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Abstract

Approximately half of cancer-affected patients receive radiotherapy (RT). The doses delivered have been determined upon
empirical experience based upon average radiation responses. Ideally higher curative radiation doses might be employed in
patients with genuinely normal radiation responses and importantly radiation hypersensitive patients would be spared the
consequences of excessive tissue damage if they were indentified before treatment. Rad21 is an integral subunit of the
cohesin complex, which regulates chromosome segregation and DNA damage responses in eukaryotes. We show here, by
targeted inactivation of this key cohesin component in mice, that Rad21 is a DNA-damage response gene that markedly
affects animal and cell survival. Biallelic deletion of Rad21 results in early embryonic death. Rad21 heterozygous mutant cells
are defective in homologous recombination (HR)-mediated gene targeting and sister chromatid exchanges. Rad21+/2

animals exhibited sensitivity considerably greater than control littermates when challenged with whole body irradiation
(WBI). Importantly, Rad21+/2 animals are significantly more sensitive to WBI than Atm heterozygous mutant mice. Since
supralethal WBI of mammals most typically leads to death via damage to the gastrointestinal tract (GIT) or the
haematopoietic system, we determined the functional status of these organs in the irradiated animals. We found evidence
for GIT hypersensitivity of the Rad21 mutants and impaired bone marrow stem cell clonogenic regeneration. These data
indicate that Rad21 gene dosage is critical for the ionising radiation (IR) response. Rad21 mutant mice thus represent a new
mammalian model for understanding the molecular basis of irradiation effects on normal tissues and have important
implications in the understanding of acute radiation toxicity in normal tissues.
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Introduction

Radiotherapy (RT) is employed in approximately half of all

cancer patients. Most RT is delivered to a cancer-affected organ,

unavoidably encapsulating normal tissues surrounding a tumor.

Optimal outcomes are a balance between normal tissue toxicity

and tumour control: this balance is known as the therapeutic ratio.

In some cases, RT is delivered with very large fields, such as for

total/whole body irradiation (T/WBI), which is used in hemato-

poietic stem cell transplantation in patients with hematologic and

other malignancies.

Although some rare syndromes are characterised by radiosen-

sitivity, mechanistic insights of the effects of IR on the majority of

patients’ normal tissues and tumours are largely lacking. For

example rare (1 in 100,000–200,000 newborns) Ataxia telangiectasia

(Atm) patients are hypersensitive to RT [1–4]. While Atm

heterozygous carriers are relatively common (1 in 200 individuals)

and have an elevated risk for cancer particularly breast cancer [5–

7], they are not reliably identified by hypersensitivity to RT or to

IR in vitro. Identification of potential new mammalian radiation

responsive genes/pathways promises refinement of treatment

protocols and the possibility of tailored therapy. Nevertheless this

has been an elusive goal.

Rad21 (also known as Scc1 or MCD1) was initially identified in a

genetic screen in fission yeast (Saccharomyces pombe) [8]. This clone

contains a point mutation in one allele of the Rad21 gene and

exhibited hypersensitivity to radiation owing to its impaired double

strand DNA breakage repair [8]. Recent studies in lower

eukaryotes and metazoa have shown that paralog mammalian

Rad21 genes are key regulatory components of a multi-protein

complex, cohesin [9–14]. Cohesin plays an essential role in

mediating sister chromatid cohesion (SCC), a mechanism critical
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for proper chromosome segregation [10–12]. Biallelic deletion of

cohesin subunits results in cell death [10–12]. Recent studies

implicate cohesin in the DNA damage response and repair in

eukaryotic cells [13–16]. We previously found Rad21 variants in

cancer patients exhibiting acute radiation toxicity, suggesting an

association between Rad21 gene variants and normal tissue

protection that may be defective in some radiation sensitive

cancer patients [17].

To gain insight into the contribution of Rad21 cohesin to normal

tissue IR toxicity, we generated mutant mice with one functional

allele of Rad21 and investigated the IR response of this mutant in

the context of whole animals. Our study provides the first evidence

that Rad21, and possibly cohesin and their associated genes,

represent a new class of novel total body radiation response gene(s)

in mammals, the characterisation of which has important

implications for patient-tailored cancer therapy and modulating

normal tissue responses to clinical RT.

Results

Deletion of the mouse Rad21 gene results in early
embryonic lethality

To generate a null allele of the mouse Rad21 gene, we

constructed a targeting vector which replaced exon 2 of the mouse

Rad21 gene with a neo resistance cassette flanked by loxP sites,

resulting in a null allele (Fig. S1A). The targeting construct was

introduced to mouse embryonic stem (ES) cells and mutant cells

were produced by homologous recombination. Targeted alleles

were identified by PCR and Southern blot analysis (Fig. S1A).

Chimeric offspring were obtained from Rad21+/2 ES cell clone 5

which showed a reduced RAD21 protein level (Fig. S1B) and

heterozygous Rad21+/2 mice were obtained by breeding. Rad21+/2

mice were viable and developed to apparently normal adulthood

without morphological defects. Genotyping of 255 live-born

offspring (n = 40 litters) from heterozygous parents revealed no

homozygous animals, suggesting that homozygous null Rad21 mice

die in utero. Further examination of embryos at embryonic

gestational times of E8.5 (n = 7), E10.5 (n = 15) and E13.5 (n = 25)

days from heterozygous parents, revealed no homozygous mutants

at all three developmental stages examined. Together, these data

indicate that homozygous Rad21 deficiency leads to early embryonic

lethality. Thus, at least one WT Rad21 allele is essential for normal

development in mammals and the generation of homozygous

knock-out cells and embryos for study was precluded by this

traditional approach. Nevertheless, Rad21 heterozygous cells and

mice were available for investigation.

Rad21+/2 mouse embryonic fibroblasts (MEFs) exhibit
increased chromosomal number abnormality and mitotic
defects

Deletion of Rad21 compromise proper chromosome segrega-

tion, leading to gains or losses of chromosomes (aneuploidy) in

yeast and vertebrates [10,11,14]. To determine whether chromo-

somal number is altered in heterozygous Rad21 knock-out cells, we

examined metaphase chromosome spreads in early passage MEFs

from Rad21+/2 and isogenic WT mice. Cells with diploid

chromosome numbers (i.e. 40 chromosomes) were observed in

approximately 56% of WT cells (Fig. S2A). In contrast, a clear

reduction in cells with diploid chromosome content was observed

in Rad21+/2 MEFs (Fig. S2A). This was accompanied by an

increase in the percentage of aneuploid cells (Fig. S2A). Further

examination of chromosome spreads showed that Rad21+/2 cells

often had one or more pairs of sister chromatids with no apparent

connection at centromeres, suggesting the premature loss of, or

weakened centromeric cohesion, or an altered centric chromatin

organization (Fig. S2B). Furthermore, Rad21+/2 MEFs showed

more frequent mitotic defects compared to WT (Fig. S2C). The

commonly observed mitotic defects in Rad21+/2 MEFs include

uncondensed or mis-aligned chromosomes at metaphase, chro-

mosome bridges and lagging at anaphase, and multipolar mitosis

(Fig. S2C).

Response of Rad21+/2 cells to DNA damaging agents
Both budding and fission yeast Rad21 mutants are hypersensi-

tive to IR and defective in DNA repair[8,18]. Likewise, a

conditional Rad21 deletion in chicken DT-40 cells led to an

increase in spontaneous and IR-induced chromatid breaks [14].

To test whether Rad21+/2 mouse cells are IR sensitive, we

determined the clonogenic survivals of WT and Rad21+/2 ES cells

following IR. No significant difference was observed between the

Rad21+/2 and WT cells at any dose tested (Fig. 1A). We then

examined the clonogenic survival of Rad21+/2 ES cells after

treatment with the DNA cross-linking agent, Mitomycin C (MMC)

in view of the evidence that the predominant means of DNA

repair of MMC-induced damage is mediated by HR repair [19].

In response to MMC treatment, Rad21+/2 ES cells displayed a

significantly reduced survival compared to WT (p,0.001) (Fig. 1B).

