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ABSTRACT ADP influx and ADP phosphorylation may alter mitochondrial free [Ca2þ] ([Ca2þ]m) and consequently mitochon-
drial bioenergetics by several postulated mechanisms. We tested how [Ca2þ]m is affected by H2PO4

� (Pi), Mg2þ, calcium uni-
porter activity, matrix volume changes, and the bioenergetic state. We measured [Ca2þ]m, membrane potential, redox state,
matrix volume, pHm, and O2 consumption in guinea pig heart mitochondria with or without ruthenium red, carboxyatractyloside,
or oligomycin, and at several levels of Mg2þ and Pi. Energized mitochondria showed a dose-dependent increase in [Ca2þ]m after
adding CaCl2 equivalent to 20, 114, and 485 nM extramatrix free [Ca2þ] ([Ca2þ]e); this uptake was attenuated at higher buffer
Mg2þ. Adding ADP transiently increased [Ca2þ]m up to twofold. The ADP effect on increasing [Ca2þ]m could be partially attrib-
uted to matrix contraction, but was little affected by ruthenium red or changes in Mg2þ or Pi. Oligomycin largely reduced the
increase in [Ca2þ]m by ADP compared to control, and [Ca2þ]m did not return to baseline. Carboxyatractyloside prevented the
ADP-induced [Ca2þ]m increase. Adding CaCl2 had no effect on bioenergetics, except for a small increase in state 2 and state
4 respiration at 485 nM [Ca2þ]e. These data suggest that matrix ADP influx and subsequent phosphorylation increase
[Ca2þ]m largely due to the interaction of matrix Ca2þ with ATP, ADP, Pi, and cation buffering proteins in the matrix.
INTRODUCTION
Matrix free Ca2þ ([Ca2þ]m) may play a major role in regu-
lating mitochondrial function. Studies have shown a correla-
tion between increased bioenergetics and increased [Ca2þ]m
(1–6). However, excess [Ca2þ]m predisposes the mitochon-
dria to form and open the permeability transition pore
(mPTP) (7–11), a key factor in cell apoptosis; inhibition
of mPTP formation reduces ischemia-reperfusion injury
(12–17). The importance of [Ca2þ]m in both physiological
and pathological conditions implies a necessity to tightly
regulate [Ca2þ]m.

[Ca2þ]m is regulated in part by voltage-dependent cation
fluxes via a series of poorly identified cation channels and
exchangers on the inner mitochondrial membrane (IMM)
(7,8,10,18). The primary route for matrix Ca2þ uptake is
via the ruthenium-red (RR)-sensitive Ca2þ uniporter (CU),
whereas the principal Ca2þ efflux pathway is the Naþ/
Ca2þ exchanger (NCE). There may also be Ca2þ efflux
through a Naþ-independent Ca2þ exchanger (NICE), puta-
tively a Ca2þ/Hþ exchanger (CHE) (19–22). Transport
through the CU and NCE are dependent on the mitochon-
drial membrane potential (DJm), whereas the CHE is
thought to be concentration-, and not DJm-dependent
(21,23,24). Several independent studies have shown a corre-
lation between a larger DJm and a higher [Ca2þ]m (10,22).

In measuring [Ca2þ]m, we observed an increase in
[Ca2þ]m with no added buffer CaCl2 during state 3 respira-
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tion, a state in which DJm is decreased. This paradoxical
increase in [Ca2þ]m implies a mechanism other than DJm

in modulating [Ca2þ]m. We tested five mechanisms that
might play a role in this phenomenon:

The first mechanism that might explain an increase in
[Ca2þ]m is allosteric activation of the CU by ADP to
increase [Ca2þ]m (25). As ADP becomes phosphorylated,
allosteric activation would decrease as [ADP] falls and
[Ca2þ]m would return to the preexisting level. A second
mechanism is that ADP phosphorylation might also induce
a large matrix volume contraction, thereby raising [Ca2þ]m.

A third possible mechanism is modulation of [Ca2þ]m by
precipitation of free Ca2þ with Pi, such as Ca3(PO4)2 (26).
The complexing of Ca2þwith Pi is dependent on the product
of concentrations of different species of Pi and Ca2þ. Thus,
a decrease in matrix [Pi] would facilitate an increase in
[Ca2þ]m. In this situation, matrix [Pi] would be lower during
state 3 respiration, as Pi becomes phosphorylated to ADP.
After phosphorylation of ADP, matrix [Pi] would increase
to near the level before phosphorylation, as Ca2þ would
again form a complex with Pi.

