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Abstract
Generalized linear models (GLMs) have been developed for modeling and decoding population
neuronal spiking activity in the motor cortex. These models provide reasonable characterizations
between neural activity and motor behavior. However, they lack a description of movement-
related terms which are not observed directly in these experiments, such as muscular activation,
the subject's level of attention, and other internal or external states. Here we propose to include a
multi-dimensional hidden state to address these states in a GLM framework where the spike count
at each time is described as a function of the hand state (position, velocity, and acceleration),
truncated spike history, and the hidden state. The model can be identified by an Expectation-
Maximization algorithm. We tested this new method in two datasets where spikes were
simultaneously recorded using a multi-electrode array in the primary motor cortex of two
monkeys. It was found that this method significantly improves the model-fitting over the classical
GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate
decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while
retaining real-time computational efficiency. These improvements on representation and decoding
over the classical GLM model suggest that this new approach could contribute as a useful tool to
motor cortical decoding and prosthetic applications.
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1. Introduction
Recent developments in biotechnology have given us the ability to measure and record
population neuronal activity with more precision and accuracy than ever before, allowing

© 2010 Elsevier B.V. All rights reserved.
Corresponding Author: Wei Wu Department of Statistics Florida State University Tallahassee, FL 32306-4330, USA. Tel:
1-850-644-3218 Fax: 1-850-644-5271 wwu@stat.fsu.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Neurosci Methods. Author manuscript; available in PMC 2011 June 15.

Published in final edited form as:
J Neurosci Methods. 2010 June 15; 189(2): 267–280. doi:10.1016/j.jneumeth.2010.03.024.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



researchers to study and perform detailed analyses which may have been impossible just a
few years ago. In particular, with this advancement in technology, it is now possible to
construct a brain-machine interface (BMI) to bridge the gap between neuronal spiking
activity and external devices that help control real-world applications (Donoghue, 2002;
Lebedev and Nicolelis, 2006; Schwartz et al., 2006). The primary goal of this BMI research
is to be able to restore motor function to physically disabled patients (Hochberg et al., 2006):
spike recordings would be “decoded” to provide an external prosthetic device with a
neurally-controlled signal in the hope that the movement can be restored in its original form.
However, there are still various issues that need to be addressed, such as long-term stability
of the micro electrode array implants, efficacy and safety, low power consumption, and
mechanical reliability (Donoghue, 2002; Chestek et al., 2007).

Many mathematical models have been proposed to perform this decoding of spiking activity
from the motor cortex. Commonly-used linear models include population vectors
(Georgopoulos et al., 1982), multiple linear regression (Paninski et al., 2004), and Kalman
filters (Wu et al., 2006; Pistohl et al., 2008; Wu et al., 2009). These solutions have been
shown to be effective and accurate, and have been used in various closed loop experiments
(Taylor et al., 2002; Carmena et al., 2003; Wu et al., 2004). However, one caveat is that
these models all make the strong assumption that the model for the firing rate has a
continuous distribution (such as a Gaussian distribution) which apparently is not compatible
with the discrete nature of spiking activity.

In addition, various discrete models have been developed to characterize spike trains. These
formulations allow us to model the spiking rate using a discrete distribution, often a Poisson
function with a “log” canonical link function, for the conditional density function at each
time. In particular, recent research has focused on Generalized Linear Models (GLMs)
which allow us to model non-linear relationships in a relatively efficient way (Brillinger,
1988, 1992; Paninski, 2004; Truccolo et al., 2005; Yu et al., 2006; Nykamp, 2007; Kulkarni
and Paninski, 2007a; Pillow et al., 2008; Stevenson et al., 2009). The online decoding
methods in a GLM framework include particle filters (Shoham, 2001; Brockwell et al.,
2004, 2007) and point process filters (Eden et al., 2004; Truccolo et al., 2005; Srinivasan
and Brown, 2007; Kulkarni and Paninski, 2007b).

Some very recent methods have also been proposed to perform population neuronal
decoding. (Yu et al., 2007) focused on appropriate representation on the movement
trajectory. They proposed to combine simple trajectory paths (each path to one target) in a
probabilistic mixture of trajectory models. (Srinivasan et al., 2006; Srinivasan and Brown,
2007; Kulkarni and Paninski, 2007b) recently developed methods that incorporate goal
information in a point process filter framework, and showed corresponding improvements in
the decoding performance. This idea of incorporating goal information was further
examined by Cunningham et al. (Cunningham et al., 2008), who investigated the optimal
placement for targets to achieve maximum decoding accuracy.

