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Abstract
Purpose of Review—The purpose of this review is to identify new advances in our
understanding of skeletal muscle dysfunction in patients with COPD.

Recent findings—Recent studies have confirmed the relevance of muscle dysfunction as an
independent prognosis factor in COPD. Animal studies have shed light on the molecular
mechanisms governing skeletal muscle hypertrophy/atrophy. Recent evidence in patients with
COPD highlighted the contribution of protein breakdown and mitochondrial dysfunction as
pathogenic mechanisms leading to muscle dysfunction in these patients.

Summary—Chronic Obstructive Pulmonary Disease (COPD) is a debilitating disease impacting
negatively on health status and the functional capacity of patients. COPD goes beyond the lungs
and incurs significant systemic effects among which muscle dysfunction/wasting in one of the
most important. Muscle dysfunction is a prominent contributor to exercise limitation, healthcare
utilization and an independent predictor of morbidity and mortality. Gaining more insight into the
molecular mechanisms leading to muscle dysfunction/wasting is key for the development of new
and tailored therapeutic strategies to tackle skeletal muscle dysfunction/wasting in COPD patients.
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Introduction
Chronic Obstructive Pulmonary Disease (COPD) affects approximately 280 million people
worldwide(1-3), is the forth leading cause of death, claiming 2.75 million lives annually(4).
COPD is a debilitating disease impacting negatively on health status and limiting the
functional capacity of patients.

The largely irreversible nature of the airway obstruction defines the disease. Nevertheless,
the degree of airway obstruction measured as the forced expiratory volume in the first
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second (FEV1) correlates poorly with the severity of symptoms, health-related quality of life
(HRQoL) and survival.

Exercise intolerance is one of the main complains of COPD patients and it has been
classically attributed to respiratory system constrains. However, more than 15 years ago,
Killian et al(5) demonstrated that, as well as age matched controls, a large proportion of
COPD patients experience leg fatigue during exercise, implying that lower limb dysfunction
may contribute to reduced exercise capacity. Years later other investigators confirmed leg
fatigue as an objective contributor to exercise intolerance in COPD patients(6;7)*
independent of the degree of airway obstruction(8). A true dissociation between airway
obstruction and exercise tolerance can be defined. Lung function deterioration after lung
volume reduction surgery (LVRS) occurs faster than deterioration in exercise capacity(9).
Although improved after double lung transplant, exercise tolerance does not reach normal
predicted values(10;11). Exercise training improves exercise tolerance without improving
lung function(12). Moreover, pulmonary rehabilitation further improves exercise tolerance
following lung transplantation(13)*. All this evidence suggests that, besides lung function,
peripheral and circulatory factors are critical in limiting exercise capacity.

COPD is a preventable and treatable disease that goes beyond the lungs and incurs
significant systemic effects with an impact on morbidity and mortality(14). Different
phenotypes of the disease can be defined, particularly associated with systemic
consequences of the disease. Moreover, multidimensional grading systems that take into
account not only lung function, but also parameters reflecting the patient's perception and
the systemic impact of the disease, show a greater ability to predict important outcomes such
as mortality, compared to lung function assessment alone(15;16)*.

Among the systemic effects of the disease, peripheral muscle dysfunction is one of the most
important and is a prominent contributor to exercise limitation(8), healthcare utilization(17)
and an independent predictor of morbidity and mortality(18).

From a physiological point of view, muscle function can be defined as the ability to produce
force (muscle strength), and sustain a muscle contraction for a time (muscle endurance). The
latter is inversely related to muscle fatigue. Peripheral muscle dysfunction, particularly leg
muscle dysfunction, has been largely demonstrated in COPD patients. Peripheral muscle
strength(19-21), endurance(22-25), and fatigability(6;26) are impaired in COPD (Figure 1).

Peripheral muscles patho-physiological findings
Muscle dysfunction is characterised by two related phenomena: a) malfunctioning of the
muscle; and, b) net loss of muscle mass, which occurs in a subgroup of patients(18).