A fourth possible mechanism is that the increased
[Ca2þ]m results from basic physicochemical differences,
i.e., different binding affinities (Kd) of ADP and ATP for
Ca2þ (27). These differences in Kd predict an increase in
[Ca2þ]m whenever the mitochondrial ADP/ATP ratio
increases, and vice versa. Since ATP, ADP, and Pi bind
variably to other cations (e.g., Mg2þ and Hþ) as well,
a change in concentration of these ions may also result in
a significant change of free ATP, ADP, and Pi (ATP
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ADP3�, and H2PO4
�) and thus alter the buffering capacity

for Ca2þ.
A fifth possible mechanism is that the altered bioenergetic

state during state 3 respiration leads to release of matrix
Ca2þ stores by an unknown mechanism.

To explore which of these possible mechanisms might
underlie the large change in [Ca2þ]m during transition to
and from state 3 respiration, we measured matrix [Ca2þ]m
as a function of extramatrix free [Ca2þ] ([Ca2þ]e) by
increasing buffer [CaCl2]. We also examined changes in
[Ca2þ]m at a higher and lower buffer [Pi] and [Mg2þ], and
assessed the effect of D[ADP] on matrix volume. Experi-
ments were done with or without the CU blocker RR, the
F1F0-ATPase blocker oligomycin (OMN), and the ADP/
ATP carrier (AAC) blocker carboxy-atractyloside (CATR).
Naþ/Ca2þ exchange (NCE) was inactive and was eliminated
as a factor because there was no Naþ present in the experi-
mental buffer.
MATERIALS AND METHODS

Fluorescence measurements

Fluorescence spectrophotometry was used to measure matrix free Ca2þ,
NADH, pH, and DJm (Qm-8, Photon Technology, Birmingham, NJ)

(28–30). Isolated mitochondria (5 mg/ml) were incubated for 20 min at

room temperature (25�C) with 5 mM indo-1 AM to measure [Ca2þ]m or

with 5 mM BCECF AM to measure pHm (Invitrogen, Carlsbad, CA)

followed by suspension in 25 ml isolation buffer and repeated centrifuga-

tion at 8000 � g. The AM form of the dyes is taken up into the matrix

where it is deesterified and retained. The dye-loaded pellet was resuspended

in 0.5 ml isolation buffer, and protein concentration was measured again

and diluted to 12.5 mg mitochondrial protein/ml. In other mitochondria,

background autofluorescence (AF), which at 456 nm represents NADH

(redox state), was measured and DJm was determined using rhodamine

(Rh) 123. Mitochondria were kept on ice for the duration of the studies.

All studies were conducted at room temperature. Please refer to the Sup-

porting Material for detailed information on methods to assess matrix

and extramatrix [Ca2þ]m and Mg2þ, redox state, matrix pH, DJm, matrix

volume, and respiration.
Experimental groups and protocol

Guinea pig heart mitochondria were isolated (see Supporting Material) as

described previously (31,32) and diluted (33). Isolated mitochondria were

divided into seven treatment groups: control (CON, 5 mM Pi), high Pi
(HP, 10 mM Pi), low Pi (LP, 1 mM Pi), RR at start (RRS), RR later, after

CaCl2 addition (RRL), and OMN or CATR, each given at t ¼ �120 s

(Fig. 1). The CON mitochondria were suspended (0.5 mg/ml) in experi-

mental buffer containing (in mM) 130 KCl (EMD Biosciences, San Diego,

CA), 5 K2HPO4, 20 MOPS, 0.016 bovine serum albumin, and 0.04 EGTA,

pH 7.15 (adjusted with KOH). To adjust for osmolarity, the HP and LP

experimental buffers were adjusted to contain 123 mM KCl and 10 mM

K2HPO4 (HP) or 136 mM KCl and 1 mM K2HPO4 (LP). MOPS, BSA,

and EGTA concentrations and pH were the same for all groups. In the

RRS group, 25 mM RR was added to the CON experimental buffer before

energizing mitochondria. In the RRL group, 25 mMRR was added after the

addition of CaCl2. In the OMN and CATR groups, 100 mMOMN or 1.3 mM

CATR was added before energizing mitochondria. In selected studies,

1 mM MgCl2 was present while the CaCl2 and ADP were added (see Sup-

porting Material).
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Experiments were initiated at t ¼ �120 s, when OMN, CATR, and RR

were added to comprise the OMN, CATR, and RRS groups; at t ¼ �90 s,

mitochondria were added (Fig. 1). At t ¼ 0 s, pyruvic acid (PA, 0.5 mM)