Reduced gene targeting efficiency at an independent
locus, and impaired MMC-induced SCE formation in
Rad21+/2 cells reveal in vivo and in vitro HR deficiency

Hypersensitivity of Rad21+/2 cells to cross-linking agents like

MMC raises the prospects of an associated defect in HR repair

pathways. Certainly, SCC genes have been implicated in

promoting HR [13,16]. However, it is unknown if the HR role

of SCC genes is conserved in mammalian cells. We therefore

assessed the HR capability of Rad21+/2 cells using an eGFP-based

assay which employs a Rad54-GFP knock-in construct targeting

the genomic Rad54 locus in ES cells [20]. In this gene targeting

assay, cells are transfected with the promoter-less hRad54GFP-

puro knock-in targeting construct. Cells containing integrated

construct (via gene targeting or random integration) were then

selected in medium containing Puromycin. GFP-positive cells arise

when the targeting construct integrates in the mRad54 locus via

homologous recombination but not random construct integration.

The frequency of these events is detected by GFP-fluorescence of

targeted ES cells by flow cytometry, an indirect measure of

targeting efficiencies. A Rad542/2 ES cell line was also employed

as a gene targeting-defective control. As expected in Rad542/2 ES

cells, there was a significant reduction in GFP-positive cells (5%)

when compared to 30% GFP-positive cells in the WT isogenic cell

line, 1B10 (Fig. 1C). The Rad21+/2 ES cell line exhibited an

approximately two-fold reduction in targeting efficiency (17%)

when compared to its WT parental ES cells (35%), indicating a

HR defect in live Rad21+/2 ES cells. This result is in contrast to a

previous report which showed an increased gene targeting

efficiency in human 293 cells following a transient knockdown of

Rad21 by siRNA [16]. The discrepancy may be due to a specific

function of RAD21 in HR, since the previous study measured

episomal recombination following the site-specific induction of a

DSB by the I-SceI endonuclease [16]. This targeting measures

different recombination events than the homologous recombina-

tion event we measured by targeted integration. It is also possible

that the severe deficiency of Rad21 by siRNA knockdown may shift

the preference to a different sub-pathway of HR.

To further probe the evidence for a role of Rad21 in HR, we

examined in Rad21 mutant cells whether somatic recombination

Rad21 in Radiation Responses
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activity is also altered, by measuring the level of sister chromatid

changes (SCEs) using Rad21+/2 MEF cell lines derived from

Rad21+/2 mice. SCE has been shown to be closely associated with

HR in vertebrate cells and the frequency of SCE serves as a

measure of recombination activity [21]. Both WT and Rad21+/2

mutant MEFs showed only spontaneous SCE levels of three per

metaphase spread (data not shown). No significant difference

between WT and Rad21+/2 MEFs was observed. However,

following treatment with 6 mM MMC, Rad21+/2 MEFs showed a

modest increase in SCE frequency with an average of five SCEs

per metaphase spread (Fig. 1D). In contrast, the frequency of SCEs

in WT MEFs was elevated substantially to an average of fourteen

SCEs per metaphase spread, significantly higher (p ,0.0001) than

that of Rad21+/2 MEFs (Fig. 1D). The suppression of SCEs in

Rad21+/2 MEFs is similar to that observed in human cells

following siRNA knockdown of Rad21 [16] and in known

recombination-defective cells [21], providing further evidence for

defective HR in Rad21+/2 MEFs.

Rad21+/2 MEFs are defective in the DNA damage
checkpoint activation and DSB repair

Two key cellular responses to IR damage are checkpoint

activation and DNA repair, the two processes being closely

linked. To determine if Rad21+/2 MEFs are defective in DNA

damage-induced cell cycle arrest, we analysed cell-cycle profiles

of Rad21+/2 and isogenic WT MEF cells following IR. While

similar cell cycle distributions were observed in unirradiated

Rad21+/2 and WT cells, the two cell types exhibited different

profiles when examined 24 hours post IR (Fig. 2A). Rad21+/2

cells showed a higher percentage of S phase cells compared to

WT cells following IR (Fig. 2A). Further analysis using BrdU-

pulse-labelling revealed approximately 71% reduction of cells

undergoing DNA replication in WT MEFs following IR (Fig. 2B).

Interestingly, there was only a modest reduction (approximately

29%) in BrdU-positive cells in Rad21+/2 MEFs, following IR

(Fig. 2B). These data showed that the majority of Rad21+/2 cells

continues to undergo DNA synthesis following IR, suggesting

defective intra-S checkpoint activation. In addition to S phase

cells, an increase in G2/M cells was observed in Rad21+/2 MEFs

following IR (Fig. 2A). Further examination of nuclear morphol-

ogy using DAPI staining revealed that only 1% of mitotic cells

were present in WT 24 hours post IR, indicating that WT cells

were prevented from entering mitosis (Fig. 2C and Fig. S3). By

contrast, 18% of Rad21+/2 cells were engaged in mitosis.

Strikingly, nucleoplasmic bridges (NPB) were present in most, if

not all, mitotic Rad21+/2 cells (Fig. 2C and Fig. S3), suggesting

that a delayed progression through mitosis may contribute to

NPB accumulation. Furthermore, cells with micronuclei (MN)

were found to be more frequent in Rad21+/2 MEFs (,13%) than

WT (5%). By 48 hours post IR, cells with NPB and MN were

increased dramatically in Rad21+/2 MEFs to 25% and 43%,

respectively (Fig. 2C and Fig. S3). The presence of NPB and MN

suggest that Rad21+/2 cells more frequently enter mitosis with

damaged DNA, resulting in both chromosomal and mitotic

abnormalities.

We next examined whether IR-induced DSB repair is impaired

in Rad21+/2 cells using cH2AX as a reliable surrogate marker for

DSBs [22]. Of two Rad21+/2 MEF cell lines examined, both showed

significantly higher numbers of cH2AX foci when compared to that

of isogenic WT cells (Fig. 2D and Fig. S4). These data confirm that

DSB repair is defective in Rad21+/2 MEFs.

Figure 1. HR deficiency of Rad21+/2 cells. A. Clonogenic survival of WT and isogenic Rad21+/2 ES cells following IR. B. Clonogenic survival of
Rad21+/2 ES cells following MMC indicated that Rad21+/2 ES cells were more sensitive to MMC than WT ES cells. C. Gene targeting efficiency in
Rad21+/2 ES cells. Rad542/2 and its isogenic parental 1B10 ES cell line were used as gene targeting-defective and -proficient controls, respectively. D.
SCE frequency in WT and isogenic Rad21+/2 MEFs following treatment with 6 mM MMC. Red arrowheads indicate SCEs. Inserts: enlarged images of
boxed regions. The number of metaphase spreads scored: WT n = 19; Rad21+/2 n = 29. Horizontal bars represent the respective means.
doi:10.1371/journal.pone.0012112.g001
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Rad21+/2 mice are sensitive to WBI
Although studies in Rad21+/2 ES cells did not reveal apparent

radiation hypersensitivity in vitro, we were mindful that in vitro

survival assay may not be representative of somatic cell types in

vivo. Rad21+/2 mice are one of six thus far described cohesin

mouse mutants [23–27], but to date these mutants have not been

studied to assess the effect of cohesin deficiency on radiation

response in the context of whole animals. This might be important

with regard to patient responses to RT. Therefore we examined

the effects of WBI on the survival of Rad21+/2 mice.

Rad21+/2 mutant and WT littermates were exposed to a single

dose of 8 or 13Gy WBI and Kaplan-Meier survival curve was

determined over 30 days post IR. Following a single dose of 8Gy

WBI, one death was recorded for WT mice. By contrast, a

significant reduction in post-irradiation survival was observed in

Rad21+/2 mutant mice, beginning on day 17 post IR (Fig. 3A). To

examine these data in the context of radiation sensitivity, we

treated a cohort of Atm-defective mice with one or two alleles

harboring a kinase domain inactivation mutation found in AT

patients (AtmSRID) [28]. As expected, the AtmSRID homozygous

mutant mice were remarkably hypersensitive to IR, such that no

animals survived beyond day 8. However, we found that AtmSRID
heterozygous mutant mice were more resistant to WBI than

Rad21+/2 mice, with 90% surviving beyond 30 days. These data

make a simple but very important point that Rad21+/2

heterozygous mice are extraordinarily hypersensitive to IR, even

from the perspective of the archetypical IR sensitivity of mutations

in the Atm gene.

