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Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules ~22 nucleotides in length that post-
transcriptionally regulate gene expression by complementary binding to target mRNAs. MiRNAs
have been identified in a diverse range of both metazoan and plant species. Functionally, miRNAs
modulate multiple cellular processes including development, hematopoiesis, immunity, and
oncogenesis. More recently, DNA viruses were found to encode and express miRNAs during host
infection. While the function of most viral miRNAs are not well understood, early analysis of
target genes pointed to immune modulation suggesting that viral miRNAs are a component of the
immune evasion repertoire which facilitates viral persistence. In addition to directly targeting
immune functions, viral encoded miRNAs contribute to immune evasion by targeting pro-
apoptotic genes, and in the case of herpesviruses, by controlling viral latency. Here we summarize
the recently discovered targets of viral miRNAs and discuss the complex nature of this novel
emerging regulatory mechanism.

MiRNAs are encoded by DNA viruses
Viral miRNA biogenesis, like cellular, initiates in the nucleus, where the RNase III
endonuclease Drosha cleaves pri-miRNA hairpins into pre-miRNAs. These pre-miRNAs are
exported into the cytoplasm by the Exportin 5/Ran GTPase pathway where they are further
cleaved by another RNase III endonuclease, Dicer, into a short dsRNA duplex. Finally, one
strand of the duplex is incorporated into the RNA-induced silencing complex (RISC) which
targets 3′UTR’s of mRNAs containing complementary sequences, leading to translational
silencing and/or transcript cleavage [1,2].

In 2004 Tuschl and colleagues discovered the first viral encoded miRNAs in Epstein Barr
Virus (EBV) infected Burkitt’s lymphoma cells [3]. To date, the miRNA registry miRBase
(http://www.mirbase.org/) [4,5] contains 176 viral miRNAs, of these, 173 are encoded by
DNA viruses which replicate in the nucleus (e.g., herpesvirus and polyomavirus). While
polyomaviruses encode 2 miRNAs, members of all three herpesvirus subfamilies
(Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae) encode between 7
(HSV-1) and 35 (EBV) miRNAs (recently reviewed in [6,7]).

Despite high-throughput sequencing attempts, RNA viruses (e.g. Influenza, HIV, and HCV)
and cytoplasmic replicating DNA viruses (Poxviruruses), have not been found to encode
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miRNAs. The absence of viral miRNAs from these viruses may reflect their inability to
access nuclear Drosha and the requirement for RNA viruses to protect their genome from
Drosha/Dicer processing. Interestingly, the majority of identified viral miRNAs are encoded
by herpesviruses, suggesting that they play an essential role in the herpesvirus lifecycle. This
review will focus on the known targets of viral miRNAs, with a strong emphasis on the host-
immune pathways that these miRNAs help to regulate in order to promote immune evasion.

Viral miRNAs inhibit cell-mediated immunity
The ability of viruses to repress host immune responses is essential for persistent infection.
Herpesviruses and polyomaviruses have co-evolved miRNAs as a means to suppress cell-
mediated immunity, an important component of the host response to intracellular pathogens,
either by miRNA inhibition of effector cell recognition (T-cell and NK cell) or by miRNA
induced expression of cytokines such as IL-6 and IL-10 [8–13].

Elegant genetic studies on the betaherpesvirus, human cytomegalovirus (HCMV) identified
that miR-UL112-1, represses expression of the major histocompatibility complex class I-
related chain B (MICB), a ligand that promotes NK cell killing [11]. The extent of MICB
regulation is significant since cells infected with a recombinant HCMV containing a miR-
UL112-1 deletion are more efficiently recognized and killed by NK cells. Unlike the
majority of miRNA targets, which contain a full seed sequence match (nucleotides 2 to 8 of
a miRNA), the MICB 3′ UTR target site only contains a partial miR-UL112-1 seed match
which mediates repression. HCMV miR-UL112-1 was the first example for miRNA-
dependent immune evasion through targeting of a host immune effector molecule. Recently,
KSHV (miR-K12-7) and EBV (miR-BART2-5p) miRNAs have also been shown to
downregulate MICB [8]; furthermore interrupting MICB targeting by KSHV and EBV
miRNAs using miRNA sponges, increased NK cell killing of latently infected lymphoma
cells. It appears that inhibiting NK cell killing through MICB repression is important for
herpesvirus infection because both HCMV and KSHV also express proteins that inhibit
MICB surface expression [14,15]. These findings suggest that herpesviruses have co-
evolved miRNAs as host immune regulators to escape NK cell recognition.