was added, followed by either of two concentrations of CaCl2 (10 or

25 mM in deionized H2O) or vehicle (0 CaCl2) at t ¼ 120 s. At t ¼
180 s, RR was added to the RRL group. At t ¼ 240 s, ADP (250 mM)

was added, followed by 4 mM of the protonophore carbonylcyanide

m-chlorophenylhydrazone (CCCP) at t ¼ 400 s to maximally depolarize

the IMM. All buffers and reagents, including substrates, were Naþ-free to
prevent NCE activation. Inactivity of the NCE was verified by comparing

data from experiments with and without added CGP-37157, a specific mito-

chondrial NCE inhibitor (data not shown). When no drug or CaCl2 was

added, the appropriate vehicle was added to the mitochondrial suspension.

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO) unless

noted otherwise.
Statistical analyses

All data are presented as the mean 5 SE. Repeated-measures ANOVA

followed by a post hoc analysis using Student-Newman-Keuls’ test was per-

formed to determine statistically significant differences between and within

groups. Data for analysis were collected at the times noted above. A P value

of <0.05 (two-tailed) was considered significant.
RESULTS

Extramatrix and matrix free [Ca2þ] and inhibition
of CU

Adding 0, 10, or 25 mM CaCl2 to the mitochondrial suspen-
sion caused a rapid, concentration-dependent increase in
[Ca2þ]e to initial values of 20 5 3, 114 5 13, and 485 5
40 nM (Fig. 2) due to the presence of 40 mM of EGTA.
This was followed by a slower, steady decline in [Ca2þ]e
as Ca2þ was transported into mitochondria via the CU;
this was most prominent after adding 25 mM CaCl2. Trans-
port of Ca2þ through the CU was confirmed in the RR
groups because RR blocked the subsequent decrease in
[Ca2þ]e. Adding ADP did not significantly affect [Ca2þ]e
in the absence of RR. In the presence of RR there was
a significant decrease in [Ca2þ]e when ADP was added.

Adding CaCl2 caused a concentration-dependent increase
in matrix [Ca2þ]m (Fig. 3), which took place via the CU, as
verified again by the nearly complete block in response to
RR (Fig. 3 C). After adding 10 mM CaCl2 (initially equiva-
lent to 114 nM [Ca2þ]e), [Ca

2þ]m increased from 80 5
5 nM to 183 5 7 nM. After adding 25 mM CaCl2 (initially
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equivalent to 485 nM [Ca2þ]e), [Ca
2þ]m increased from

80 5 5 to 518 5 44 nM. Note that [Ca2þ]m (Fig. 3)
remained at a steady-state level, whereas [Ca2þ]e (Fig. 2)
continued to decrease in the CON group from its initial
value of 485 nM [Ca2þ] (after adding 25 mM CaCl2).

Adding ADP caused a proportional increase in [Ca2þ]m in
the CON, RRS, and RRL groups (Fig. 3), i.e., the magnitude
of increase was dependent on the [Ca2þ]m before ADP was
added. The effect of ADP was absent in the RR group with
10 mM added CaCl2, as [Ca

2þ]m was low (805 5 nM). ADP
addition increased [Ca2þ]m only a little (Fig. 3 C), probably
because adding CaCl2 after RR did not increase [Ca2þ]m.
The effect of ADP on increasing [Ca2þ]m was similar in
the RRL and CON groups and smaller in the RRS group
after adding CaCl2. There was an attenuated increase of
[Ca2þ]m (25 mMCa2þ; 485 nM [Ca2þ]e), though not a signif-
icant one, in the RRL versus the CON group. Matrix uptake
of Ca2þ continued in the CON group. Adding RR after 180 s
stopped this slow uptake, resulting in a smaller increase in
[Ca2þ]m after adding 10 mM (114 nM [Ca2þ]e). However,
extending the time of Ca2þ uptake before adding RR in
the 10-mM group resulted in an increase in [Ca2þ]m beyond
180 s similar to that of the CON group. Adding ADP after
RR then increased [Ca2þ]m as much as in the CON group
(data not shown).