Exposure to a higher dose (13Gy) of WBI resulted in 100%

mortality in both Rad21+/2 and WT littermates by day 8 post-

treatment (Fig. 3B). The death of Rad21+/2 animals occurred as

early as day 4 post-IR and ,38% Rad21+/2 mice died by day 6,

when no mortality was recorded for WT mice. The reduced

survival following WBI in Rad21+/2 mice was presumed to be due

to the consequences of greater tissue damage. This was then

investigated in more detail.

Rad21+/2 mutant animals display GIT radiosensitivity
In adult mammals, the GIT represents one of the most sensitive

tissues to IR [29]. Given that our immunostaining revealed that

Figure 2. Radiation-induced DNA damage response of Rad21+/2 cells. A. Cell cycle profiles of WT and isogenic Rad21+/2 MEFs. Cells were
analysed 24 hours post 10Gy IR, with unirradiated cells as controls. DNA content was used to determine the proportion of cells in different cell cycle
phases. B. Change in the percentage of S-phase cells 24 hours post 10Gy IR. BrdU-positive cells were expressed as the percentage of unirradiated
controls. Data represent means of three independently-derived MEF cell lines for each genotype. Error bars = SEM. C. Radiation-induced genomic
instability. Nuclei were visualised by DAPI staining and scored at indicated time-points post 10Gy IR, for the presence of nucleoplasmic bridge (NPB, red
arrows), micronuclei, MN (white arrowheads) and normal mitoses (white arrow). Also see Figure S4. The number of nuclei scored was as follows: WT
unirradiated n = 643, 24 hours post IR n = 1131, 48 hours post IR n = 263; Rad21+/2 unirradiated n = 782, 24 hours post IR n = 1298, 48 hours post IR
n = 246. D. Quantification of radiation-induced cH2AX foci 4 hours post 10Gy IR. Two independently-derived WT and isogenic Rad21+/2 MEF cell lines
were used. The number of nuclei scored was as follows: WT #1 n = 172, WT #2 n = 303; Rad21+/2 #1 n = 232, Rad21+/2 #2 n = 104. Error bars = SEM.
doi:10.1371/journal.pone.0012112.g002
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RAD21 protein is abundantly expressed in crypt epithelial cells of

both small and large intestines (Fig. S5), we predicted that WBI may

have greater effect on Rad21+/2 mice compared to WT animals. We

therefore performed a detailed characterization of GIT damage in

Rad21+/2 and AtmSRID homozygous mutant mice after WBI

treatment. IR-induced GI crypt cell damage can be quantitatively

analysed in the small intestine (SI) using the well-established in vivo

microcolony assay for crypt survival [30,31]. In mouse SI, surviving

crypts, defined as consisting of 10 or more cells with prominent

nuclei and little cytoplasm, are readily distinguishable from non-

surviving crypts between 3 to 4 days post-IR [30,31].

We first determined the consequences of WBI on crypts at day

3.5, a time when we and others have observed maximum post-IR

crypt damage, and when recovery is initiated. Following WBI, some

crypts shrunk as a result of extensive cell depletion and appeared as

‘ghost’ structures (Fig. 4A). Taking a more quantitative approach,

we assessed the percentage of SI crypt survival at 3.5 days post WBI

in Rad21+/2 and WT littermates following graded doses of 0, 6, 8,

10 and 13Gy, using the microcolony analysis. There was no

statistical difference in the number of crypts between the different

genotypes under homeostasis and without IR (Table S1). Rad21+/2

mice exhibited a dose-dependent decrease in crypt survival that is

greater than WT (Fig. 4B). The difference between the genotypes

was highest at 13Gy, with more than two-fold higher surviving

crypts recorded in WT (57.6%) compared to Rad21+/2 (22.7%)

mice (Fig. 4B and Table S1). Interestingly, a slight increase in crypt

number in WT mice following WBI at 8Gy was observed (Fig. 4B

and Table S1). Presumably, this increase in the number of crypts is

associated with IR-induced crypt regeneration. These data clearly

show that Rad21+/2 mice were more susceptible to IR-induced SI

damage compared to WT.

When AtmSRID homozygous mutant SI were examined, it was

apparent that they were substantially more IR sensitive than WT

mice (Fig. 4B). To test for synthetic interactions between Atm and

Rad21 in the in vivo response of the SI to IR, we intercrossed these

mice. When challenged with WBI, the high degree of SI sensitivity

of the AtmSRID homozygous mutant SI was not enhanced in the

presence of our Rad21 mutant allele. These data further supported

the notion that, in mammals, the function of Rad21 contributes to

the same pathway as Atm. The SI of mice with a single Rad21

mutant allele was demonstrably, reproducibly and statistically

more IR sensitive than the AtmSRID heterozygous SI (Fig. 4C).

To assess whether the reduced crypt survival in Rad21+/2 mice

is the result of intrinsic epithelial or secondary damage (for

example, as a result of endothelial cell damage), we developed an

ex vivo crypt survival assay using organoids established from

isolated SI crypts. In this assay, crypts were irradiated ex vivo and

the organoids which formed were counted 10 days post

irradiation. At an IR dose of 2.5Gy, 72% of organoids were

formed from WT crypts. Only 48% organoids were formed from

irradiated Rad21+/2 crypts, significantly lower than that of WT

(Fig. 4D). We noted that no significant difference was observed

between WT and Rad21+/2 crypts at a higher IR dose of 5Gy. We

posit that this higher dose is above a threshold level even for WT

SI, for extensive crypt death in both genotypes. Nevertheless, these

data provide strong evidence that the crypt death in Rad21+/2

mice is unlikely to be a consequence of toxicity secondary to

endothelial dysfunction.

Small intestinal epithelial cells of Rad21+/2 mice are
deficient in DSB repair and fail to resume crypt
regeneration following IR

Given that Rad21+/2 MEFs exhibited impaired DSB repair, we

hypothesised that enhanced radiation sensitivity of Rad21+/2 crypt

cells was associated with their inability to repair IR-induced DSBs.

We therefore examined the presence of cH2AX foci in the small

intestinal crypts of Rad21+/2 and WT mice 6 hours post WBI.

Distinct cH2AX foci were detected in the crypts of both Rad21+/2

and WT mice, indicating the presence of DSBs (Fig. 5A). To

characterise DNA repair according to cell type, cH2AX-positive

cells were scored on a positional basis from the base to the mid-

region of crypts, i.e. position 1 to position 10, which correspond to

the combined Paneth cell, stem cell and transient amplifying

compartments [32,33]. Rad21+/2 mice showed significantly higher

frequencies of crypt epithelial cells with cH2AX foci at all positions

examined, when compared with WT (p,0.0001) (Fig. 5A). The

persistence of cH2AX foci in high proportions of Rad21+/2 crypt

epithelial cells strongly suggests a deficiency in DSB repair and is

consistent with the defect we showed in Rad21 mutant cells.

Radiation induced cell death is thought to be a major factor

contributing to subsequent crypt loss [34,35]. We next examined

the effect of WBI on crypt cell apoptosis. TUNEL staining of the

SI at 6 hours, 24 hours and day 3.5 post WBI revealed that IR

induced a significant increase in crypt cell apoptosis in both

Rad21+/2 and WT mice (Fig. 5B, left panel). The number of

apoptotic cells per crypt (Apoptotic Index) was highest at 6 hours

post IR and decreased sharply at 24 hours (Fig. 5B, left panel). By

Figure 3. Kaplan-Meier plots of cumulative survival of Rad21-
cohesin and Atm mutant animals following WBI. A. Cumulative
survival following 8Gy WBI is shown. Rad21+/2: n = 46; AtmSRID+/2

n = 25; AtmSRID2/2: n = 8 and WT littermates: n = 31. B. Cumulative
survival following a higher dose of 13Gy WBI is shown. Rad21+/2: n = 9
and WT littermates: n = 7.
doi:10.1371/journal.pone.0012112.g003
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day 3.5, few apoptotic cells per crypt were observed. The

apoptotic index was not significantly different between Rad21+/2

and WT mice; although there is a moderately higher apoptotic

index in Rad21+/2 mice compared to WT at 24 hours and at day

3.5 post IR (Fig. 5B, left panel). We further determined the

frequency of TUNEL-positive cells according to the cell position in

crypts at 6 hours post WBI when the peak of apoptosis was

observed. TUNEL-positive cells in Rad21+/2 mice were found to

be more frequent in the crypt base at cell positions 1 to 4 where

cryptal basal cells (stem/progenitor-cells) and Paneth cells reside

[35,36] (Fig. 5B, right panel), suggesting that stem/progenitor cells

in Rad21+/2 are more susceptible to IR-induced cell death.