Like NK cells, cytotoxic T lymphocytes (CTLs) are important effectors of cell-mediated
immunity, whose response to viral infection is also inhibited by viral miRNAs. Two
polyomaviruses, the human JC virus (JCV) and simian virus 40 (SV40), express miRNAs
that downregulate the viral large T-antigen, an early viral product that elicits strong CTL
responses [10,12]. To examine the effect of this downregulation on virus replication,
Sullivan and colleagues generated mutant SV40 viruses with non-targeting miRNA and
showed that these viruses had an increased susceptibility to CTL lysis. Interestingly, a
murine polyomavirus was also found to encode miRNAs that target early viral transcripts,
but the role of these miRNAs during infection remains unclear [16]. In addition to
polyomaviruses, the EBV miR-BHRF1-3 modulates expression of the T-cell attractant
chemokine CXCL11 [13]. However, the importance of CXCL11 downregulation in EBV
infected B-cells needs to be validated with CTL assays.

Cell-mediated immunity in response to viral infection is also orchestrated by regulated
expression of cytokines. KSHV miR-K12-3 and miR-K12-7 targeting of LIP, an isoform of
the transcription factor C/EBPβ, was shown to induce expression of IL-6 and IL-10 in
human myelomonocytic cell lines [9]. Both cytokines inhibit dendritic cell maturation, and
as a result antigen presentation, thereby contributing to KSHV immune evasion [17]. In
addition, IL-10 potently suppresses cytokine production in a number of effector cells
including T-cells, NK cells, and macrophages [18,19]. Viral miRNA-dependent modulation
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of cytokines, which inhibit cell-mediated immunity, suggests a novel immune evasion
mechanism that needs to be further studied in appropriate animal models.

Viral miRNAs target apoptotic inducers and cell cycle regulators
Apoptosis, triggered by viral infection, is an alternate mechanism of the innate immune
response to eliminate viral spread. To date, pro-apoptotic targets of viral miRNAs have only
been reported for the oncogenic gammaherpesviruses EBV and KSHV. Herpesviruses
encode numerous proteins with anti-apoptotic activity; therefore it is not surprising that they
also express miRNAs to further regulate cell-death pathways.

The first reported pro-apoptotic target of EBV miRNAs was the EBV latent membrane
protein 1 (LMP1), a transforming factor that promotes cell proliferation and survival by
activating nuclear factor-kappa B (NFκ-B) [20]. While LMP1 is required for EBV
immortalization, LMP1 over-expression strongly induces apoptosis and inhibits NFκ-B [21].
Lo and colleagues showed that three EBV miRNAs (miR-BART16, miR-BART17-5p, and
miR-BART1-5p) target and downregulate LMP1 expression, thereby attenuating the pro-
apoptotic affect of LMP1 and its inhibitory effect on NFκ-B. Thus, it appears that EBV
miRNAs fine tune LMP1 expression in order to ensure cell survival.

EBV miRNAs also target a host pro-apoptotic factor, p53 up-regulated modulator of
apoptosis (PUMA), a member of the ‘BH3-only’ subclass of bcl2 proteins [22].
Bioinformatic analysis predicted PUMA as a potential miR-BART5 target. Inhibition of
miR-BART5 expression using antagomirs induced apoptosis of EBV infected cells,
suggesting that EBV miRNAs play an important role in blocking apoptosis. This study is the
first to demonstrate that a viral miRNA can directly inhibit apoptosis by targeting a host pro-
apoptotic protein.