[Ca2þ]m increased as a function of [Ca2þ]e, and this was
attenuated during state 3 respiration (Fig. 4). These data
show that [Ca2þ]m reached a value twofold higher than
that of [Ca2þ]e at t ¼ 180 s (state 2 respiration). [Ca2þ]m
was 80 5 5, 212 5 10, and 518 5 44 nM, whereas
[Ca2þ]e was 265 3, 1125 12, and 2665 12 nM after add-
ing 0, 10, and 25 mM CaCl2. This plot also shows that
[Ca2þ]m increased 1.75- and twofold during state 3 versus
state 2 respiration (from 518 5 44 nM to 1039 5 83 nM),
whereas [Ca2þ]e decreased slightly. These data support the
proposal that as more Ca2þ becomes buffered in the matrix
after CaCl2 addition, some is released during ADP/ATP
antiport and ADP phosphorylation, possibly due to
Biophysical Journal 99(4) 997–1006
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a decrease in matrix Ca2þ buffering sites (e.g., ADP,
proteins).
Effect of buffer Pi and Mg2þ on matrix free [Ca2þ]

The effect on [Ca2þ]m of altering buffer [Pi] was evaluated
at different [CaCl2]e and during ADP addition (Fig. 5).
Buffer [KCl] was adjusted against [K2HPO4] to maintain
the same osmolarity. With no added CaCl2, there were no
detectable changes in [Ca2þ]m among the three [Pi] groups.
A change in buffer [Pi] from 5 to 1, and from 5 to 10 mM,
did not significantly affect [Ca2þ]m after adding CaCl2;
however, at 25 mM CaCl2 and 1 mM [Pi] (LP), the initial
(fast) uptake of Ca2þ was followed by a slow decrease in
[Ca2þ]m. The increase in [Ca2þ]m after adding ADP did
not differ among the Pi groups.

In a few studies, 1 mM MgCl2 was added to the buffer
(Fig. S1 A in the Supporting Material). Calculated matrix
[Mg2þ] (see Supporting Material, Methods) was 0.51 5
0.03 mM without added MgCl2 and 0.85 5 0.02 mM after
adding 1 mMMgCl2 to the buffer. In the presence of MgCl2
the same amount of added CaCl2 resulted in a lesser rise in
[Ca2þ]m; however, adding ADP caused a proportional
increase in [Ca2þ]m when more CaCl2 was added to the
buffer to counter the Mg2þ-inhibited transport of Ca2þ

through the CU (Fig. S1 A).
Biophysical Journal 99(4) 997–1006
Effect of ADP versus ATP onmitochondrial matrix
volume versus [Ca2þ]

Added ADP resulted in a transient volume decrease of 7%
(photon count) with a corresponding 51% increase in
[Ca2þ]m in the 25 mM CaCl2 group, whereas the maximal
volume increase after valinomycin (VAL) was 52% with
a corresponding decrease in [Ca2þ]m after VAL of only
18% (Fig. S1 B). The ratio of volume to [Ca2þ]m during
responses to VAL over ADP—(52/18) divided by (7/51) ¼
0.05—indicated that this small decrease in volume caused
by addition of ADP could account for only ~5% of the
increase in [Ca2þ]m.
Effect of blocking ADP and ATP transport on
matrix free [Ca2þ]

Mitochondria were treated with OMN or CATR, which
inhibit the F1F0-ATPase and the AAC respectively, to eval-
uate the effect of the organic phosphates ADP and ATP on
[Ca2þ]m. In the presence of OMN, [ADP]m and [ATP]m
change when ADP is added, because ATP is exchanged
for ADP at the AAC. With blocked phosphorylation of
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ADP by OMN, matrix [Pi] is expected to remain unchanged.
In the presence of CATR, however, there can be no changes
in [ADP]m or [ATP]m during added buffer ADP, because the
AAC is blocked.

OMN and CATR had no effect on [Ca2þ]m when 0, 10, or
25 mM CaCl2 was added; thus, there was no effect of these
drugs on matrix Ca2þ uptake (Fig. 6), but the response to
ADP after OMN was a small but significant increase in
[Ca2þ]m. Moreover, this increase in [Ca2þ]m was sustained
beyond the period when ADP would have been completely
phosphorylated. This increase in [Ca2þ]m may indicate
limited ADP entry into the matrix in exchange for ATP
efflux. The [Ca2þ]m response to ADP was abolished after
CATR as both ATP efflux and ADP influx were blocked.
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dria (i.e., reduced NADH (A)) as energy contained in DJm was consumed,
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O2 consumption, but adding CaCl2 did not produce any additional effect on

respiration. See Table 1 for summary data and statistics on respiration.
ible oxidation of NADH (i.e., a decrease in signal) in all
groups, except in the OMN and CATR groups (data not
shown), because ADP transport and phosphorylation were
blocked in these groups. NADH returned to pre-ADP
levels as ADP was phosphorylated to ATP. The presence
of RR or a different [Pi] did not affect redox state (data
not shown).
Effect of increasing [Ca2þ]m on DJm