Figure 4. In vivo and ex vivo small intestinal crypt survival following radiation exposure. A. Hematoxylin-stained transverse sections of
small intestines. Representative images of small intestinal crypts of unirradiated and irradiated animals. Irradiated samples shown were obtained at
3.5 days post 13Gy WBI. Non-surviving crypts are indicated by red arrowheads and surviving crypts by black arrows. Right panels: enlarged images
from boxed areas. Scale bars = 20 mm. B. Crypt survival determined by the microcolony assay. Surviving crypts were counted 3.5 days post WBI at
incremental doses as shown, in at least six whole circumferences of small intestine cross-sections (left panel) and expressed relative to unirradiated
animals. The number of animals used for each data point is listed in Table S1. Error bars = SEM. C. Comparison of crypt survival in Rad21 and Atm
mutant animals 3.5 days post 13Gy WBI. WT and Rad21+/2 data shown areas in B. The number of animals used is as follows: Rad21+/2: n = 7;
AtmSRID+/2: n = 5; WT: n = 7. Error bars = SEM. D. Ex vivo crypt organoid survival. Diagrammatic presentation of the assay is shown above the graph.
Day 1 organoid nuclei were visualised with Hoechst 33258 to show live cells. Data represent the percentage of organoids formed 10 days post IR at
the doses indicated relative to unirradiated controls. The number of animals used is as follows: WT: n = 5; Rad21+/2: n = 7; four replicates were counted
for each animal. Error bars = SEM.
doi:10.1371/journal.pone.0012112.g004

Rad21 in Radiation Responses
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The increased frequencies of cH2AX- and TUNEL-positive

cells at the crypt base raise the possibility that the stem cell

compartment in Rad21+/2 intestinal crypts may be more

susceptible to IR damage and cell death. The recruitment of

stem cells to a proliferative state has been shown to be critical for

crypt regeneration and GI recovery following IR-induced

damage. We therefore assessed crypt cell proliferation in the SI

of Rad21+/2 and WT mice at 3.5 day post IR, a time when crypt

regeneration occurs, using PCNA as a surrogate marker of

proliferation. In unirradiated mice of both genotypes, ‘‘strings’’ of

PCNA-positive cells were detected in the mid-crypt region,

corresponding to the transient amplifying cells (Fig. 5C). At 3.5

days post 13Gy WBI, PCNA-positive cells were present in the

majority of crypts in WT mice, indicative of active cell

proliferation associated with crypt regeneration (Fig. 5C). In

irradiated Rad21+/2 mice, arrays of PCNA-positive cells were

detected in ‘‘surviving’’ crypts but in the majority of crypts only a

few scattering PCNA-positive cells were observed (Fig. 5C). We

further examined proliferation using a mitotic-specific protein

marker, phospho-histone H3 (PH3) in SI crypts to ensure that the

PCNA staining was not being influenced in the WT crypts by

PCNA-associated DNA repair functions [37].

Figure 5. Cellular properties of small intestinal crypts post 13 Gy WBI. A. cH2AX immunostaining of small intestinal crypt 6 hours after IR.
Representative images of WT (left panel) and Rad21+/2 (middle panel) are shown. The right panel shows the frequency of cH2AX-positive cells scored
according to the cell positions relative to the base of crypts. At least 20 crypts per animal and three animals per genotype were scored. Red
arrowhead: apoptotic cells. Scale bars = 20 mm. B. Apoptotic cells determined by TUNEL staining at indicated time points post IR. Middle panels show
the representative images of TUNEL-positive cells in crypts 6 hours post IR. Right panel show the frequency of TUNEL-positive cells, scored according
to cell position. At least 20 crypts per animal and three animals per genotype were scored to determine the frequency. C. PCNA immunostaining of
crypts 3.5 days post IR. Middle panels: enlarged images of boxed areas showing three compartments of a crypt: Paneth cells (Pc), putative stem cells
(Sc) and transient amplifying cells (Amp). Black arrows: surviving crypts; Red arrowheads: non-surviving crypts. Scale bars = 20 mm. D. Mitotic indices
determined by phospho-Histone H3 immunostaining at 3.5 days post IR. At least four whole circumferences of small intestinal cross-sections were
scored per animal. The number of animals scored is as follows: WT 0Gy n = 5, 13Gy n = 6; Rad21+/2 0Gy n = 3, 13Gy n = 10. Error bars = SEM.
doi:10.1371/journal.pone.0012112.g005
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Consistent with our PCNA staining, abundant PH3-positive

cells were detected in surviving crypts of both Rad21+/2 and WT

mice (Fig. 5D). However, the number of PH3-positive cells per

crypt (Mitotic Index) increased nearly two fold in irradiated WT

mice compared to unirradiated animals, suggesting active mitoses

associated with crypt regeneration (Fig. 5D). In irradiated

Rad21+/2 mice, the mitotic index remained at the similar level

as unirradiated animals, but was significantly lower (p,0.0001)

compared to irradiated WT mice (Fig. 5D). Taken together, these

results strongly suggest that defective DSB repair and increased

cell death within the region of the stem/progenitor cell

compartment impairs crypt regeneration, leading to enhanced SI

radiosensitivity in Rad21+/2 mice.

Colonic crypt epithelial cells of Rad21+/2 mice fail to
undergo mitotic arrest

We further performed a detailed examination of the response of

colonic crypt cells to IR, as radiation damage to the large intestine

(colon) is similar to that of the SI but occurs at a slower rate. Colon

damage doesn’t form a prominent component of WBI syndromes,

as its functional consequences are not as marked as for the SI.

Nevertheless, in addition to its more regular crypt morphology as

compared to the SI, it provides another opportunity to characterise

the kinetics of crypt regeneration. We scored the frequency of

PCNA-positive cells by colonic crypt cell position at day 1 and 3.5

post IR, to assess whether proliferation occurred in colonic crypt

epithelial cells (Fig. 6A, 6B). The cell located in the centre of crypt

base was designated as cell position 1 and cells that stained for

PCNA were accordingly assigned to cell positions 1 or more up the

crypt wall. In this fashion, data generated from the sides of both

crypt walls can be pooled [38]. In unirradiated Rad21+/2 and WT

mice, the highest frequencies (8 to 12%) of PCNA-positive cells were

detected at the positions 2 to 10; where the stem cells and lower

transient amplifying population exist (Fig. 6B), with no significant

difference between Rad21+/2 and WT mice (Fig. 6B). At day 1 post

IR, the frequency of PCNA-positive cells was dramatically reduced

to 2–3% at these cell positions in irradiated WT colonic crypts

(Fig. 6B). By contrast, the frequency of PCNA-positive cells at these

positions in Rad21+/2 mice remained similar to, or slightly increased

following IR (Fig. 6B). Strikingly, the frequencies of PCNA-positive

cells in irradiated Rad21+/2 animals were significantly higher at all

cell positions compared to that of irradiated WT (Fig. 6B). This

response in Rad21+/2 mice was unexpected and indicated that

characteristic G1/S and G2/M checkpoints normally invoked by

IR [39] were not being activated in the mutant GIT. Additionally,

the frequencies of PCNA-positive cells at the positions 11 to 15 were

noticeably increased following IR in the Rad21+/2 crypts (Fig. 6B),

consistent with an expected IR-induced recruitment of G0 cells into

a proliferative state. At day 3.5 post IR, a striking reversed pattern

was observed in WT animals, with a significant increase in the

frequencies of PCNA-positive cells at cell positions 1 to 19. This was

in sharp contrast to a significant reduction in the number of PCNA-

positive cells at the majority of crypt cell positions in Rad21+/2 mice

(Fig. 6B). Together, these data suggest that Rad21+/2 colonic crypt

cells failed to initiate the canonical early IR-damage response of

mitotic arrest. This severely compromised the subsequent process of

crypt regeneration in mutant Rad21+/2 mice.

