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Abstract

Cell fate decision remarkably generates specific cell differentiation path among the multiple possibilities that can arise
through the complex interplay of high-dimensional genome activities. The coordinated action of thousands of genes to
switch cell fate decision has indicated the existence of stable attractors guiding the process. However, origins of the
intracellular mechanisms that create ‘‘cellular attractor’’ still remain unknown. Here, we examined the collective behavior of
genome-wide expressions for neutrophil differentiation through two different stimuli, dimethyl sulfoxide (DMSO) and all-
trans-retinoic acid (atRA). To overcome the difficulties of dealing with single gene expression noises, we grouped genes into
ensembles and analyzed their expression dynamics in correlation space defined by Pearson correlation and mutual
information. The standard deviation of correlation distributions of gene ensembles reduces when the ensemble size is
increased following the inverse square root law, for both ensembles chosen randomly from whole genome and ranked
according to expression variances across time. Choosing the ensemble size of 200 genes, we show the two probability
distributions of correlations of randomly selected genes for atRA and DMSO responses overlapped after 48 hours, defining
the neutrophil attractor. Next, tracking the ranked ensembles’ trajectories, we noticed that only certain, not all, fall into the
attractor in a fractal-like manner. The removal of these genome elements from the whole genomes, for both atRA and
DMSO responses, destroys the attractor providing evidence for the existence of specific genome elements (named ‘‘genome
vehicle’’) responsible for the neutrophil attractor. Notably, within the genome vehicles, genes with low or moderate
expression changes, which are often considered noisy and insignificant, are essential components for the creation of the
neutrophil attractor. Further investigations along with our findings might provide a comprehensive mechanistic view of cell
fate decision.
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Introduction

Cell fate decision involves reprogramming of precursor cells into

the differentiated state. It is intriguing to grasp how a specific path

is chosen by a cell, among the several possibilities that can arise,

through the complex multi-molecular interactions during differ-

entiation. The understanding of such deterministic process, where

the macroscopic stable cell fate transition requires the coordinated

regulation of thousands of genes forming networks, could uncover

mechanisms that control cell differentiation, as well as reveal better

strategy to suppress disease progression, e.g., cancer proliferations.

The study of large-scale network dynamics has been investigat-

ed in a variety of fields including mathematics, physics,

information sciences, ecology and biology ever since the onset of

the nineties [1–2]. A large number of studies have already shown

that the emergence of collective behavior, such as synchronization

of processes, can arise due to the non-linear regulations of complex

network systems with environmental perturbations. For example

in biology, the secretion and detection of autoinducer molecules

between bacteria enable a population of them to collectively

regulate gene expression and, therefore, produce coordinated

group behavior such as the formation of biofilm by Pseudomonas

aeruginosa [3–4]. However, it remains unclear how the complex and

dynamically evolving molecular networks found in biological

systems can give rise to a globally coherent orchestrated response.

High-throughput omics (transcriptomics, proteomics & meta-

bolomics) analyses have indicated that the molecular interactions

within a living cell typically form a single, largely interconnected

network [5–8]. It is, thus, necessary to have an integrated network

view to understand cellular processes such as cell fate transitions or

differentiations in which cells receive a broad range of biological

signals or perturbations which influence gene expressions across

the entire genome to produce reliable and robust outcome.

To demonstrate the genome-wide integrated response for cell

fate decision, Huang et al. investigated the differentiation of human

pro-myelocytic leukaemia HL-60 cells into neutrophil by the
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action of two different reagents, DMSO and atRA [9]. Based on

the 2773 highest expressed genes (based on two-fold expression

changes), Huang et al. showed the convergence of cell fate despite

different initial transcriptome dynamics arising from the different

stimuli, thus suggesting the presence of stable multidimensional

attractor states in biology [10–13]. Although this result is the first

step towards understanding the existence of cell fate attractors,

many other fundamental questions remain to be investigated. For

example, what are the intracellular origins and mechanisms that

instill genome-wide response? What form cellular attractors? How

these emerge through the complex molecular networks? If the

entire genome is linked through networks, is attractor state

achieved by self-regulation [12]?