Energizing mitochondria with PA increased DJm in all
groups. Adding CaCl2 had no significant effect on DJm

(CON, Fig. 7 B). Adding ADP caused a transient and revers-
ible partial depolarization of DJm in all groups, as ADP
was transported into the matrix and phosphorylated to
ATP, which was also not affected by added CaCl2. DJm

was not affected by RR or at different buffer [Pi] or
[Mg2þ] (data not shown). The ADP-induced depolarization
did not occur when ADP and ATP transport was prevented
Biophysical Journal 99(4) 997–1006
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by CATR or when phosphorylation of ADP to ATP was
blocked by OMN (data not shown). CCCP maximally depo-
larized the IMM.
Effect of increasing [Ca2þ]m on matrix pH

Matrix pH increased on energizing mitochondria with PA.
Adding CaCl2 had no significant effect on matrix pH com-
pared to vehicle (CON, Fig. 7 C). Adding ADP acidified the
matrix as protons enter the matrix through the F1F0ATP-ase
to generate ATP. This alteration in pH by ADP was
not affected by adding RR or by altering buffer [Pi], but
was inhibited by CATR or OMN (data not shown). Adding
CCCP causedmatrix acidification, as this protonophore facil-
itates transport of protons across the IMM (data not shown).
Effect of increasing [Ca2þ]m on respiration

Respiration rates in states 2 and 4 were significantly
increased only at 518 nM [Ca2þ]m (Fig. 7 D and Table 1);
state 3 respiration was higher but unaltered at any
[Ca2þ]m. At 183 nM [Ca2þ]m, respiration rates in states 2
and 4 were not significantly altered. Therefore, the respira-
tory control index (RCI) remained unchanged at 183 nM
[Ca2þ]m, and slightly decreased at 518 nM [Ca2þ]m, due
to the change in state 4 respiration. Adding MgCl2 had no
added effect on state 3 or state 4 respiration (Fig. S1 C).
Respiratory effects of [Ca2þ]m were also not altered at any
[Pi] (data not shown).
DISCUSSION

Changes in matrix free [Ca2þ]m during respiration

This studydemonstrates that in energizedheartmitochondria,
a transient ADP influx coupled to instantaneous ATP efflux
markedly increases [Ca2þ]m. Moreover, this study demon-
strates that acute physiological changes in [Ca2þ]m have little
effect on mitochondrial bioenergetics other than to slightly
increase resting-state respiration. The ADP-induced rise in
[Ca2þ]m may be in large part due either to the lower Ca2þ

buffering capacity of ADP versus ATP or to an ADP-induced
protein release of stored matrix Ca2þ. This transient increase
in [Ca2þ]m is not measurably altered by Mg2þ or Pi,, and is
little affected by an ADP-induced matrix contraction, or by
ADP-induced uptake of matrix Ca2þ via the CU.
TABLE 1 O2 consumption in different respiratory states

State 2 State 3 State 4 RCI

0 CaCl2 0.91 5 0.04 14.07 5 0.58 1.01 5 0.05 13.6 5 0.41

10 CaCl2 0.87 5 0.04 14.15 5 0.58 1.08 5 0.02 13.0 5 0.36

25 CaCl2 1.04 5 0.03* 14.44 5 0.48 1.19 5 0.02* 12.1 5 0.28*

Oxygen consumption was measured in mmol O2/h/mg protein. Adding

CaCl2 (485 nM [Ca2þ]e) significantly increased O2 uptake in states 2 and

4 and lowered RCI (state 3/state 4 ratio).
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The uptake of [Ca2þ]m at a given [Ca2þ]e (Fig. 4)
supports earlier studies (34,35) showing that Ca2þ influx
through the CU causes Ca2þ to accumulate in the matrix,
as predicted by the Nernst equation. However, the twofold
gradient between [Ca2þ]m and [Ca2þ]e observed in this
study after adding CaCl2 (114 or 485 nM [Ca2þ]m) is
smaller than that reported in earlier studies (34,35). Differ-
ences in species, isolation techniques, energy state, buff-
ering capacities, equilibration rate, and measurement and
calibration techniques for ionized [Ca2þ] could underlie
some of the differences.