Rad21 deficiency leads to an enhanced IR sensitivity in
bone marrow stem cell compartments

Bone marrow contains stem cells, progenitor cells and their

progeny, that are exquisitely radiosensitive [40]. Bone marrow

suppression is the most recognized form of IR-induced damage

after WBI in mammals, leading to irreversible depletion of the

bone marrow stem cell reserve. To characterise IR-induced bone

marrow damage in Rad21+/2 animals, we investigated the

hematopoietic response in Rad21+/2 mice.

We used a surrogate assay to measure stem-like cells by

counting high proliferative potential-colony forming cells (HPP-

CFC) in the hematopoietic stem cell compartment and the low

proliferative potential-colony forming cells (LPP-CFC), charac-

teristic of the committed progenitor cell pool [41]. Bone marrow

cells from femurs of mutant and WT littermates were analysed at

day 10 post 8Gy WBI. The result showed that LPP-CFCs were

significantly reduced following IR, with approximately 0.1% cell

survival. Although the average number of LPP-CFC in Rad21+/2

mice appeared to be lower compared to WT, this was not

significant so (p.0.05) (Fig. 7A). We noted that WT mice

displayed greater individual variation in cloning efficacy than

Rad21+/2 mice. Similarly, the number of HPP-CFC in Rad21+/2

mice was slightly but not significantly reduced compared to WT

following IR (p = 0.205) (Fig. 7B). These data suggest impaired

post-irradiation bone marrow stem cell clonogenic regeneration

in Rad21+/2 mice. It remains to be determined whether the bone

marrow stem cells and progenitor cells recover to normal levels,

or remain suppressed in Rad21 mutant mice. Successive

transplantation models might be instructive in probing this

possibility.

Discussion

Identification of Rad21 cohesin as a novel mammalian
radiation responsive gene

Pioneering studies established Ataxia telangiectasia patients as a

most radiation sensitive group of patients [1]. Being an autosomal

recessive disorder, individuals with two Atm mutant alleles

manifest a broad spectrum of neurological, oncological and

immunological pathologies but fortunately the population

frequency of Atm patients is relatively low. However, Atm carriers

are far more frequent (around 1:200) and it has been an ongoing

concern that some of these individuals are likely to be IR sensitive

even though this has been difficult to demonstrate [42]. In

contrast, for a different endpoint, female Atm carriers have a

clearly elevated risk for developing breast cancer [5–7]. Mouse

models of Atm deficiency largely recapitulate the human AT

phenotypes [28,43]. Hence, some pathologies in Atm patients and

mouse models, are evident without overt IR exposure but unlike

Rad21 homozygous mutant mice, they are viable. As Rad21 is an

essential gene and Rad212/2 embryos die very early in

development, we investigated mice with only one mutant allele.

This proved very instructive. The observations made here with

Rad21+/2 mice indicate that one Rad21 allelic mutation confers a

level of IR sensitivity that eclipses that observed in Atm

heterozygous mice and accordingly raises the issue that should

cancer patients with Rad21 or potentially other cohesin mutations

be subjected to RT they may suffer adversely from standard RT

protocols.

WBI studies initially highlighted a reduced animal survival in

Rad21+/2 mice. Furthermore, the absence of genetic interaction

with Atm mutant mice is consistent with cohesin functioning

downstream of Atm signalling [15,23,44]. More focused studies

that explored tissues that impact tolerance doses of RT, such as the

GIT and bone marrow, revealed that these tissues were indeed

hypersensitive to IR. It was most apparent that Rad21+/2 mice are

hypersensitive to the toxic effects of RT when compared to wild

type littermates and this was manifested by crypt losses in both SI

and colon. Importantly, the kinetics of the responses were different
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in these two tissue compartments with the notable observation that

in the colon of Rad21+/2 mice the characteristic and early (within

the first 24 hours) shut down of proliferation following IR was

absent, which would allow cells to progress with the burden of

potentially lethal DNA damage. Our in vivo characterisation of

Rad21+/2 mutants was thus reminiscent of a classical feature

of Atm-mutant cells, that of checkpoint failure, including

radioresistant DNA synthesis [45]. Collectively, these novel data

indicate that Rad21 plays a fundamental role(s) in the IR response

in whole mammals. Rad21+/2 mutant animals are thus a unique

resource for dissecting the molecular determinants of IR responses

in the context of whole mammals.

Mouse Rad21 cohesin is required for HR
Rad21 was implicated in promoting homologous recombination

in fission yeast [8,13]. Although the role of yeast RAD21 cohesin

in mediating chromosome segregation was found to be conserved

in mammals, there has been no definitive data to support a role for

mammalian RAD21 in HR. We found that a reduction of Rad21

gene dosage resulted in a significant reduction in the efficiency of

gene targeting in mouse ES cells and in the frequency of MMC-

induced SCEs in MEF cells, both processes mediated by HR

[21,46]. Our finding provides the strong evidence that RAD21,

and/or the cohesin complex, directly or indirectly promotes HR in

mammalian cells. Consistent with this finding, we showed that

Figure 6. Kinetics of crypt epithelial cell proliferation in the large intestine post 13Gy WBI. A. Representative images of PCNA
immunostained crypts at 3.5 days post IR. Middle panels: enlarged images of boxed areas. Red arrowheads indicate full-length crypts. Scale
bars = 20 mm. B. Quantitative analysis of the frequency of PCNA-positive cells per 20 crypts at indicated time points post IR. Cell positions shown are
relative to the bottom of crypts. The right panel shows a diagram of a typical colonic crypt. Three epithelial compartments shown are: stem/
progenitor cells (brown); transit amplifying cells (grey); differentiated cells (light blue). Three animals were scored per data point. Error bars = SEM.
doi:10.1371/journal.pone.0012112.g006
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Rad21+/2 ES cells were exquisitely sensitive to MMC. The

repair of MMC-induced DNA lesions involves multiple DNA

repair pathways, with HR and other HR-dependent DNA repair

pathways, i.e. Fanconi anaemia (FA) and nucleotide-excision

repair (NER), being the main repair pathways [19]. The observed

MMC sensitivity in Rad21+/2 ES cells supports a role for RAD21

in HR. Furthermore, this result suggests that RAD21 may be

involved in one or more these DNA repair pathways.

We did not observe a significant reduction in the survival of

Rad21+/2 ES and MEF cells compared to that of WT cells

following IR treatment. However, we found that IR resulted in

significantly higher level of cH2AX foci in Rad21+/2 MEF cells

when compared with WT cells, suggesting impaired DSB repair in

Rad21+/2 MEF. Further, Rad21+/2 MEFs have an elevated level

of NPB and MN following IR. NPB and MN have been shown to

originate from abnormal chromosomal structures such as dicentric

chromatids, ring chromatids and acentric fragments [47]. These

abnormal chromosomal structures form when cells undergo DNA

replication in the presence of unrepaired DSBs and repair after

replication, resulting in misjoined broken chromosome ends [47].

It is therefore likely that higher levels of NPB and MN observed in

Rad21+/2 cells are a consequence of the impaired DSB repair in

combination with failure in cell cycle arrest following IR.

Consistent with this proposition, our results showed that a

significantly higher percentage of Rad21+/2 MEF cells continued

to undergo DNA replication and mitosis following IR.