The majority of large-scale gene expression studies have focused

on genes with high expression changes or variations to decipher

key regulatory processes, since low-level expression changes of

genes have been considered as noisy due to the issue of poor

signal-to-noise ratio in microarray experiments. This is due to the

difficulty in the estimation of unspecific binding abundance

between probe and target in signal intensity [14–16], and

especially for the low level expression changes, the effect of

background noises, compared with specific binding activity, is

likely larger than that for highly variable genes. However, in our

recent study, we demonstrated that the splitting of whole genome

into different ensembles to analyze their temporal expression

changes from the initial time resulted in the reduction of their

fluctuations as the ensemble size is increased. This resulted in

collective genome-wide expression behaviors which exhibited local

and global effects of lipopolysaccharide (LPS) stimulated macro-

phages; local being the well-known pro-inflammatory response of a

small number of highly expressed genes, while global being the

novel collective activation of diverse processes comprising the rest

of the lowly expressed genes [17–18].

In this paper, we investigated the entire microarray data of HL-60

cells for atRA and DMSO stimuli including lowly variable signals

over time [9]; DMSO is known to activate key transcription factors

such as NF-kB [19], whereas atRA penetrates the nucleus and

directly remodels chromatin structure [20]. To uncover the

orchestrated gene expressions guiding cell fate decision, we used

Pearson (linear) correlation and mutual information (nonlinear

correlation) metrics to investigate the collective dynamics of gene

expressions for each stimulus. To overcome the difficulties of dealing

with single gene expression noises in microarray data, we formed

grouping of genes (chosen randomly from the whole genome and

ranked according to group expression changes across time) which

showed the reduction of correlation noises as ensemble size is

increased. From this, in contrast to a previous finding which

suggested the whole genome’s role in differentiation, we demonstrate

that only selective portions of fractal-like gene ensembles are

responsible for the neutrophil attractor. Notably, the removal of

these specific gene ensembles from the whole genome, for both atRA

and DMSO stimuli, destroys the attractor. Thus, for the first time, we

reveal the existence of ‘genome vehicle’ and show that genes with low

or moderate expression changes, contained within genome vehicles,

are crucial for the neutrophil attractor.

Results and Discussion

Reduction of correlation noises when grouping genes
Previously, we have shown that the collective proinflammatory

response of whole genome can be captured by random gene

sampling of ensemble size above 80 [17–18]. Thus, to investigate

the collective behavior of HL-60 cell differentiation, we randomly

grouped genes from whole genome into different ensemble sizes

(n = 10, 50, 100, 200, 500, 1000) and evaluated their expression

dynamics in the correlation space (see Methods, ‘‘Correlation

analysis of gene expressions’’). Both the temporal (modified)

Pearson correlation of gene variation, rv, and the corresponding

temporal mutual information, I, distributions of the gene

ensembles transited from scattered and incoherent ones to clear

bell-shaped ones for nt$100, where nt&
ffiffiffiffiffi
N
p

(N = 12625,

Figure 1). These result show that standard deviations of rv and

I distributions at each time point are reduced according to the

a=
ffiffiffi
n
p

law with increasing n, where a is the fitting coefficient.

Thus, the ensemble size of nt = 200, with good resolution, was

chosen to evaluate the probability distributions of rv and I for

each time point of the gene expression data, {V(t0),..,V(tM)},

where V(ti) is the whole genome expression deviation vector at ti
(i = 0,1,..,12) (see Methods).

Localization and overlapping of probability distributions
of correlations for atRA and DMSO responses indicate
neutrophil attractor

Utilizing the noise reduction by grouping genes, we plotted the

probability distributions of rv and I versus time, and observed that

as the ensemble size is increased, the distributions localized to

specific points (rv, I), especially after 48h (Figure 2A–B). These

localizations may be derived by the presence of neutrophil

attractor. To test whether the localization of probability

distributions indicate attractor state, we analyzed the superposition

of rv and I distributions after 48h for both atRA and DMSO and

found they possess distinct peaks for both the atRA and DMSO

responses (Figure 2C). Moreover, the superposition of the

probability distributions (SPD) of rv and I of atRA and DMSO

responses overlap indicating the presence of cell fate attractor, as it

corresponds to the fact the two stimuli elicit the same biological

end-point, the generation of a mature neutrophil cell.

To define the attractor region, we adopted the concept of

critical (inflection) points as used in phase transitions in

thermodynamic systems to determine the boundary of the

neutrophil attractor. Note that due to the limited temporal data

points, we are unable to determine the attractor basin for

neutrophil differentiation as defined in continuous dynamics.