Like EBV, KSHV miRNAs have been shown to modulate apoptotic pathways. The first
reported apoptotic target was Bcl-2-associated factor (BCLAF1), a transcriptional repressor
that induces apoptosis when over-expressed [23]. Ziegelbauer and colleagues demonstrated
that KSHV miR-5, miR-K12-9, and miR-K12-10b target and repress BCLAF1 expression in
human umbilical vein endothelial cells (HUVEC). Interestingly, examination of BCLAF1
miRNA targeting under differing experimental conditions revealed that BCLAF1 has both
pro-and anti-apoptotic function.

In addition, miRNA-dependent BCLAF1 regulation was shown to impact KSHV latency
[23], a herpesvirus intrinsic immune evasion mechanism which is discussed in the following
section. BCLAF1 and three additional regulators of apoptosis LDOC1, BCL2L11, and
BCL6B were also found to be inhibited in miR-K12-11 expressing cells [24] further
supporting apoptosis as a major regulatory target for viral miRNAs.

To promote cell viability and proliferation during infection, herpesviruses not only inhibit
apoptosis but also modulate cell cycle regulation. KSHV miRNAs have been found to target
two proteins involved in cell cycle progression, Thrombospondin 1 (THBS1) and p21.
THBS1, a tumor suppressor with strong anti-proliferative and anti-angiogenic activity, was
shown to be targeted by KSHV miR-K12-1, miR-K12-3-3p, miR-K12-6-3p and miR-
K12-11 [25]. THBS1 activates latent TGFβ, and Samols and colleagues demonstrated that
KSHV miRNA-mediated repression of THBS1 inhibits TGFβ activity. The second target
p21, a p53-inducible gene that functions as a cell cycle inhibitor and tumor suppressor, was
found to be targeted by KSHV miR-K1 [26]. Knockdown of endogenous miR-K1, with
miRNA sponges in KSHV infected cells, resulted in a modest increase of p53 mediated cell
cycle arrest, implicating miR-K1 in cell cycle regulation. While KSHV miRNA regulation
of the cell cycle is not a direct tool of immune evasion, it greatly affects the host response to
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infection and is a contributing mechanism to viral pathogenesis, especially in KSHV
associated tumorigenesis.

Herpesvirus miRNAs and latency an “intrinsic” immune evasion
mechanism

Herpesvirus infection persists for the life of the host, therefore avoiding host immune
surveillance is essential for viral persistence. One immune evasion mechanism employed by
all herpesviruses is the establishment of latency, during which only a minimal number of
genes, including miRNAs are expressed. Maintenance of latency requires the suppression of
viral gene products that promote the switch from latency to lytic replication. Conceptually,
since herpesvirus miRNAs are non-immunogenic they are ideal tools for negatively
regulating viral gene expression during latency, an idea that was proposed during the
discovery of the first herpesvirus miRNAs [3,27,28]. The first experimental evidence
supporting this idea came from two independent studies on HCMV, which demonstarted that
miR-UL112-1 mediates repression of IE72 expression, a major trans-activating gene that
promotes lytic replication [28,29]. Furthermore, it was shown that HCMV DNA replication
was reduced in response to overexpression of miR-UL112-1, indicating a direct correlation
between miRNA regulation and latency control [29].

More recently, Stern-Ginossar and colleagues [30] reported that miR-UL112-1 represses
another viral protein UL114, a uracil DNA glycosylase that is involved in viral DNA
replication [31]. However, mutant viruses lacking UL114 still showed a reduction of viral
DNA synthesis in cells that ectopically expressed UL112-1. Interestingly, HCMV UL112-1
also targets MICB, as described above, linking this miRNA to multiple pathways of immune
evasion.

Several KSHV miRNAs have been identified that modulate the latent-lytic switch. As
mentioned in the section above, three KSHV miRNAs were found to regulate the expression
of BCLAF1 [23]. In this study, it was demonstrated that inhibiting KSHV miRNA targeting
of BCLAF1 decreased the ability of KSHV-infected endothelial cells (SLK) to undergo lytic
reactivation. This was the first described role for viral miRNAs in promoting or sensitizing
latently infected cells to lytic reactivation [23].