The absence of significant IR sensitivity in Rad21+/2 cells is in

contrast to the marked IR-sensitivity observed in Rad21 yeast

mutants. The differences in DSB repair mechanisms between yeast

and mammalian cells may explain, at least in part, the modest IR

sensitivity in Rad21+/2 cells. Unlike yeast which predominately

uses a high-fidelity HR to repair DSBs [48], mammalian cells

employ two distinct mechanisms for the resolution of DNA DSBs:

the main pathway, non-homologous end-joining (NHEJ), and the

other, the HR pathway [49]. HR is primarily used during S/G2

phase of cell cycle when sister chromatids are available as

templates for repair. Although Rad21+/2 cells are deficient in HR

repair, it is possible that these cells use the NHEJ pathway to

repair IR-induced DSBs, which in turn alleviates the IR sensitivity

of Rad21+/2 cells. Consistent with this proposition, a most recent

study showed that radiation-induced DSB repair was impaired in

G2, but not G1 phase in Rad21-depleted cells [50]. Further

analysis using compound mutant mice models with either HR or

NHEJ deficiency may assist in elucidating the role of cohesins in

this context.

Failure of crypt regeneration underpins GI sensitivity in
Rad21+/2 animals

Radiation resulted in a higher percentage of the crypt death in

the SI in Rad21+/2 animals compared to WT. IR damage to the

GIT in mice is thought to result from two main scenarios: (i) as a

direct consequence of damage to epithelial crypt cells [51] or, a

more recent and hotly debated suggestion (ii) as a result of damage

secondary, for example, to endothelial cell apoptosis [52]. We

consider the possibility of secondary damage unlikely, as no post-

IR microscopic evidence of endothelial apoptosis was seen in

mutant intestines. To more definitively examine which of these

mechanisms may apply to Rad21 mutant cells, we performed an

Figure 7. Basal and post-irradiation cloning efficiencies of bone marrow low proliferative potential-colony forming cells (LPP-CFC)
and high proliferative potential-colony forming cells (HPP-CFC). Irradiated animals were assayed 10 days post 8Gy WBI. Data generated from
two independent experiments and total animals used: WT 0Gy n = 5; 8Gy n = 10; Rad21+/2 0Gy n = 5, 8Gy n = 7. Horizontal bars represent mean. A.
LPP -CFC. B. HPP-CFC.
doi:10.1371/journal.pone.0012112.g007
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ex vivo crypt organoid assay; no angiogenesis occurs within these

bodies. The data clearly showed that Rad21+/2 crypt organoids

are also more sensitive to IR than WT, without the possibility of

endothelial-damage–generated consequences. Hence, the ob-

served GI sensitivity in Rad21+/2 mice is likely to be the result

of direct damage to crypt epithelial cells.

Following radiation, a temporary mitotic arrest and subsequent

cell death occurs [39]. These events comprise some of the key early

responses of the GIT to radiation-induced damage. Cell death and

lack of cell proliferation in combination with continued pro-

grammed cell shedding at the apices of villi results in extensive

depletion of crypt cells, leading to crypt shrinkage and perturbed

morphology [35]. Depending on the extent of damage, some

shrinking crypts may resume proliferation within 24 hours to

36 hours post IR and those crypts may survive as a result of crypt

regeneration, whereas others will ultimately die [31]. Our analyses

revealed significantly less proliferative cells in the SI crypts of

Rad21+/2 mice 3.5 days post IR, suggesting that the process of

crypt regeneration is severely compromised. We found that

TUNEL-positive cells occurred more frequently at the crypt bases

6 hours post IR in Rad21+/2 mice than that of WT animals. The

base of SI crypts contains stem cells which are recruited from

quiescence to a proliferative state in response to IR damage.

Therefore, the lack of crypt regeneration in Rad21+/2 mice could

be due to the enhanced killing of their crypt stem cells by IR,

leading to regeneration insufficiency of surviving clones. A second

possibility exists: that unlike WT cells, the mutant crypt cells fail to

withdraw from the cell cycle to repair lethal damage. This view

was formed based on our results showing that the frequency of

PCNA-positive cells at day 1 post IR in the irradiated Rad21+/2

animals remained similar to that of unirradiated mice, suggesting

ongoing active cell proliferation and failure to initiate cell cycle

arrest. This proposition was further supported by our finding that

Rad21+/2 MEFs are defective in cell cycle arrest following IR.

Cells with defective cell cycle checkpoints have been shown to be

more susceptible to death by mitotic catastrophe, after treatment

with DNA-damaging agents [53]. Mitotic catastrophe, also known

as reproductive death, occurs because cells enter mitosis in the

presence of residual or misrepaired DNA DSBs, leading to the

propagation of mutations and chromosomal aberrations which

ultimately results in cell death [54]. Further, we found that there

was a higher incidence of cells with radiation-induced cH2AX foci

at the crypt bases in Rad21+/2 mice. We noted a higher level of

apoptosis in Rad21+/2 animals at later time-points (day 1 and day

3.5 post IR). It is therefore plausible that mitotic catastrophe in

crypt cells is consequential to their DSB-induced proliferative

response during crypt regeneration in Rad21+/2 animals. Taken

together, our data suggest that the GI sensitivity of Rad21+/2

animals may be attributed to the impairment of crypt regeneration

as a result of enhanced killing of crypt stem cells in combination

with a failure in mitotic arrest followed by mitotic catastrophe.

It is intriguing that the severe sensitivity of Rad21+/2 animals is

not reflected in Rad21+/2 ES and MEF cells. Multiple factors, such

as the difference between cellular- and tissue-specific responses,

may have contributed to the discrepancy. For example, small

intestinal radiosensitivity is known to be largely associated with the

rapid turn-over of small intestinal crypt cells [29]. Unlike ES and

MEF cells, the epithelium (crypts and villi) of small intestines

consists of cells that are short-lived and extruded within 3–5 days

as they migrate up to the tip of villi. The renewal of crypt epithelial

cells largely depends on a sub-population of stem cell progenitors

residing at the base of crypts. Our results showed that following

IR, Rad21+/2 crypt cells fail to undergo cell-cycle arrest and

continue to migrate towards the tip of crypts where they will be

shed. Furthermore, we showed that the stem cell progenitors of

Rad21+/2 crypts are more susceptible to IR-induced cell death.

The combination of these two factors inevitably results in the

accelerated loss of crypt cells, leading to the enhanced crypt death.

Presumably, it is these unique features of small intestinal crypts

that revealed the severe intestinal radiosensitivity of Rad21+/2

animals.

GI sensitivity of Rad21+/2 mutant animals - relevance to
human radiation responses

The systematic and mechanistic investigation of Rad21’s role in

the radiosensitivity of different normal tissues will be important for

understanding the radiation responses in both tumours and

normal tissues. Malignant tumors typically have a high prolifer-

ative fraction and in some ways behave similarly to tissues with

rapid cell turnover, such as the SI. Our finding that SI crypt cells

and long-lived hematopoietic cells of Rad21+/2 mutant animals are

more susceptible to killing by radiation raises the possibility that

targeted depletion of Rad21 in tumors would be of therapeutic

utility and that the level of differential depletion between normal

adjacent tissue and tumor cells would not need to be absolute to

achieve a clinically relevant differential tumor cell kill. Conversely,

our study has another important clinical implication. Cancer

patients who sustain greater than expected side-effects in the SI

from RT, may harbour mutations in, or dysregulation of, Rad21.

Clinical RS and its unfortunate functional consequences for

cancer patients also provide a rationale for a predictive assay for

testing for Rad21 status prior to RT, as a form of molecularly

individualized medicine. Those with Rad21 defects could be spared

irradiation or their doses limited, while WT cases could be

considered for RT dose intensification. Given the typically steep

dose-response curve for tumour cures by RT, the latter could

conceivably result in enhanced cancer cures. Furthermore, human

populations are expected to harbour a generally greater likelihood

of heterozygous mutations than their quadratically-less-likely

homozygous counterparts. Our finding of a gene dosage effect

for mammalian Rad21 IR sensitivity thus suggests that if Rad21

function is conserved in mammals, Rad21 DNA sequence variants,

if present, should be discernable from background.