Thus, we evaluated the gradients of the SPD for rv and I to

determine the inflection points for atRA and DMSO responses

and the resultant plots reveal distinctive crater-like feature with the

rings indicating inflection points (Figure 2D) and the common

overlapping area of the inflection points of the SPDs, i.e., the SPD

boundaries for the atRA and DMSO responses was defined as the

neutrophil attractor (Figure 2E).

As a further test, the attractor boundary also encompasses the

convergence of the atRA- and DMSO-trajectories (Figure 2E,

right panel). To check the statistical significance of the localized

SPD of rv and I within the attractor, we verified that its standard

deviation of both rv and I distributions for each stimulus also scales

with a=
ffiffiffi
n
p

as n is increased (Figure 2F). Note that for the other

localized SPD of rv and I before 48h, it coincided with the whole

genome trajectory loops indicating intermediary cell differentia-

tion states [21] (Figure 2E, left panel).

Emergence of asymptotic whole genome collective
behaviors

To investigate the whole genome collective behavior, we

grouped genes according to their variance across time. The whole

genome deviation vector, V(t0), was sorted from the highest to the

lowest standard deviation s (see Methods, ‘‘Ranking gene

ensembles’’). This sorting order at t0 was retained for all other

Genome Vehicles Revealed
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time points (t = 1,..,12). Next, we split the ranked whole genome

into p groups, where p is the integer values of N/n for n = 10, 50,

100, 200, 500, 1000. Similarly for the random selection of genes,

we checked whether expression noises can be reduced for the

ranked groups as the group size is increased. We plotted the set of

mean values of gene deviations for p groups, G t0ð Þ~
Sp

k~1

Gk t0ð Þ

versus G tið Þ~
Sp

k~1

Gk tið Þ, (i = 1,..,12) (see Methods, ‘‘Ranking

gene ensembles’’ and Figure 3). The plots show the group’s mean

values transited from scatter to the emergent asymptotic curves,

fi Gk(t0)
� �

, as n is increased for all ti (i = 1,..,12) (transition

at nt%
ffiffiffiffiffi
N
p

, Figure 3A–B). Note that fi Gk(t0)
� �

(k = 1,2,…,p) is the

gene deviation value on the asymptotic curve, and fi is the function

of the asymptotic curve for the ith time point determined by the

nonlinear least squares fitting with cubic polynomial for the set of

points (Gk(t0), Gk(ti)). This is due to the fact that as n is increased,

Gk(ti)?f Gk(t0)
� �

, while the standard deviation of the whole

genome at ti,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=p
Pk~p

k~1 Gk(ti){f Gk(t0)
� �� �2

q
, decreases follow-

ing the a=
ffiffiffi
n
p

law (Figure 3A–B, center panels).

These asymptotic curves suggest that the genome-wide

averaging behavior of collective expression dynamics exists.

Once again nt = 200 genes produced acceptably good resolution.

Thus, nt is the basic size of the genome element, Gk(t0), and for

the whole genome, we obtained 63 genome elements, totaling

12600 genes. The remaining 25 genes with very low s were

discarded. Note: we used s instead of coefficient of variation

(CV~s=m) for ranking genome elements as we are dealing with

trajectories of ensemble of genes, rather than normalized form as

often used in conventional approaches. Nevertheless, we

compared CV versus s and found linear relationships between

them (Figure S1), ruling out any possible trivial scale effect as

explanation of our results.

Figure 1. Transition from scattered to smooth bell shaped distributions of rv and I when grouping genes. Distributions of (A) rv and (B) I
for ensembles of n randomly chosen genes from whole genomes (n = 10, 50, 100, 200, 500, 1000), estimated by Gaussian kernel with 100 repeats at a
representative t = 48h (similar profiles are obtained for all time points), left panels for atRA and middle panels for DMSO response. Standard deviation
of rv and I distributions (right panels of (A) and (B)) at t = 48h decreases as n is increased, following a a=

ffiffiffi
n
p

law, a>1 for rv and a>0.3 for I. Note that
this transition also occurred for all time points (data not shown).
doi:10.1371/journal.pone.0012116.g001

Genome Vehicles Revealed
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Specific genome elements fall into the attractor in a
fractal-like manner

We investigated trajectories of the 63 ranked genome elements

(Figure 4A, left panel) by creating a sequence of binary numbers

where 1 and 0 indicate genome elements falling into and not falling

into the attractor, respectively, against their standard deviation, s
(Figure 4B, upper panels). The result showed that the genome

elements falling into the attractor are non-continuous in s. To

understand the discontinuity, we checked the sensitivity of genome

elements falling into the attractor, i.e., changing from 0 to 1 or vice-

versa for single-gene shift (Figure 4A, right panel). We found that even

a single replacement of the highest s gene from a genome element

with the highest s gene of the next lower ranked genome element

results in its destiny change of falling or not falling into the attractor

(see e.g., G11(t0) for DMSO, Figure 4B, lower panels). This

expansion of a genome element shows fractal-like binary distributions

and the sensitivity of single-gene shift within a genome element

demonstrates the non-linear nature of gene expression dynamics.