While all of these non-linear models have attractive theoretical and computational
properties, they do not take into account other internal or external variables that may affect
spiking activity, such as muscular activation, the subject's level of attention, or other factors
in the subject's environment. Collectively, we call these unobserved (or unobservable)
variables hidden states, or common inputs, using the terminology from (Kulkarni and
Paninski, 2007a); see also (Yu et al., 2006; Nykamp, 2007; Brockwell et al., 2007; Yu et al.,
2009) for related discussion. Similarly, recent studies in the nonstationary relationship
between neural activity and motor behaviors indicate that such nonstationarity may be
accounted for by the fact that the spike trains also encode other states such as muscle
fatigue, satiation, and decreased motivation (Carmena et al., 2005; Chestek et al., 2007).
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Moreover, a nonparametric model for point process spike trains has been developed using
stochastic gradient boosting regression (Truccolo and Donoghue, 2007); it was found that
the model fit with minor deviations and that these deviations may also result from other
(unobservable) variables related to the spiking activity. Thus we would like to include these
“hidden variables” as an important adjustment for modeling neural spiking processes in the
context of neural decoding and prosthetic design. The effects of these variables for neural
decoding of hand position has been examined in our recent investigation under a linear state-
space model framework (Wu et al., 2009); significant improvement in both data
representation and neural decoding were obtained.

In this paper, we apply a GLM-based state-space model that includes a multidimensional
hidden dynamical state, to analyze and decode population recordings in motor cortex taken
during performance of a random target pursuit task. This new model is a natural extension of
our recent investigation in the linear case (Wu et al., 2009). The parameters in the model can
be identified based on a recent version of the Expectation-Maximization (EM) algorithm for
state-space models (Smith and Brown, 2003; Yu et al., 2006; Kulkarni and Paninski, 2007a).
Finally, decoding in this model can be performed using standard efficient point process filter
methods (Brown et al., 1998; Truccolo et al., 2005), and can therefore be applied in real-
time online experiments. We find that including this hidden state in our analysis leads to
significant improvements in the decoding accuracy, as discussed in more detail below.

2. Methods
2.1. Experimental Methods

Electrophysiological recording—The neural data used here were previously recorded
and have been described elsewhere (Wu and Hatsopoulos, 2006). Briefly, silicon
microelectrode arrays containing 100 platinized-tip electrodes (1.0 mm electrode length; 400
microns inter-electrode separation; Cyberkinetics Inc., Salt Lake City, UT) were implanted
in the arm area of primary motor cortex (MI) in two juvenile male macaque monkeys
(Macaca mulatta). Signals were filtered, amplified (gain, 5000) and recorded digitally (14-
bit) at 30 kHz per channel using a Cerebus acquisition system (Cyberkinetics
Neurotechnology Systems, Inc.). Single units were manually extracted by the Contours and
Templates methods, and units with very low spiking rate (< 1 spike/sec) were filtered to
avoid non-robustness in the computation. One data set was collected and analyzed for each
monkey; the number of distinct units was 100 for the first monkey, and 75 for the second.
The firing rates of single cells were computed by counting the number of spikes within the
previous 10 ms time window. We found approximately 99.9% of these counts are either 0 or
1, which essentially enforces a binary sequence of spike counts for most time bins in the
study.

Task—The monkeys were operantly trained to perform a random target pursuit task by
moving a cursor to targets via contralateral arm movements. The cursor and a sequence of
seven targets (target size: 1cm × 1cm) appeared one at a time on a horizontal projection
surface (the workspace is about 30cm × 15cm). At any one time, a single target appeared at a
random location in the workspace, and the monkey was required to reach it within 2
seconds. As soon as the cursor reached the target, the target disappeared and a new target
appeared in a new, pseudo-random location. After reaching the seventh target, the monkey
was rewarded with a drop of water or juice. One example trial is shown in Figure 1. A new
set of seven random targets was presented on each trial. The hand positions were recorded at
a sampling rate of 500 Hz. 100 successful movement trials were collected in each data set.
To match time scales, the hand position were down-sampled every 10 ms and from this we
computed velocity and acceleration using simple differencing. Taking into account the
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latency between firing activity in MI and hand movement, we compared the neural activity
with the instantaneous kinematics (position, velocity, and acceleration) of the arm measured
100 ms later (i.e. a 10 time bin delay) (Moran and Schwartz, 1999;Paninski et al., 2004;Wu
et al., 2006).

2.2. Statistical Methods
2.2.1. Independent State Model—In motor cortical decoding models, the system state
typically includes the hand kinematics. We use the hand position, velocity, and acceleration
to fully describe the movement. The state over time is assumed as a simple autoregressive
(AR) model with order 1 which essentially imposes the continuity of the hand movement.
Mathematically, the state is described using the following equation:

(1)

where xk ∈ ℜp is the hand kinematics (i.e. the position, velocity, and acceleration for x- and
y-coordinates, grouped together to form a vector), mx ∈ ℜp is the intercept term, Ax ∈ ℜp×p

is the transition matrix, and ξk ∈ ℜp is the noise term. We assume ξk ~ N(0, Cx), with Cx ∈
ℜp×p.