Skeletal muscle atrophy
Muscle mass loss is present in 18 to 36% of these patients(27;28) and is responsibly for
weight loss(28) evident in 17 to 35% of COPD patients depending on the studied
population(27-31). Indeed, muscle wasting is present in 6 to 21% of patients with normal
weight(27-29). Moreover, muscle loss relates to muscle strength(19;32;33) and exercise
tolerance(28;34-36) independent of the degree of airway obstruction(36). Hence, muscle
wasting is a better predictor of health related quality of life(37) and survival(38;39) than
body weight.

Net loss of muscle mass is responsible for the diminished muscle strength(40)* in these
patients by a decrease in functional units available for muscle contraction.
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Interestingly, when corrected by muscle mass, the differences in muscle strength between
COPD patients and healthy controls vanishes(19;41). This shows that a reduced muscle
mass relates to an impairment in muscle strength, but it does not account for abnormal
muscle endurance(41)* which seems to be related to alterations in skeletal muscle
bioenergetics. Moreover, muscle weakness can be present in early stages of the
disease(42;43)* and has also been related to ACE(44) and Vitamin D(45)* genotype in these
patients.

A number of patho-physiological findings responsibly for the malfunction of the muscle
have been described in the peripheral muscles of patients with COPD. Most of these
findings come from studies on thigh muscle biopsies from patients with COPD (Figure 1)
and are described below:

Fibre type re-distribution
Peripheral skeletal muscle of patients with COPD present an increment of type II (less
oxidative) fibre proportion to the detriment of type I (more oxidative) fibres(46-53). This
increment of type II fibres is characterized by a rise of the number of type IIx
fibres(47;49;54;55). The presence of hybrid fibres (I/IIa y IIa/IIx) has also been described,
suggesting that the transformation from one fibre type to another could constitute a
mechanism leading to the re-distribution of fibres seen in COPD(55).

Type IIx and hybrid fibres IIa/IIx present the highest level of atrophy(54). Since disuse-
related atrophy affects mainly type I fibres(56), the prevalence of type IIx atrophy may
suggest other causes of atrophy in COPD. Moreover, this kind of fibre type re-distribution
has been described in association with hypoxia(57) and energy imbalance conditions such as
anorexiaI(58).

Alteration in muscle bioenergetics
Several studies have demonstrated a deficit in peripheral muscle oxidative capacity in
COPD patients(51;59;60) which correlates with exercise tolerance(61). Furthermore, an
early lactate release during exercise has been described in these patients(62-64). This
phenomenon is explained by lactate production by leg muscles and not by the respiratory
muscles(65) and contributes to explain, at least in part, the exercise intolerance of COPD
patients(62). The early lactate release described during exercise in COPD patients can be
explained by different phenomena such as the impaired O2 delivery to the muscle, the
recruitment of fibre type II, with a predominant lactate metabolism, or the diminished
oxidative capacity of the muscle cell.

Alteration of the O2delivery/O2utilization relationship is associated with a lower efficiency
of the muscle in these patients. Also, the relationship phoshate/phospho creatine during sub-
maximal exercise is increased in the skeletal muscle of COPD patients(60). Moreover, these
patients have a higher leg VO2 at comparable sub-maximal exercise loads in comparison
with healthy controls(53;60), which might be explained by the higher percentage of fibre
type II. There is convincing evidence that the energetic cost is elevated in the peripheral
muscle of these patients(66). An increment of cytochrome oxidase activity has been
described, which may contribute to the incremented VO2 described for iso-load(67).

Interestingly, it has recently been shown that skeletal muscle of patients with COPD exhibit
lower Na/K ATPase activity compared to healthy controls. This may have major effects on
membrane excitability and fatigability(68)*.
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Alteration in muscle capillarization
Electro(69) and optic(50) microscopy studies have shown that there is a reduced capillary
density in peripheral muscles of patients with COPD. Moreover, the number of contacts
between capillaries and fibres it is also reduced(47;50). However, one study(53) did not
show these abnormalities in the muscle capillarization, but interestingly, a large proportion
of the patients included in this study had followed a pulmonary rehabilitation program.
Pulmonary rehabilitation has been associated with an increase in the number of capillary-
fibre contacts in patients with COPD(47). This alteration in the micro vascular bed may have
an impact on the tissue oxygenation particularly in those patients presenting with continuous
or intermittent hypoxemia or in situations of increased skeletal muscle oxygen demand such
as during exercise.