Figure 2. Determination of whole genome attractors for atRA and DMSO responses. Temporal probability distributions of (A) rv and (B) I
for atRA (upper panel) and DMSO (lower panel) for n = 10, 50, 200 genes randomly selected from whole genome. As n is increased, the distributions
transit from non-localized to localized at rv>20.55, I>0.13 for t$48h (atRA) and rv>20.45, I>0.13 for t$24h (DMSO), where the bandwidth of
Gaussian kernel is given by 0.02 and 0.01 for rv and I distributions, respectively. Note that rv>20.5 represents Pearson r.0.94 (Figure S3). Note that to
visualize the localization of probability distributions at different time points, intervals are compressed into equal plot intervals. (C) 3D plot of the
superposition of the probability (P) distributions (SPD) of rv and I over all time points. SPDs were estimated on discretized lattice using the MASS R
library (two-dimensional kernel density estimation [34]). The boundary of SPDs for atRA (left panel) and DMSO (right panel), indicated by dotted line,
is determined by selecting inflection points on the distributions, where inflection points were estimated on the lattice by selecting the points with
highest gradient in 8 adjacent directions from the localization points (peak values of SPDs). Joining these points formed inflection curves for atRA and
DMSO responses. (D) 3D plot of the gradient, +P(rv,I), of SPD of rv and I for atRA (left panel) and DMSO (right panel). To obtain the average SPD
boundaries (inflection curves), we repeated this process 30 times. Note that I was scaled (five folds) to match gradients with rv. (E) Whole genome
trajectories of rv and I for atRA and DMSO are represented by taking the average of 100 trajectories of 200 (nt) randomly chosen genes from whole
genomes for t = 0, 2, 4, 8, 12, 18, 24, 48, 72, 96, 120, 144, 168h. Filled polygons indicate the SPD boundaries (inflection curve) for atRA (red) and DMSO
(blue). Overlapping of the two SPD boundaries, in purple, indicates the neutrophil attractor. The lines with arrows indicate the whole genome
trajectories, red for atRA and blue for DMSO. Dotted curve I~{ log

ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

v

p
represents the linear correlation of mutual information, I, estimated by

Gaussian distributions [32–33]. Bottom panel: enlargement of the attractor region. The thick line indicates the neutrophil attractor boundary. (F)
Standard deviation of the SPDs of rv (left panel) and I (right panel) at the attractor for atRA (red) and DMSO (blue) decreases as n is increased,
following the a=

ffiffiffi
n
p

law where a = 1.5 for rv and a = 0.6 for I.
doi:10.1371/journal.pone.0012116.g002
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Note that the expansion processes are limited by the lack of

continuous data to show true fractal characteristics [22–23].

Next, we evaluated trajectories of the 63 genome elements and

compared each with the whole genome trajectory, in terms of the

Euclidean distance, d, of rv and I. We observed that 12 genome

elements for atRA and 20 for DMSO, fall into the attractor, and

among them more than 50% (with 0.24,s,0.40 for atRA and

0.20,s,0.59 for DMSO) are close to the whole genome trajectory

with minimum distance (for d,0.11) (Figure 4C). This indicates that

the genome elements falling into attractor scale with the whole

genome trajectory. Overall, these results suggest that whole genome

responses possess fractal-like nature for neutrophil differentiation.

To exhaustively search for more possible genome elements that

can enter the attractor, we performed an iterative procedure

where we removed the initial elements into attractor and shifted

the remaining genomes by 50 genes from the highest s values to

create new genome elements (Figure S2). Through this, we

obtained additional 9 elements for atRA and 8 elements for

DMSO.