The small, steady decline in [Ca2þ]e after addition of
ADP (Fig. 2) could be due to increased sequestration of
matrix free Ca2þ by matrix proteins. The continuous
decrease in [Ca2þ]e without any further change in [Ca2þ]m
after a rapid rise in [Ca2þ]m upon addition of 25 mM
CaCl2 to the buffer (485 nM [Ca2þ]e) is an interesting
phenomenon that might also be explained by accumulating
matrix Ca2þ storage in the form of Ca-PO4 complexes (26),
such as Ca3(PO4)2, as Ca2þ enters the matrix through the
CU. Formation of these complexes could result in a
steady-state [Ca2þ]m during continued matrix Ca2þ uptake,
as additional Ca2þ entering the matrix will precipitate with
PO4

3�. Although there is no direct evidence for matrix
Ca-PO4 complex formation, there are indications that it
occurs (36–38). However, we could not observe a clear
difference in [Ca2þ]m at different buffer [Pi], perhaps
because of the low, but physiologic, [Ca2þ]m .

Adding ADP at any [Ca2þ]m caused a further 1.6- to
2-fold increase in [Ca2þ]m during state 3 compared to state
2 respiration (Fig. 4). This effect of ADP on [Ca2þ]m was
more than additive at higher [Ca2þ]m and is unlikely to be
due to activation of the CU by ADP because the ADP-
induced increases in [Ca2þ]m were not appreciably reduced
by RR (Fig. 3). Although ADP transiently reduced matrix
volume, this was not in itself sufficient to account for the
much larger increases observed in [Ca2þ]m. Further, it is
possible that a change in light scattering during state 3 respi-
ration may also arise from a change in mitochondrial shape.
Overall, these data suggest that matrix contraction by ADP
is not an important factor.

There was no clear correlation among the different buffer
[Pi]s and increases in [Ca2þ]m on ADP addition. The rela-
tionship between [Ca2þ]m and [Pi] has been shown previ-
ously (26), although at a relatively high [Ca2þ]m, and that
study did not examine for any difference in [Ca2þ]m during
state 3 respiration. It was not feasible to use Pi carrier
blockers in our experiments to examine the importance of
matrix [Pi] on [Ca2þ]m during state 3 respiration, because
these blockers affect ADP/ATP transport as well (39).

In contrast to [Pi], the differential binding of ADP and
ATP to Ca2þ apparently plays an important role in the
ADP-induced increase in [Ca2þ]m, as shown by the slight
increase of [Ca2þ]m in the OMN versus the CATR group.
The lack of an increase in [Ca2þ]m on ADP addition after
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blocking the AAC shows that the ADP-induced increase in
[Ca2þ]m is not due to contamination of ADP with divalent
cations that can bind to indo-1. The small but significant
increase in [Ca2þ]m in the OMN group shows that a change
in [ADP]m, without altering matrix [Pi], can change
[Ca2þ]m. As discussed below, ADP binds to Ca2þ with
a 10-fold lower affinity than does ATP; therefore, a decrease
in matrix ATP due to ADP/ATP exchange alone may explain
some of the increase in [Ca2þ]m. Another possible explana-
tion for the ADP effect is release of ionized Ca2þ from
proteins similar to calsequestrin, a release mechanism that
is observed in the sarcoplasmic reticulum (40).

To better understand how ATP, ADP, and Pi affect
[Ca2þ]m, it is first necessary to understand how these mole-
cules are taken up into mitochondria and how they differen-
tially bind to Ca2þ. ADP3� enters mitochondria via the
AAC in exchange for ATP4�. Since this transport is electro-
genic, and constitutes a net influx of one positive charge, it is
driven by, and uses the energy of, the DJm (41–43). In the
matrix, ADP is phosphorylated to ATP by the F1F0ATP-ase,
a process driven by proton flux into the matrix. The Pi
carrier is responsible for electroneutral cotransport of Pi

�/
Hþ (or Pi

�/OH� antiport), which is driven by the proton
gradient, DpH (44–46).

Phosphorylation of ADP and dephosphorylation of ATP
are dependent on the mitochondrial bioenergetic state
(e.g., DpH) and ATP utilization by the cell, respectively.
ADP levels rise in the matrix when extramatrix ADP is
added and the ATP that is formed is ejected rapidly from
the matrix by the AAC; matrix ADP levels remain elevated
until all ADP is phosphorylated to ATP (4,47). It is impor-
tant to note that the dissociation constants (Kds) for ATP
and ADP (Table S1) indicate a 10-fold greater binding
affinity of Ca2þ and Mg2þ with ATP4� over ADP3�, and
a twofold greater binding affinity of Mg2þ versus Ca2þ to
these phosphates. The binding affinities of these phosphate
entities are uniformly high for Hþ and very low for Kþ.
Our premise is that these differences in binding affinities
for ATP and ADP largely account for the ADP-induced
increase in [Ca2þ]m.