Materials and Methods

Targeted deletion of the Rad21 gene and generation of
mutant animals

Gene targeting and generation of mutant mice were carried out

essentially as described previously [25]. Briefly, to construct the

targeting sequence, 59 and 39 targeting arms of 1.5 kb and 5.0 kb,

respectively, were generated by PCR from the W9.5 ES cell line

[55]. The targeting construct was made by fusing a splice acceptor

(SA) with an IRES neo gene cassette which has the SV40 polyA

sequence to terminate the mRNA. The resulting targeting

construct replaced the exon 2 of the Rad21 gene, resulting in a

null allele (Fig. S1A). Linearized DNA was introduced into W9.5

parental ES cells by electroporation and positive clones selected as

described previously [25]. Protein expression in WT and three

neomycin-resistant ES clones was examined by Western blot

analysis. A ,120 kDa Rad21 protein band was detected in each

cell line (Fig. S1B). Judging from signal intensities, the clone 5

displayed a noticeably reduction of RAD21 protein level, while

two other clones (83 and 96) had similar signal intensity as WT.

The level of PCNA was similar in all cell lines, indicating that any

the reduction of the RAD21 protein is not necessarily associated

with changes in expression of this protein that is typically

associated with cell proliferation. Targeting of this clone was
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confirmed by PCR and Southern blot analysis of genomic DNA.

DNA Sequence analysis of PCR products confirmed the insertion

of the neo gene into the correct site of the Rad21 gene. Accordingly,

ES clone 5 was used for microinjection into C57Bl/6J blastocysts.

Chimeric offspring were obtained. Heterozygous Rad21+/2 mice

were generated by breeding. Tail DNA was used for PCR-based

genotyping.

Cell culture, ES cell targeting efficiency and mouse
embryonic fibroblast cell lines

For the targeting efficiency assay, ES cells were cultured in BRL-

conditioned medium as described elsewhere [46]. WT and the

Rad21+/2 ES cell lines were transfected with a Rad54-GFP knockin

construct [20]. One week after selection with Puromycin, single-cell

suspensions of surviving colonies were made following trypsinization

and analysis by FACS on a green fluorescence (eGFP) versus

forward scatter (FSC-H) plot. Results were plotted in a fluorescence

(GFP) histogram as described previously [20]. Targeting efficiencies

were determined using Modfit software (Beckton Dickinson) and are

indicated in each histogram. Rad542/2 ES cell lines were used as

gene targeting-defective controls.

MEF cell lines were established from E13.5 embryos as

described [55]. The procedure was approved by the Peter

MacCallum Cancer Centre Animal Experimental Ethics Com-

mittee (approval #1275 and #1346). Cells are maintained in

DMEM supplemented with 10% FCS, 1% Penicillin and

Streptomycin, and 0.2% 0.1 M b-mercaptoethanol.

Clonogenic survival assays
WT and isogenic Rad21+/2 ES cells were seeded in 35 mm

plates at appropriate densities in duplicate plates following a single

dose of graded c-ray irradiation (0, 2, 4, 6 and 8Gy). Cells were

cultured for 14 days and colonies containing more than 50 cells

were scored as clonogenic survivors. For assaying MMC

sensitivity, ES cells were seeded in 6-well plates at appropriate

densities, allowed to adhere and treated with MMC for 3 hours.

Following treatment, MMC was removed and plates washed. Cells

were cultured in MMC-free medium for 14 days and surviving

colonies of more than 50 cells were counted. Three independent

experiments were performed for each assay.

FACS analysis
MEFs were irradiated at 10Gy and harvested at 24 and

48 hours post IR. Unirradiated cells were used as controls. Cells

were fixed in 70% ethanol and treated with propidium iodide and

RNase A. DNA content was analysed by flow cytometry. For

BrdU labelling, cells were incubated in 10 ı̀M BrdU for 45 min

prior to harvesting. Cells were then fixed in 70% ethanol, washed

and treated with 2 N HCl containing 0.5% TritonX-100 for 30

minutes. Following neutralisation with 0.1 M Na2B4O7, cells were

incubated with a monoclonal anti-BrdU antibody (BD Biosciences)

for 30 minutes. Alexa 488 anti-mouse IgG (Invitrogen) was used as

the secondary antibody. Cells were stained with propidium iodide

and analysed by flow cytometry. Cell cycle profiles were analysed

using ModFit and FCS express 3 softwares.

Chromosome spreads, SCE assay and
Immunofluorescence

Metaphase chromosome spreads were prepared as described

previously [56]. SCE was carried out essentially as described

elsewhere [57]. Briefly, MEFs were cultured in the presence of

5 mM BrdU for 48 hours. Cells were then incubated in Colcemide

(0.15 mg/ml final concentration) for 2 hours and chromosome

spreads were prepared. For MMC-induced SCEs, cells were

treated with MMC (6 mM final concentration) for 30 minutes prior

to the addition of Colcemide. SCEs were scored in a minimum of

20 metaphase spreads with near-diploid chromosome content.

Immunofluorescence was performed as described previously [56].

For cH2AX immumostaining, MEFs were irradiated at 10Gy and

fixed 4 hours post IR. Unirradiated MEFs were used as basal

controls. Primary antibodies were a rabbit polyclonal anti-cH2AX

(gift from Dr W. Bonner) and a mouse monoclonal anti-a-tubulin

antibodies (Sigma-Aldrich, used at 1:1000 dilution). Secondary

antibodies were Alexa-488 anti-mouse and Alexa-568 anti-rabbit

antibodies (Invitrogen). Cells were counterstained with either

DAPI or propidium iodide. Images were collected using an

Olympus BX51 microscope and cH2AX foci were counted using

Metaphorph software.

Whole body irradiation
Animals of mixed (129/Sv X C57BL/6) background were

housed in micro-isolators in a specific pathogen free (SPF) facility.

Compound mutant mice of Rad21+/2 and AtmSRID [28] were

generated by intercross. Adult mice (eight to ten week-old

littermates) were exposed to a single dose of WBI (6Gy, 8Gy,

10Gy or 13Gy) using a Caesium-137 gamma source at the dose

rate of 1.67 min/Gy. Following IR, mice were given water

containing antibiotic (0.5 g/L Neomycin), except those used for

bone marrow assays. Animals were checked daily for signs of

stress, including abnormal posture (head down), ambulation

(reluctance to move and unresponsive to activity), laboured

breathing (panting or gasping), loss of appetite, rough coat and

diarrhoea. Animals displaying signs of severe stress were culled.

Animals used for tissue analysis sensitivities were sacrificed at

specified time-points post WBI. For determining survival, animals

were observed for 30 days. The procedure for animal experiments

was approved by the Peter MaCallum Cancer Centre Animal

Experimental Ethics Committee (approval #1275 and #1346).

Histology
Mice were sacrificed by cervical dislocation following required

time-points following WBI. Twelve segments of 0.5 cm in length

were collected from the SI jejunum, fixed in 10% normal buffered

formalin, embedded in paraffin and sectioned transversely.

Because of the variation in radiation response in different regions

of the colon, only the distal colon was used for analysis and

sections were cut longitudinally [31,51]. Sections were stained with

hematoxylin & eosin (H&E).

Microcolony assay
SI samples were collected at day 3.5 post WBI following various

doses and processed asdescribed above. For each mouse, the

number of surviving crypts was scored in at least six whole

transverse SI sections according to the criteria set for microcolony

assay [30,31]. A surviving crypt was defined as containing 10 or

more darkly stained nuclei, little cytoplasm and lying close

together. Scoring was performed in a code-blinded fashion with

samples identified only by histological block number. SI’s from at

least five mice were scored per data point.

Immunohistochemistry (IHC)
IHC was performed using an EnvisionTM+ kit (Dako) according

to the manufacturer’s instructions. Antigen retrieval was carried

out in 10 mM Tris buffer and 1 mM EDTA pH 9.0 for 2 minutes

in a pressure cooker (Biocare Decloker). Primary antibodies were a

mouse monoclonal anti-PCNA antibody (Dako M0879 clone
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PC10, used at 1:800 dilution), a rabbit polyclonal anti-Rad21

antibody (Abcam, used at 1:200 dilution), rabbit polyclonal anti-

cH2AX (gift from Dr W. Bonner) and rabbit polyclonal anti-

phospho-histone H3 antibodies (Abcam, used at 1:500 dilution).