The loss of the attractor when specific genome elements
are removed

We evaluated the SPDs of rv and I of all the genome elements

into the attractor and found the SPD boundaries of atRA and

DMSO responses overlapped to maintained the attractor

(Figure 5A), while those for the rest of genome elements did not

(Figure 5B). Moreover, for the genome elements falling into

attractor, the corresponding trajectories of both atRA and DMSO

converged, but not for the trajectories of the rest of genome

elements (Figure 5A–B). These results indicate that the rest of

genomes for both atRA and DMSO stimuli failed to demonstrate

the convergence and to form the neutrophil attractor.

Previously, Huang et al. indicated the convergence of atRA and

DMSO trajectories in the space spanned by the first two principal

components based on 2773 high expression genes (2-fold change

in expression values from t0) [9]. Notably, our analysis shows that

for the high expression genes, neither their correlation trajectory

converged nor their SPD boundaries overlapped (Figure 5C).

Furthermore, SPD boundaries of the specific genome elements

Figure 3. Transition from scatter to asymptotic emergent curves for the ranked groups. Plot of set of mean values of gene deviations

for p groups, G t0ð Þ~
Sp

k~1

Gk t0ð Þ versus G tið Þ~
Sp

k~1

Gk tið Þ (i = 1,..,12) for atRA and DMSO responses (see maintext and Methods). GA t0ð Þ
and GD t0ð Þ represent mean values of gene deviations for atRA and DMSO respectively. As n is increased, the standard deviation of the ranked

groups at ti,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=p
Pk~p

k~1 Gk(ti){f Gk(t0)
� �� �2

q
, decreases obeying the a=

ffiffiffi
n
p

law (center panel, thick black line) where a>0.3, for both atRA and
DMSO, with a transition occurring around nt&

ffiffiffiffiffi
N
p

for (A) atRA and (B) DMSO. Each color represents each ti.
doi:10.1371/journal.pone.0012116.g003
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Figure 4. Specific genome elements guiding neutrophil cell fate in fractal manner. (A) Sensitivity of genome elements falling to the
attractor against standard deviation: left panel, schematic trajectories of genome elements, Gk(t0) (k = 1,…,63), into (blue) and not into attractor (red),
sorted by standard deviation s. Right panel, schematic of genome element with single-gene shift can change its fate to the attractor. Illustration
shows the process of single-gene shift, i.e., removing the highest s gene from an element Gk(t0) not falling into attractor, and adding the highest s
gene of the next lower rank group Gkz1(t0), creates a new genome element, G

0

k(t0), that fall into the attractor. (B) Upper panels: the binary sequence
of 63 genome elements atRA and DMSO responses represented by blue and light red, for 1 and 0 respectively. Lower panels, binary sequence of 199
additional genome elements were created using single-gene shift as in (A) for G6 t0ð Þ for atRA and G11 t0ð Þ for DMSO. (C) Euclidean distance d,
between the whole genome’s trajectory and each genome element’s trajectory. More than 50% of genome elements that fell into the attractor are
close to the minimum distance (d,0.11, indicated by a dotted line).
doi:10.1371/journal.pone.0012116.g004

Genome Vehicles Revealed
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Figure 5. The loss of the attractor when genome vehicles are removed. The SPD boundaries and trajectories for atRA (plain lines with lighter
tone) and DMSO (dark dashed lines) responses of (A) genome elements falling into attractor (i.e., genome vehicles) overlap and converge, indicating
the formation of neutrophil attractor. (Insert shows overlapping SPD boundaries of atRA and DMSO responses of the whole genomes, indicated by
red and blue dotted polygons respectively), (B) rest of genome elements without genome vehicles do not overlap and converge, (C) high expression
genes (2-fold change from t0 for at least one time point) of the genome vehicles do not overlap and converge, (D) lowly and moderately variable
(LMV) genes of the genome vehicles still overlap and converge, retaining the neutrophil attractor. Data points are represented by circles and last time

Genome Vehicles Revealed
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without these highly expressed genes maintained a common

neutrophil attractor, albeit with less area (Figure 5D). Thus, the

lowly and moderately variable genes within genome vehicles play

an important role in the formation of the neutrophil attractor

(Figure 5E). These results demonstrate that the collective dynamics

of specific gene elements for both atRA and DMSO responses are

responsible for the cell fate decision and we call these genome

elements that effectively drive cells toward the attractor for each

stimulus as ‘‘genome vehicle’’.