The results of these experiments imply a small role for Pi
and a larger role for the ADP/ATP ratio in buffering of Ca2þ

by mitochondria. Nevertheless, the ADP-induced increase
in [Ca2þ]m may be ascribed in part to other mechanisms
that we explored. Our experiments performed with RR indi-
cate that the ADP-induced Ca2þ flux through the CU cannot
explain the phenomenon. The NCE was not active in the
Naþ-free buffer as verified by the NCE blocker CGP
37157. However, as there are currently no known blockers
for Naþ-independent Ca2þ exchange (NICE) such as
Ca2þ/Hþ (CHE), it is not possible to exclude a decrease in
Ca2þ efflux through NICE during state 3 respiration as an
alternative explanation for the net increase of Ca2þ flux
into the matrix (Jnet ¼ JCU � JNICE) that causes the increase
in [Ca2þ]m. Because Ca2þ efflux through the NICE is
dependent on both DpH ([Hþ]e � [Hþ]m) and D[Ca2þ]
([Ca2þ]m � [Ca2þ]e) (20,48), we would not expect a major
change in Ca2þ efflux through the NICE during state 3 respi-
ration, since D[Ca2þ] increases (Fig. 4) and DpH decreases
(Fig. 7 C).

Another possible factor for the ADP-induced increase in
[Ca2þ]m is the change in pH upon ADP addition. During
state 3 respiration, pHm decreases, albeit slightly (Fig. 7 C),
due to influx of protons through the F1F0-ATPase (49).
This transient acidification might affect the Kd between
indo-1 and Ca2þ (50). However, the measured pH change
was minimal (0.03 pH unit) and the reported changes in
Kd were measured with a DpH of 1 pH unit. We expected
the effect of DpH on [Ca2þ]m to be minimal in this study
because of 1), the small change in pHm, 2), the difference
in [Ca2þ]m after ADP addition in the presence of low buffer
Pi (no significant change in pH compared to control; data not
shown), and 3), the increase in [Ca2þ]m after ADP addition
in the presence of OMN (no significant change in pH on
ADP addition; data not shown). Finally, the ADP-induced
increase in [Ca2þ]m could be due to an alteration in Ca2þ

buffering capacity by TCA cycle intermediates, which can
bind to Ca2þ as well (51).
Changes in [Ca2þ]m and mitochondrial
bioenergetics

These experiments did not show significant changes in mito-
chondrial bioenergetics when CaCl2 was added to the buffer
except for small increases in respiration in states 2 and 4,
and only after 25 mM CaCl2. Possible explanations for the
increased resting-state respiration are opening of Ca2þ-
dependent Kþ channels (31,52) or proton cycling through
the putative NICE (48). In a previous study (53), in which
respiration was measured in permeabilized cardiac cells, it
was reported that adding CaCl2 increased state 2 respiration,
but decreased state 3 respiration. However, other studies
report that an increase in [Ca2þ]m is associated with an
increase in state 3 as well as state 2 respiration (5,54,55).
In many of these studies, though, higher concentrations of
CaCl2 might have induced a large increase in respiration
due to other factors, such as mPTP opening. In this study,
irreversible mPTP opening did not occur, as there was no
decrease in DJm at the highest [Ca2þ]m observed with
ADP. The small increase in O2 consumption on CaCl2
addition was not accompanied by other changes in bioener-
getics, indicating that any slight uncoupling effect of Ca2þ

could easily be corrected by increasing TCA cycle activity.
Many studies have shown a correlation between mito-

chondrial NADH and [Ca2þ]m (1–3,6). A possible explana-
tion for the lack of an increase in NADH with increased
[Ca2þ]m is that the highest [Ca2þ]m only just reached the
K0.5 for activation of TCA cycle dehydrogenases of ~1 mM
(55,56) during state 3 respiration, a period in which there
is much fluctuation in bioenergetics. Other studies also
Biophysical Journal 99(4) 997–1006
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question the role of Ca2þ in activation of NADH-producing
dehydrogenases (57,58). Although these studies did not
disprove the hypothesis of Ca2þ activation of TCA dehydro-
genases, they did ascribe the changes in bioenergetics at
least in part to other mechanisms (e.g., Mg2þ and ADP/
ATP ratio), indirectly altered by Ca2þ.