Pathogenic mechanisms of Muscle dysfunction
Despite the relevance of skeletal muscle dysfunction in COPD, the pathogenic mechanisms
of this phenomenon remain unclear. Several potential mechanisms have been related to
peripheral muscle dysfunction/wasting in patients with COPD: a) protein synthesis/
breakdown balance, b) nutritional abnormalities, c) muscle disuse, d) systemic
corticosteroids, e) tissue hypoxia and hypercapnia, f) alterations in muscle remodelling, g)
inflammation, h) oxidative/nitrosative stress; and, i) mitochondrial abnormalities. (Figure 1)

Protein synthesis/breakdown balance
Skeletal muscle mass is maintained by a delicate balance between protein synthesis and
protein breakdown and experiences hypertrophy and atrophy in response to altered
functional demands by adjusting either side of this equilibrium. Several studies showed an
abnormal protein turnover in patients with COPD(70-72).

The signalling pathways that govern muscle hypertrophy and/or atrophy have yet to be fully
defined. However, several key actors have been identified so far (Figure 2). Akt (protein
kinase B), an intracellular serine/threonine protein kinase, is a central regulator of involved
in the regulation of both hypertrophy and atrophy signalling pathways(73;74). Akt is
activated by insulin like growth factor-1 (IGF-1) through the phosphorylation of Akt by
phosphoinositide 3-kinase (PI3k) and, by inactivation of the forkhead box class O (FoxO) of
transcription factors, is able to block muscle protein breakdown by down regulation of the
muscle-specific E3-ligases atrogin-1 and muscle-specific RING finger protein 1 (MuRF1).
Phosphorylated AKT also stimulates a variety of hypertrophic pathways, including
mammalian target of rapamycin (mTOR) and glycogen synthase kinase-3beta (GSK3β).
mTOR can promote protein synthesis through the activation of 70-kD ribosomal S6 protein
kinase (p70S6K) and by the inhibition of eukaryotic translation initiation factor 4E binding
protein-1 (4E-BP1).

Several studies have focused on the balance between catabolic and anabolic hormones in
COPD(75-78). Ubiquitin-mediated protein degradation seems to have a role in skeletal
muscle protein breakdown in COPD patients. Doucet et al(79) showed increased levels of
atrogin-1 and MuRF1 mRNA, and of phosphorylated AKT and 4E-BP1 and FoxO-1
proteins in skeletal muscle of patients with COPD with muscle atrophy compared with
healthy control subjects, whereas atrogin-1, p70S6K, GSK3β, and FoxO-3 protein levels
were similar. Patients with COPD with muscle atrophy showed an increased expression of
p70S6K, GSK3β, and 4EBP1 compared with patients with COPD with preserved muscle
mass. They conclude that the increase in the expression of the ligases may occur via FoxO-1
while the over expression of the muscle hypertrophic signalling pathways could represent an
attempt to restore muscle mass.
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Plant et al(80)* showed increased levels of atrogin-1 and Nedd4, two ligases regulating
ubiquitin-mediated protein degradation, in the muscle of COPD patients compared to
healthy controls. They did not find differences in the level of phosphorilation of Akt,
GSK3β or p70S6K.

Nutritional depletion
Muscle wasting is the main mechanism leading to weight loss observed in patients with
COPD(28). It is important to differentiate “malnutrition” from “cachexia” being the first one
associated with a diminished calorie intake and a reduced basal metabolism with a good
response to nutritional support and a relatively preserved muscle mass. The latter better
reflects the situation of some COPD patients. A third condition, sarcopenia, has also been
described in patients with COPD and consist of a the loss of muscle mass without an overall
loss of weight(28;29;81).