In summary, we show the existence of genome vehicles is

responsible for neutrophil differentiation. Despite initial differenc-

es of the transcriptional program induced by atRA and DMSO

stimulations, the self-regulation of the genome vehicles leads to the

formation of a common neutrophil attractor. In addition, we

demonstrate that the collective motion of lowly and moderately

variable genes within the genome vehicle, which are often

considered as noisy and insignificant, play an important role in

the formation of the neutrophil attractor, perhaps indicating the

non-instructive signaling of genes related to small-amplitude DNA

motions [24–25]. Since the dynamics of gene expression is

connected with the dynamics of chromatin structural changes,

finding the underlying mechanisms, such as the collective

dynamics of small-amplitude DNA fluctuations within chromatin

structure, for the motion of the genome vehicle might decipher

fluctuations in chromatin dynamics that determines cell fate

decision. It will be interesting to know how the concerted motion

of the genome vehicle, together with well-known master instructive

genes, such as Yamanaka factors [26], drives the differentiation of

pluripotent stem cells as well as other biological processes that

could acquire a completely different perspective under the

proposed model.

Methods

Correlation analysis of gene expressions
Microarray technologies monitoring large-scale gene expres-

sions simultaneously have revealed mutual and highly correlated

behaviors [18], [27–28]. This is conceivable due to the fact that

gene expressions, i.e., net mRNA concentrations, are tightly

controlled by the transcriptional system (consisting of transcription

factors, RNA degradation, DNA physiochemical modifications,

etc.) which regulates multiple sets of genes rather than a single

gene. Hence, the use of correlation metrics has been widely

adopted in microarray studies.

The majority of studies have used Pearson correlation, r(X,Y),

when analyzing two N-dimensional expression vectors, X and Y,

e.g., comparing the response of genomes between two time points

for a given biological stimulation;

r X,Yð Þ~ X :Y

Xj j Yj j

Pn
i~1

xi{xð Þ yi{yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

xi{xð Þ2
Pn
i~1

yi{yð Þ2
s

~

Pn
i~1

XiYiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

X 2
i

s ffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

Y 2
i

s ~ cos h

ð1Þ

where Xi~xi{x and Yi~yi{y, xi and yi are gene expression of

the ith gene of expression vectors, X and Y, respectively, x and y are

mean values, and h is the angle between the two N-dimensional

expression vectors from the center of mass. Thus, this form of analysis

of gene expressions reveals linear relationship, e.g., h = 0 for perfect

positive linear relationship, h =p for perfect negative (anti-correlated)

linear relationship and h =p/2 for linearly independent relationship.

However, if the relationship between the two vectors is non-

linear, then Pearson correlation analysis is insufficient. In such

cases, the use of mutual information has been instrumental in

biology [29–30]. In this paper, we adopted both a modified

version of Pearson correlation (see below) and mutual information,

to investigate the whole genome collective dynamics in the process

of neutrophil differentiation to two distinct stimuli (atRA and

DMSO), revealing the existence of neutrophil attractor as well as

the whole genome expression dynamics toward the attractor.

Modified Pearson correlation rv for measuring expression
variation

Each stimulus’s dynamic genome expression activity (partial

and whole) is defined by N-dimensional gene deviation-

from-average vectors at time ti (i = 0,1,…,M),

V(ti)~ v1 tið Þ,v2 tið Þ,::,vj tið Þ,::vN tið Þ
� �

, where xj tið Þ is expression

value of the jth gene at ti, xj is its average expression over M+1

discrete time points, and vj(ti)~xj tið Þ{xj is its deviation from

the average gene expression (called gene deviation). In our

study, N = 12625 genes/ORFs and M = 12, where t = 0, 2, 4, 8,

12, 18, 24, 48, 72, 96, 120, 144, 168h. We modified the typical

Pearson r (see Eq.1) to be rv V tið Þ; V t0ð Þð Þ~ V tið Þ:V t0ð Þ
DV tið ÞDDV t0ð ÞD

(see

Figure S3 for rv vs. r) by subtracting their average expression

value, xj , from each expression value at all time points, instead

of subtracting the mean of whole genome expression, x. This

index thus measures the temporal correlation of genome-wide

expression deviations from their average values so as to allow

discriminating gene expressions with different amplification but

similar temporal profiles. For simplicity we included ORFs as

genes, and for the microarray data, we applied RMA

normalization which is known to produce robust reproducible

results for all range of expression units [31].