Slides were counter-stained with hematoxylin, dehydrated in

ethanol and coverslipped.

Phospho-histone H3-positive cells were counted in the whole

circumference of at least four SI cross-sections. MI was derived

from the number of mitoses per crypt. PCNA-positive cells in large

intestinal crypts were recorded on a positional basis using a central

cell at the crypt base as position 1. Accordingly longitudinal crypt

positions on both walls of the crypt can be assigned numbers 1, 2,

3 etc. and pooled for scoring purposes [38]. Only cells stained with

strong intensity were scored. All other cells that stained either

weakly or not at all were regarded as negative. At least 20 crypts

per mouse were scored and a minimum of five mice per data point

were assessed. Counting was done in a code-blinded fashion, with

samples identified by the histology block numbers and genotypes

only being revealed at the end of scoring.

TUNEL staining
TUNEL staining, which detects DNA fragmentation in cells

undergoing apoptosis, was done using the Apop-Tag Kit

(Chemicon) following the manufacturer’s instructions. Sections

were counterstained with hematoxylin. Total numbers of TU-

NEL-positive cells in SI crypts were counted in the whole

circumference of at least four cross-sections in a code-blinded

manner. The apoptotic index describes the average number of

apoptotic cells per crypt. The frequency of TUNEL-positive cells

was determined by scoring at least 20 crypts per mouse and three

animals per genotype.

Intestinal organoids culture and ex vivo irradiation assay
Crypt nests obtained from small intestines were counted using

trypan blue for viability stain and the required number of crypt

nests was seeded in Matrigel (BD Biosciences) overlayed with

500 ml of DMEM/F12 (Sigma) containing 20 ng/ml EGF (BD

Biosciences), 10 ng/ml bFGF (Roche), 500 ng/ml R-spondin

(RnD Systems), 100 ng/ml Noggin (Peprotech) and B27 supple-

ment (Invitrogen). Cultures were established on day 0 and

irradiated the next day using a c-cell irradiator. Viable organoids

were scored 10 days post irradiation following incubation in MTT

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide).

Colony forming cell (CFC) assay
Littermates were treated with a single dose of 8Gy WBI and

sacrificed at day 10 post IR, along with unirradiated littermates.

Bone marrow cells were harvested from one femur. Cells were

plated in triplicates at 2,500 cells per 35 mm dish for unirradiated

mice, or 1/10 and 1/100 per femur for irradiated mice using a

double layer agar containing colony stimulating factor-1 (CSF-1)

at 16103 U/dish), IL-3 at 25 U/dish, Interleukin 1alpha (IL-

1alpha) at 800U/dish and stem cell factor (SCF) at 100 ng/dish

[58]. Partially purified mouse uterus extract (PMEU) was used as a

source of CSF-1. IL-3 was obtained from conditioned medium

from a mouse mammary cell line. Plates were incubated in a 37uC
incubator under 5% O2, 10% CO2 and 85% N2 for 14 days.

Colonies (.50 cells/colony) were counted under an inverted

microscope.

LPP-CFCs form, in the presence of CSF-1 alone, colonies

containing 50 to 50,000 cells with a diameter of less than 0.5 mm.

HPP-CFCs form, in the presence of multiple growth factors (i.e.

CSF-1, IL-3, IL-1alpha and SCF), colonies of more than 100,000

cells with a diameter of greater than 0.5 mm. Colony number per

mouse femur was determined. Colonies larger than 0.5 mm

diameter were scored as HPP colonies and those less than 0.5 mm

in diameter as LPP colonies.

Western blot analysis
Protein extracts were prepared as described [56]. Western blots

were probed with a polyclonal anti-Rad21 antibody (Abcam, used

at 1:500 dilution) and a polyclonal anti-SMC3 antibody (Abcam,

used at 1:1000 dilution). Signal was detected with chemilumines-

cence. The membrane was then stripped to remove any signal and

re-probed with a monoclonal anti-PCNA antibody (DAKO) and a

monoclonal anti-a-tubulin antibody (Sigma-Aldrich).

Statistical analysis
Statistical analysis was performed using GraphPad Prism 5

software. Clonogenic survival post IR was analysed using the

linear quadratic model and survival post MMC treatment was

analysed using a two components exponential model. P values

were determined using the Students T-test, one-way ANOVA test

or Chi-square test. The Log-Rank test was used for cumulative

survival analysis.

Supporting Information

Figure S1 Targeted deletion of mouse Rad21 gene. A. Diagram

of targeting construct. Exons are shown in solid bars. E: EcoRI;

SA: slicing acceptor; IRES: internal ribosome entry site; NEO:

neomycin. Insert: Southern blot analysis showing the confirmation

of the targeted allele (asterisk). B. Western blot analysis of RAD21

protein level in ES cells. Two independent WT (Rad21+/+) cell

lines and three Rad21+/2 ES cell lines (#5, #83 and #96) were

tested. The membrane was probed with anti-RAD21, and anti-

SMC3 cohesin antibodies. Actin and PCNA antibodies were used

as controls for loading and the proportion of S phase cells,

respectively. Note: reduced RAD21 and SMC3 level in ES clone 5

compared to WT and the two other Rad21+/2 clones.

Found at: doi:10.1371/journal.pone.0012112.s001 (0.83 MB TIF)

Figure S2 Chromosomal and mitotic abnormalities of Rad21+/

2 MEFs. A. The frequency of cells with diploid and aneuploid

chromosome content. Data represent the percentage of metaphase

spreads prepared from passage 2 MEFs. There is a clear increase

in the frequency of aneuploid cells in Rad21+/2 MEFs compared

to WT (p,0.05). The number of metaphase spreads scored was as

follows: WT n = 61; Rad21+/2 n = 113. B. Metaphase spreads

showing the altered centric chromatin organization in Rad21+/2

cells. Arrowheads: sister chromatids lying in parallel to each other

with no apparent centric connection. Insert: enlarged images of

the boxed region. The percentage of cells with this phenotype was

clearly higher in Rad21+/2 MEFs compared to WT (p,0.05).

The number of mitotic cells scored: WT n = 41; Rad21+/2

n = 34. C. Representative images of normal and abnormal mitoses.

Chr.: chromosome. Arrows: chromosome bridges and lagging

chromosomes. Arrowhead: a chromosome or chromosome

fragment without apparent spindle attachment. The number of

mitotic cells scored: WT n = 36; Rad21+/2 n = 33.

Found at: doi:10.1371/journal.pone.0012112.s002 (2.20 MB TIF)

Figure S3 Radiation induced-genomic instability. Nuclei of

unirradiated and irradiated WT and Rad21+/2 MEFs were

visualised by DAPI staining. Abundant NPBs and MNs were

detected in Rad21+/2 MEFs following IR.

Found at: doi:10.1371/journal.pone.0012112.s003 (2.52 MB TIF)

Figure S4 Immunostaining of IR-induced cH2AX foci in WT

and Rad21+/2 MEFs 4 hours post IR. DNA was counterstained
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with DAPI. Focus numbers in Rad21+/2 cells are approximately

30 to 50 fold the number seen basally in these cells. Left panels:

black and white micrographs showing cH2AX foci. Right panels:

merged images of cH2AX foci (red) and DAPI (blue). Scale

bars = 20 mm.

Found at: doi:10.1371/journal.pone.0012112.s004 (1.85 MB

TIF)

Figure S5 Immunostaining of RAD21 protein in mouse

intestinal crypts. DNA was counterstained with DAPI. Focus

numbers in Rad21+/2 cells are approximately 30 to 50 fold the

number seen basally in these cells. Left panels: black and white

micrographs showing cH2AX foci. Right panels: merged images

of cH2AX foci (red) and DAPI (blue). Scale bars = 20 mm.

Found at: doi:10.1371/journal.pone.0012112.s005 (3.72 MB

TIF)

Table S1

Found at: doi:10.1371/journal.pone.0012112.s006 (0.10 MB

DOC)
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