In contrast to acute exacerbations of COPD (ECOPD), a reduction in calorie intake does not
seem to be relevant in stable patients(82). However, basal metabolism is increase in patients
with COPD(83), particularly in those with weight loss(84). Traditionally this increment was
explained by the increased oxygen utilization by the respiratory muscles(85). Nevertheless,
the increased oxygen uptake for an established workload(53;60) and the increased energy
expenditure during activities of daily living(86;87) may contribute to the increase in the
energy consumption.

The increase in the energy expenditure together with an unmatched calorie intake may
contribute to explain the waste of muscle mass in the cachectic COPD patients(83).

Muscle disuse
Dyspnoea associated with exercise is the main complaint of patients with COPD and
contributes to the sedentary habit of these patients. Activities of daily living are reduced in
COPD(88-92)*. Changes in the work load of the muscles have a dramatic effect in the
muscle size and metabolic capacity of the fibres(93-96). Skeletal muscle plasticity is
remarkable. The fact that exercise training contributes to improved muscle function in
patients with COPD, reinforces the role of muscle disuse in occurrence of skeletal muscle
dysfunction in these patients(60;97;98). Moreover, several of the skeletal muscle
abnormalities found in COPD patients are similar to other populations of deconditioned
patients(99).

Systemic corticosteroids
Corticosteroids associated myopathy is the most common pharmacological adverse event in
the muscle associated with COPD. It has been described as an acute and chronic steroid
myopathy, being the first rare condition not described in patients with COPD. The chronic
corticosteroid myopathy constitutes the classical condition associated to the chronic use of
systemic corticosteroids. It is characterized for diffuse muscle atrophy with a prominent
effect on fibre type IIx(100). There is a close relationship between the duration and doses of
the treatment and the functional and structural changes(101). The use of systemic
corticosteroids for relatively short periods of time does not seems to have a deleterious
effect on the muscle(102), while long-term use of corticosteroids, even in low doses had
significant effects in muscle strength and bulk(19).

Tissue hypoxia and hypercapnia
A chronic or intermittent alteration in arterial blood gas composition is a common feature in
COPD. The deleterious effect of tissue hypoxia on the muscle is supported by several
publications on healthy humans exposed to high altitude hypobaric hypoxia and animal
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models. Tissue hypoxia limits the production of energy and affects the protein
synthesis(103) leading to muscle loss(104;105), increasees in glycolytic enzyme activity and
a fall in oxidative enzymes activity(106;107). Hypoxia inhibits mitochondrial protein
synthesis(108) and muscle protein synthesis reducing myosin contents(109;110) and
oxidative capacity(51). Hypoxic patients have a lower proportion of type I fibres(55).
Hypoxemia can also trigger other of the mentioned pathogenic mechanisms related to
muscle dysfunction such as increase the levels of cytokines(111), oxidative stress(112), or
reduction of anabolic hormones(113). Hypoxemia has been related to mitochondrial
uncoupling and early lactate release during exercise in COPD patients (114). Hypercapnia
increments the intracellular acidosis in the skeletal muscle(115) which inhibit the activity of
oxidative enzymes(116) and accelerate protein degradation(117). Elevated levels of CO2
reduce the deposits of Pcr and ATP(118) in experimental models and COPD patients(119).