In this study, we add a multi-dimensional hidden state to the system. For simplicity, the
hidden state, qk ∈ ℜd, is also assumed as an AR(1) model (Smith and Brown, 2003;
Kulkarni and Paninski, 2007a), and the transition is described as:

(2)

where Aq ∈ ℜd×d is the transition matrix, and εk ∈ ℜd is the noise term. We assume εk ~
N(0, Cq), with Cq ∈ ℜd×d. Here, εk and ξk are also assumed independent of each other.

In addition to the two system equations (Eqns. 1 and 2), a measurement equation is used to
characterize the discretized firing activity (spike count) of the recorded C neurons. Here, we
use a Poisson distribution to describe the spike count for each neuron at each time
conditioned on the hand state, spike history, and hidden state. That is,

(3)

where  is the spike count of the cth neuron at the kth time bin for c = 1, ⋯ , C, and 
denotes the spike history. Δt denotes the bin size. Based on the GLM framework, the
conditional intensity function (CIF),  has the form:

(4)

where  is the most recent N history steps from the kth bin of the cth
neuron, μc ∈ ℜ is the intercept for this model, and βc ∈ ℜp, γc ∈ ℜN, and lc ∈ ℜd are
coefficients for the hand state, spike history, and hidden state, respectively.

Note that the history term in the density function implies the dependence for the spike train
over time. The spike train is, therefore, a non-Poisson process (NPP) albeit the distribution
at each time is Poisson. However, if this term is excluded from Equation 4; that is,
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(5)

then the spike train is a commonly-used inhomogeneous Poisson process (IPP) (Brown et
al., 1998; Gao et al., 2002; Brockwell et al., 2004), given the system states xk and qk; on the
other hand, if we integrate over the unobserved hidden state qk, then the spike train may be
considered a log-Gaussian Cox process, a doubly stochastic Poisson process where the
logarithm of the conditional intensity function is a Gaussian process (Snyder and Miller,
1991; Moeller et al., 1998; Kulkarni and Paninski, 2007a).

We also note that we have an intercept term in Equation 1 as the kinematic data may not be
centered at 0. However, we do not use an intercept term for the hidden state (Eqn. 2). This is
to assure the identifiability of the model. It is easy to verify that the intercept is equivalent to
a centralization shift in the hidden state and the shift can be absorbed in the intercept term,
μc, in the CIF in Equation 4 or 5.

2.2.2. Dependent State Model—Equations 1 and 2 independently describe the hand
state and hidden state, respectively. This independent description provides an easy-to-access
framework to investigate their dynamics. However, in general the hidden states may actually
have a direct, dynamic impact on the hand state and vice versa (Wu et al., 2009). Taking into
account this dependency, the system model can be written as:

(6)

where A ∈ ℜ(p+d)×(p+d) is the transition matrix, and vk ∈ ℜ(p+d) is the noise term. We
assume vk ~ N(0, V), with V ∈ ℜ(p+d)×(p+d). There is no intercept term here as the center of
the hidden state can be absorbed in the measurement equation and the hand kinematics can
be easily centralized before being used in the model. Note that if A = diag(Ax, Aq), and V =
diag(Cx, Cq), then Equation 6 can be simplified to two independent equations (as Eqns. 1
and 2 except the intercept term mx). Here diag(·) denotes a block-diagonal matrix by putting
all components in the main diagonal.

Coupling the dependent state model (Eqn. 6) and the measurement model (Eqn. 3), we also
form a state-space model to represent the neural activity and hand kinematics. We denote
this GLM with hidden states using a dependent state model as GLMHS-DS, and the one
using an independent state model (Eqns. 1, 2, and 3) as GLMHS-IS. As in the GLMHS-IS,
the CIF, , in the GLMHS-DS can have either an NPP (Eqn. 4) or IPP (Eqn. 5) form.

2.3. Model Identification of GLMHS-IS
Based on Equations 1, 2, and 4, the parameters in the GLMHS-IS are (mx, Ax, Cx, Aq, Cq,
{μc}, {βc},{γc}, {lc}) where bracket {·} denotes the set of parameters with all values of the
subindex; for example, {μc} = (μ1, ⋯, μC). At first, we need to identify the new model using
a training set where firing rates of all neurons, {yk}, and hand states, {xk}, are observed. As
the hand kinematics is independently formulated in Equation 1, the parameters (mx, Ax, Cx)
can be identified using the standard Least Squares estimates (Wu et al., 2006). Let θ = (Aq,
Cq, {μc}, {βc}, {γc}, {lc}). The identification of θ needs more computations as it involves
the unknown hidden state. Here we propose to identify θ based on an approximate EM
algorithm for this state-space model (Smith and Brown, 2003;Shumway and Stoffer,
2006;Kulkarni and Paninski, 2007a).
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2.3.1. EM Algorithm for GLMHS-IS: E-Step—The EM algorithm is an iterative
method. Let the parameter be θi at the ith iteration. In the E-step, we need to calculate the
expectation of the complete (i.e. firing rates, hand state, and hidden state) log-likelihood,
denoted by ECLL, with the parameter θ, given as:

(7)

where the expectation is on the posterior distribution of the hidden state conditioned on the
entire observation with the current parameter θi.