That an increase in [Ca2þ]m can activate TCA dehydroge-
nases in the matrix to enhance respiration was proposed
long ago (55,56). Our study provides an alternative hypoth-
esis to the correlation between work load (changes in
NADH/NADþ) and [Ca2þ]m. We clearly observed an
increase in [Ca2þ]m due to activation of oxidative phosphor-
ylation with addition of ADP, and we believe this is due in
part to a decrease in matrix Ca2þ buffering capacity of ADP
versus ATP. It is conceivable that an increase in [Ca2þ]m is
a result of enhanced phosphorylation-induced respiration,
rather than enhanced respiration being a result of increased
[Ca2þ]m. Our study was not designed to disprove or prove
the hypothesis of Ca2þ and its role in the regulation of mito-
chondrial bioenergetics; however, this alternative hypoth-
esis should be further explored.
[Ca2þ]m and mitochondrial pH

Matrix pH was not significantly affected by increased
[Ca2þ]m. It was anticipated that [Ca2þ]m would compete
with protons for binding with ATP, ADP, and Pi, and result
in matrix acidification, just as acidification results in an
increase in Ca2þ through buffering pathways (59). The
amount of protons that dissociate from these buffering sites,
when these sites bind to Ca2þ, apparently can be sufficiently
buffered in the matrix to maintain pH. We observed
that [Hþ]m varies between 10 and 100 nM (pH between 7
and 8), which is about one order of magnitude lower than
the changes in [Ca2þ]m in this study. This indicates a higher
matrix buffering capacity for protons than for Ca2þ. Appar-
ently the increase in [Ca2þ]m is insufficient to produce
a significant decrease in the Hþ buffering capacity of the
matrix. Otherwise, it is likely that an increase in proton
expulsion coupled to electron transfer corrected for this
increase in [Hþ]m, as respiration was slightly increased
by CaCl2 addition. We have shown in preliminary experi-
ments (unblocked NCE) that pH decreases with the addi-
tion of higher [CaCl2] (50 or 100 mM) (J. Haumann,
A. Camara, and D. Stowe, unpublished observations). This
decrease in pH was not blocked by cyclosporin A, an
mPTP inhibitor, indicating that mPTP opening did not cause
the acidification.
SUMMARY AND CONCLUSIONS

To our knowledge, the up to twofold increase in [Ca2þ]m
during oxidative phosphorylation under conditions of
blocked CU and inactive NCE has not been reported previ-
ously. This study demonstrates the importance of changes in
Biophysical Journal 99(4) 997–1006
ADP phosphorylation on matrix free [Ca2þ] and suggests
a change in matrix buffering of Ca2þ or release of matrix
stores of Ca2þ as possible mechanisms for the ADP-induced
increase in [Ca2þ]m. This observed increase may be depen-
dent on buffer conditions and the different binding constants
of Ca2þ to ATP, ADP, Pi, and matrix proteins. Changes in
redox state, matrix pH, buffer [Pi], and [Mg2þ]m, did not
alter [Ca2þ]m. Activation of the CU, and contraction of
the matrix volume by ADP did not appear to account
substantially for this effect of ADP. The conventional postu-
lation is that increased [Ca2þ]m enhances respiration via
NADH-linked substrates; we show, alternatively, that
ADP-induced stimulation of respiration enhances [Ca2þ]m.
Computer modeling (23) of the dynamics of Ca2þ flux
and mitochondrial buffering mechanisms will help to
confirm our findings, or to iteratively delineate the relative
importance of each of the several proposed mechanisms
that may modulate [Ca2þ]m between states 3 and 4.

The important and dependent relationship between
[Ca2þ]m and [ADP], [Pi], and [ATP] should lead to a re-
examination of the relationship between [Ca2þ]m and
control of respiration. Although increased [Ca2þ]m slightly
enhanced respiration in states 2 and 4 (NCE blocked), the
increase in [Ca2þ]m via reduced binding in the matrix during
state 3 respiration did not enhance respiration. We could not
demonstrate any Ca2þ-induced changes in DJm or NADH,
but we found a small decrease in RCI, indicating slight
uncoupling. The evidence that DJm and NADH were not
different in the OMN and CATR groups suggests that the
changes observed resulted from an altered buffering effect
due to differences in the ADP and ATP concentrations or
to release of Ca2þ from stores, and less from increased
Ca2þ influx through stimulation of the CU, or decreased
Ca2þ efflux through NCE.
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