Alterations in muscle remodelling
Adult skeletal muscle fibres are terminally differentiated, their nuclei are post mitotic and
are thus not able to replicate. Muscle injury repairs and growth (hypertrophy and
hyperplasia) are accomplished by satellite cells. Satellite cells, the stem cells of adult
skeletal muscle first described by Mauro in 1961(120), reside beneath the basal lamina
closely juxtaposed to the muscle fibres. Satellite cells constitute around 30 % of the total
population of skeletal muscle cells in newborn and 5 % in adult life. Although mitotically
quiescent, they are activated and re-enter the cell cycle in response to different stimulus like
stress induced by weight-bearing exercise and, trauma including injury. In recent years, the
importance of satellite cells has been emphasised by the discovery that their proliferation is
evoked not only by acute muscle injury but also by muscle overuse and increased muscle
tension. Myogenic regulatory factors (MRFs) are part of a super family of basic helix-loop-
helix (bHLH) transcription factors involved in the satellite cell differentiation process(121)*.
The primary MRFs, MyoD and Myf-5, appear to be required for myogenic determination,
whereas the secondary MRFs, myogenin and MRF4, are required downstream of MyoD and
Myf-5 as differentiation factors (Figure 3)(122). Several animal models and cell culture
studies have helped to progress the understanding of muscle repair mechanisms. Few studies
assessed the molecular aspects of muscle remodelling in COPD. Plant et al(80) showed no
differences in skeletal muscle expression of Myf5, MyoD or myogenin. Crul et al showed no
differences in MyoD in stable COPD patients. However, patients undergoing an ECOPD
present with reduced levels of MyoD compared to healthy controls(78). Vogiatzis et al(123)
showed that exercise training increased the expression of MyoD in peripheral muscle of
patents with COPD. Lewis et al(124) showed an increment in IGF-I protein with exercise
training and a combination of exercise training and testosterone together with an increment
in myogenin mRNA expression. More studies in this field are needed to clarify whether
abnormalities in muscle differentiation may play a role in the muscle dysfunction/wasting
occurring in these patients.

Inflammation
COPD is recognized as an inflammatory disease(14). Whether or not originating in the
lungs, evidence of systemic inflammation in COPD has been previously shown in several
studies(29;125-127). Elevated pro-inflammatory cytokines(128)* have been associated with
reduced lean mass(29), muscle wasting(77), and increased rest energy expenditure(127;129).
Moreover, patients who fail to gain weight in response to nutritional support present high
circulating levels of TNFα(130).

The presence of local inflammation in the skeletal muscle of patients with COPD is still a
controversial issue. Some studies have shown increased levels of TNFα expression in the
peripheral muscle of COPD patients(131;132). Other investigators could not reproduce these
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findings(78;133)*. Cell culture models showed that pro-inflammatory cytokines such as
TNFα induced protein breakdown and interfere with muscle differentiation process through
the activation of NFkB via increased production of mitochondrial ROS(134-136). Whether
this can be extrapolated to COPD patients remains to be elucidated. Interestingly, Agusti et
al demonstrated an increased in NFkB-DNA binding activity in the peripheral muscle of
COPD patients compared to healthy controls(137).

Oxidative/Nitrosative stress
An imbalance between oxidants and antioxidant capacity of the cells can lead to oxidative
damage of protein, lipids and nucleic acids, a process known as oxidative stress. Several
studies have shown increased levels of systemic(133;138-144) and local oxidative/
nitrosative stress(144-148)*.

Oxidative stress can alter muscle contractility(149) potentially affecting muscle strength and
contribute to muscle fatigue. The administration of antioxidants improve exercise tolerance
in COPD patients(150), showing a direct effect of ROS on exercise capacity in these
patients.

Oxidative stress can also contribute to accelerate protein breakdown(151-154) as a potential
mechanism leading to muscle wasting(145;155). It is worthwhile to mention levels of
uncoupling protein 3 in the skeletal muscle (UCP3) are reduced(156), particularly in the
subgroup of patients with low BMI(114) and in the more oxidative fibres(157). UCP3 is a
protein that may protect mitochondria against lipotoxicity preventing fatty acid from ROS-
induced oxidative damage in cases where fatty acid influx exceeds the capacity to oxidise
them(97). Moreover, UCP3 levels correlates with fat free mass (FFM) index in skeletal
muscle of COPD patients(114) and may account for a reduced ability to prevent fatty acids
oxidation favouring lipid peroxidation, particularly at mitochondria level.