In contrast to a lytic role, KSHV miRNAs have also been reported to promote latency. Using
KSHV recombinant viruses that lack 10 of the 12 miRNA genes, two independent studies
found elevated levels of lytic genes, including transcription activator (RTA), during de novo
infection of HEK293 cells and dermal microvascular endothelial cells (DMVECs) [32,33].
Because RTA is a master regulator of lytic reactivation, Lu and colleagues examined its
direct regulation by individual KSHV miRNAs and found that miR-K5 moderately
downregulates RTA mRNA levels. In addition, genome wide analysis of the recombinant
viruses revealed reduced repressive marks on histones as well as a global reduction of DNA
methylation, suggesting that KSHV miRNAs contribute to latency by regulating epigenetic
modification of the viral episome. Further insight into this mechanism was provided by the
finding that KSHV miR-K12-4-5p targets retinoblastoma (Rb)-like protein 2 (Rbl2), a
negative regulator of DNA methyltransferases, thereby inducing DNA methyltransferase
activity.

Lei and colleagues, using a similar mutant virus, showed that KSHV miR-K1 can activate
the NF-κB pathway, which inhibits lytic reactivation and is required for PEL cell survival,
by downregulating expression of its inhibitor IκBα [32].
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In a separate study KSHV miR-K9*, but not miR-K5, was also found to modulate RTA
expression, suggesting multiple KSHV miRNAs target RTA expression [34]. However,
careful analysis of the extent by which miR-K9* regulates RTA suggest that KSHV
miRNAs, while contributing to the maintenance of viral latency do not function as the major
switch from latent to lytic replication [34]. The numerous miRNA targets affecting the
latent-lytic switch of KSHV suggest that viral miRNAs may function as a priming
mechanism which allows rapid reactivation from latency in response to environment stimuli.

A promising system to study latency control in animal models is HSV-1, which expresses
only non-coding RNAs including multiple miRNAs during latency [35,36]. The majority of
these miRNAs are processed from the latency-associated transcript (LAT), a non-coding
RNA that is antisense to two lytic genes: ICP0, a transcriptional regulator, and ICP34.5, a
neurovirulence factor (for review of LAT see [37]). Overexpression experiments confirmed
that ICP0 is downregulated by HSV-1 miR-H2 [35]. In addition, miR-H6, expressed from a
transcript separate from LAT was found to target ICP4, a major viral transactivator required
for lytic activation. These findings together with phenotypes of LAT deletion mutants
affecting reactivation and apoptosis, prior to the identification of HSV-encoded miRNAs,
suggest that HSV miRNAs play a major role in negatively regulating lytic gene expression
in order to maintain latency.

Summary and Outlook
Viral miRNA regulation is an emerging component of the complex relationship that governs
viral-host interactions. From the targets identified to date (Table 1, Figure 1) it is apparent
that viral miRNAs play an important role in immune evasion by inhibiting immune
surveillance and extending the life of the infected host cell. However, determining the
targets of these miRNAs is only one step in understanding their function. Because viral
miRNA regulation is likely dependent on the context of infection (i.e. cell-type and viral
genome expression), future studies using recombinant viruses, appropriate cell lines, and
where available animal models are needed to further understand their impact on viral
pathogenesis in vivo. Studying this novel class of viral post-transcriptional regulators may
point to novel therapeutic strategies, especially for oncogenic herpesviruses. Additionally, a
detailed understanding, of how miRNAs function in immune evasion will be crucial for any
herpesvirus vaccine development.
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Figure 1. DNA virus miRNAs regulate the host immune response
Host cells are infected by DNA viruses that replicate in the nucleus. After nuclear
processing, viral miRNAs are exported into the cytoplasm where they are incorporated into
RISC. Viral miRNAs then target multiple arms of the immune system by regulating
expression of both host and viral mRNAs involved in cell-mediated immunity, apoptosis,
cell cycle regulation, and viral latency.
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