Mutual information I
Nonlinear dependency between vectors V(ti) and V(t0) is checked by

mutual information [32–33] I(V tið Þ; V t0ð Þ)~{
P

x[V(ti)

pi(x) ln (pi(x))

{
P

y[V(t0)

p0(y) ln (p0(y))z
P

x[V(ti),y[V(t0)

p(x,y) ln (p(x,y)){e, where the joint

probability distribution function p(x,y), and marginal probability

distribution functions, pi(x) at ti and p0(y) at t0 are estimated by means

of an histogram-based approach by discretizing the gene expression

into K = 10 bins [32]. Note: due to the discretization, mutual

information I incurs a systematic error e [32]. Since randomly

ordered data should destroy correlations, we expect I to be close

to zero, therefore, we calculated the minimum I for 100 random

permutations of gene deviation vectors {V(ti)}. However, we

found a positive value for minimum I instead of zero, and

so subtracted this minimum positive constant value from the final I.

For comparing I of atRA and DMSO response, we used the

normalized ÎI(V tið Þ; V t0ð Þ)~
I(V tið Þ; V t0ð Þ)
I(V t0ð Þ; V t0ð Þ)

and called ÎI as I

throughout the text.

point by a square. (E) Venn diagrams showing the number of genes constituting the genome vehicles and high expression genes (atRA in red and
DMSO in blue). Note that LMV genes constitute 42% and 52% of the genome vehicles for atRA and DMSO responses, respectively.
doi:10.1371/journal.pone.0012116.g005
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Ranking gene ensembles
The whole genome deviation vector at t0,

V(t0) = (v1(t0),v2(t0),..,vN(t0)) (N = 12625) was sorted according to

the standard deviation, s~
SN

j~1

sj , from the highest to the

lowest, where sj~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mz1

PM
i~0 vj(ti)

2

r
(M = 12). The resultant

ranked whole genome vector at t0 is represented by

S(t0)~ s1(ss1
; t0),s2(ss2

; t0),::,sj(ssj
; t0),::,sN (ssN

; t0)
� �

, where

ssi
,ssj

for i.j and ssj
is the standard deviation of the jth gene

deviation.

Next, we split the whole genome into p groups (each having n

genes) at t0, so that the whole genome at t0 is represented

by G t0ð Þ~
Sp

k~1

Gk(�ssk; t0),whereGk(�ssk; t0)~
Sn

j~1

s(k{1)nzj(ss
(k{1)nzj

; t0),

�ssk~
1

n

Pn
j~1 ss(k{1)nzj

, s(k{1)nzj(ss
(k{1)nzj

; t0) is the jth gene deviation

in the kth group, and ss(k{1)nzj
is its standard deviation. Note that we

choose p to be an integer value of N/n for n = 10, 50, 100, 200, 500,

1000, and the residual genes were not evaluated. From here onwards,

we simplified all notations without s symbols, e.g., Gk(�ssk; t0)~Gk(t0).
The set of p groups’ average gene deviation from the

whole genome at ti is represented by G tið Þ~
Sp

k~1

Gk tið Þ, where

Gk tið Þ~
1

n

Pn
j~1 s(k{1)nzj(ti) and i = 0,1,..,12.

Supporting Information

Figure S1 Comparing CV with s. Standard deviation, s versus

CV for genome elements of nt = 200 genes sorted by s.

Found at: doi:10.1371/journal.pone.0012116.s001 (0.18 MB TIF)

Figure S2 Identifying genome elements that form genome

vehicles. (A) Schematic of iterative procedure to exhaustively

determine genome elements falling into attractor (i.e., the genome

vehicle, see maintext). (B) Number of genome elements falling into

the attractor with respect to the number of iterations. We

terminated the iteration procedure until the 4 consequential

iterations do not constitute any genome element falling into the

attractor. Since the number of gene shift other than 50 is not

sensitive to the characteristics of the genome vehicle, we chose 50

genes shift to save the computational time. We obtained a total of

21 and 28 genome elements constituting the genome vehicles for

atRA for DMSO, respectively.

Found at: doi:10.1371/journal.pone.0012116.s002 (0.56 MB TIF)

Figure S3 Relationship between r and rv. r and rv are obtained

for n = 200 randomly selected genes with 3000 repeats (each

represented by a dot) from the entire data containing 13 time

points (i = 0,…,12).

Found at: doi:10.1371/journal.pone.0012116.s003 (0.30 MB TIF)
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