(Figure 1C,D), can be created. This step requires the identi-
fication of the spatial relationships between observations (i.e.,
neighbors). Among the most common criteria used here are
distance bands (individuals are considered neighbors if they
are not farther apart than a given distance), nearest neighbors
(the first k nearest neighbors are considered), or graph-based
neighbors (based on the relationship among geometrical con-
structs, e.g., Dirichlet polygons) (Bivand et al. 2008, p. 239).
The choice of such criterion should be made based on the
life-history traits under consideration. For example, distance
classes can be used in the case of song or calls, based on
knowledge of their range of action in a particular habitat,
k nearest neighbors can be used in order to account for differ-
ences in densities across the habitat, or territory boundaries
can be used for a straightforward delineation of neighbors in
case of territorial species.

The identification of the spatial relationships among neigh-
bors is also of great importance for the last step of data analysis;
modeling and hypothesis testing. Simultaneous autoregressive
(SAR) models are a useful class of spatial models dealing with
SAC (e.g., Fortin and Dale 2005; Bivand et al. 2008), particu-
larly because they are a straightforward extension of the GLM.
SAR and other types of models make use of the spatial rela-
tionships among neighbors in order to construct a spatial
weights matrix, which is further used to model nonindepend-
ent (i.e., autocorrelated) errors. In short, the SAR models are
a particular case of GLM: Y = Xb1 e; where Y is the dependent
variable, b are the coefficients, X is the matrix of predictors,
and e is the error term. The way in which e is modeled deter-
mines the type of the SAR model. The SAR error model is
defined as Y = Xb 1 kWu1 e and the SAR lagged model as Y =
qWY 1 Xb 1 e where k and q are the spatial autoregression
coefficients, u is the spatially dependent error term, and W is
the matrix of spatial weights (Fortin and Dale 2005; Bivand
et al. 2008). Thus, the SAR error model assumes that SAC is to
be found in the error term because of either inherent or in-
duced SAC, whereas the SAR lagged model assumes that SAC
is a property of the response variable because of inherent

Table 2

Examples of possible scenarios leading to induced SAC

Behavioral process Variables Possible reasons for SAC

Nonrandom settlement via breeding/natal
dispersal

Life-history trait measures High-quality individuals select high-quality
breeding sites across a heterogeneous habitat.

Clutch size decisions Clutch size, number of hatchlings and fledglings Clutch size is adjusted to habitat quality, mate
quality, and/or breeding density across a
heterogeneous habitat.

Sex ratio adjustment Sex ratio of litter or brood Litter or brood sex ratio is adjusted to habitat
quality and/or to the social environment across
a heterogeneous habitat.

Lombard effect Song amplitude Spatial heterogeneity of environmental noise.
Mate vs. territory choice (polygyny threshold) Number of mates Spatial heterogeneity of habitat quality at a scale

larger than territory size.
Coping style/personality Aggressiveness, activity, and sociability Individuals with certain copying styles are

associated with a particular habitat type or
quality.
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SAC. A study comparing SAR models (Kissling and Carl 2008)
recommends the SAR error model as the most reliable model
in terms of precision of parameter estimates, SAC reduction,
and type I error control. Once the SAR model is fitted, the last
step is checking the model assumptions. A specific model
assumption check is to test whether the residuals of the SAR
model are spatially autocorrelated. Because any spatial struc-
ture in the residuals can be indicative of some nonmodeled
spatial structure in the data, careful examination of the resid-
uals should also enable the detection of misspecified models.

CONCLUSION

There is no doubt that SAC is an important concept as has been
widely acknowledged in several areas of ecological research in
the last decades. Behavioral ecologists can benefit by assimilat-
ing the tools and the concepts developed in spatial ecology,
among which SAC is of central importance. Data sets collected
by behavioral ecologists should therefore be kept spatially ex-
plicit by recording the geographical coordinates associated to
each observation. SAC is multidirectional and operates at mul-
tiple scales, so the effects it will have on an empirical data set
are difficult, if not impossible, to predict. We suggest that test-
ing for SAC, both as an exploratory exercise and during statis-
tical modeling, should be a standard method to append to the
current statistical toolset of field behavioral ecology.
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