Mitochondrial abnormalities
When compared with healthy controls, mitochondrial density is reduced in the skeletal
muscle of patients with COPD(158). One study has shown that the acceptor control ratio
(ACR), an index of mitochondrial complexes coupling in ex vivo mitochondria, is reduced in
patients with COPD and low body mass index (BMI) compared with COPD patients with
normal BMI and healthy controls(114). Moreover, the levels of ACR correlated significantly
with PaO2 and with early lactate release during exercise in this population of patients(114).
Interestingly, Picard et al showed a reduced mitochondrial oxygen uptake in COPD patients,
however, when normalized by mitochondrial density this difference vanished(159)*. Puente-
Maestu et al also showed reduced mitochondrial oxygen uptake in COPD patients with
normal BMI with a reduced acceptor control ratio(160)*. These authors also showed a
higher cytochrome c release in ex vivo mitochondria stimulated with H2O2(161)*. Release
of cytochrome c constitutes an early event in the signalling of apoptosis. Agusti et al showed
increased skeletal muscle apoptosis in patients with COPD and low BMI compared with
COPD with normal BMI and healthy controls(162).

Peroxisome-proliferator-activated receptors (PPARs) and PPAR-γ co-activator 1α (PGC-1α)
have been shown to be key regulators of skeletal muscle oxidative capacity(163),
mitochondrial biogenesis(164) and fibre-type shifting towards more oxidative
fibre(165;166). Remels et al showed reduced PPARδ protein levels and PGC1α mRNA
expression in the skeletal muscle of patients with COPD(167). Moreover, cachectic COPD
patients showed lower levels of PPARα mRNA expression compared to non-cachectic
patients(167).
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Interventions directed to improve peripheral muscle dysfunction
Without any doubt, exercise training is the most successful strategy to treat muscle
dysfunction/wasting in patients with COPD(168;169). Exercise training improves exercise
tolerance(170;171)* through improving muscle strength, endurance and reducing
fatigue(168;169). Exercise training improves body weight through improving FFM(172),
skeletal muscle oxidative capacity and fibre type distribution(60;97;173); and is clearly
recommended for COPD patients with exercise intolerance independent of the degree of
severity of airway obstruction(174).

Nutritional support has proven not to be effective in improving weight in patients with
COPD as a group(175). However, it is worthwhile mentioning that the absence of response
to nutritional support has been associated with higher levels of markers of systemic
inflammation(130). When subgroups of COPD patients have been analyzed, it has been
shown that nutritional support improves survival in those patients that gain more than 2 kg
of weight(176) or 1 Kg.m-2 of BMI(177). In contrast to nutritional support, most trials of
pharmacological anabolic replacement have documented significant improvements in
muscle mass and strength(178-180). However, the absence of an impact of increased muscle
mass on physiological effects such as exercise tolerance(178-182) and the fact that the use
of anabolic replacement is not exempt from adverse reactions such as benign prostatism,
prostate cancer, erythrocytosis and oedema (183), do not encourage the use of this therapy.

Conclusion
The systemic nature of COPD is recognized. Different phenotypes of the disease can be
defined, and are particularly associated with systemic consequences of the disease.
Peripheral muscle dysfunction/wasting, one of the most important systemic effects, relates to
several patho-physiological findings caused by multiple pathogenic mechanisms. Recent
studies in COPD highlighted the role of the ubiquitine proteasome system in the skeletal
muscle protein breakdown in COPD patients. A malfunctioning of the mitochondria has also
recently been identified in these patients. Exercise training constitutes the most successful
strategy orientated to reverse peripheral muscle dysfunction/wasting.
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Figure 1.
Peripheral muscle dysfunction in COPD.
Skeletal muscle functional disorders and its relationship with the responsible patho-
physiological changes and pathogenic mechanisms leading to muscle dysfunction/wasting in
COPD patients.
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Figure 2.
Signalling pathways that govern muscle hypertrophy and/or atrophy.
Complexity of pathways governing skeletal muscle hypertrophy and atrophy. See main text
for explanation and abbreviations.
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Figure 3.
Skeletal muscle differentiation regulatory factors
Satellite cells re-enter the cell cycle in response to acute muscle injury and muscle overuse
and tension. Primary (MyoD and Myf5) and secondary (Myogenin and MRF4) myogenic
regulatory factors (MRFs) are required for myogenic determination (myogenic precursor
cell [mpc]) and differentiation (differenciated myocite).

Rabinovich and Vilaró Page 21

Curr Opin Pulm Med. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