Using the Markov properties and the independence assumptions formulated in Eqns. 2 and
3, we have:

(8)

where M denotes the total number of time bins in the data, and  denotes the spike
history of all neurons. The constant term includes the hand state transition probability and
the initial condition, P(q1), on the hidden state. The computations of these terms are
independent of the parameter θ. The initial state q1 can be simply set to zero; we have found
that the initial value has a negligible impact on the data analysis (Wu et al., 2009).

To estimate the expected log-likelihood in Equation 8, we need to to know the distributions
of P(qk+1, qk|{xk, yk}; θi) and P(qk|{xk, yk}; θi). Assuming normality on these quantities, we
only need to compute their first and second order statistics E[qk|{xk, yk}; θi], Cov[qk|{xk,
yk}; θi], and Cov[qk+1, qk|{xk, yk}; θi] (labeled as qk|M, Wk|M, and Wk+1,k|M, respectively).
These terms can be computed via a standard approximate forward-backward recursive
algorithm (Brown et al., 1998; Smith and Brown, 2003; Kulkarni and Paninski, 2007a). See
Appendix A for details.

Likelihood Computation: With all conditional probabilities of the hidden state estimated in
the E-step, we can compute the joint likelihood of the observed firing rates and hand state in
the training data with current parameters θi. Letting x1:M denote the set (x1, ⋯, xM) and y1:M
denote the set (y1, ⋯, yM), we can compute

(9)

where the initial condition (i.e. P(x1, y1)) is assumed as a constant, c, over the iterations. For
convenience, we remove θi and use 1:n to denote sub-indices (1, ⋯, n). This notation
simplification will be used in all future conditional probabilities in this paper. For each k,

The integrand is a product of two Gaussian distributions (first and third terms) and one
Poisson distribution (second term). There is no closed-form expression for this integration.
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Here we use a Monte-Carlo method to estimate its value as qk|x1:k−1, y1:k−1 ~ N(qk|k−1,

Wk|k−1) (see Appendix A). Let  be I independent samples from this distribution.
Then

Note that as the likelihood in Eqn. 9 is calculated over all time steps, the randomness of
samples at each time is offset. In practice, we found a very stable likelihood value even with
a small sample size (I = 10 in this study) at each time.

2.3.2. EM Algorithm for GLMHS-IS: M-Step—In the M-step, we update θi by
maximizing ECLL with respect to θ. To simplify notation, we use P(·|⋯) to denote P(·|{xk,
yk}; θi) and remove the subindex i for all parameters. The log-likelihood in Equation 7 can
be partitioned in the following form:

where

(10)

(11)

Here E1 and E2 contain different parameters. We can maximize E1 to identify Aq and Cq,
and maximize E2 to identify {μc}, {βc}, {γc}, and {lc}. The solution for Aq has a closed-
form expression given by:

(12)

Similarly, using the measurement model in Equation 3, we have

where  is described in Equation 4 or 5. There is no closed-form expression for the
maximization of the parameters {μc, βc, γc, lc}. Here we use a Newton-Raphson algorithm to
update these parameters. It can be shown that the Hessian matrix of E2 is negative-definite
(Kulkarni and Paninski, 2007a), indicating that E2 is a strictly concave function with respect
to all parameters. Therefore, the Newton-Raphson method rapidly converges to the unique
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root of the equation (i.e., the global maximum of E2) within a few iterations (typically
around 5 in the given data). The detailed procedure is described in Appendix B.

2.4. Model Identification of GLMHS-DS
Based on Equations 4 and 6, the parameters in the GLMHS-DS are θ = (A, V, {μc}, {βc},
{γc}, {lc}). Similar to the identification of the GLMHS-IS, we use an EM algorithm to
identify the GLMHS-DS.

2.4.1. EM Algorithm for GLMHS-DS: E-Step—In the ith iteration, we estimate the
expected complete log-likelihood

(13)

This decomposition is the same as that in Equation 8 except that the hand state and hidden
state are in one probability transition as they are dependent on each other. To utilize the
observed hand state in training data, we let

where A11 ∈ Rp×p, A12 ∈ Rp×d, A21 ∈ Rd×p, and A22 ∈ Rd×d are four sub-matrices, and ξk,
∈k, Cx, and Cq follow the same definition in the GLMHS-IS model. Then Equation 6 can be
reorganized in the following form:

(14)

(15)

Here the hidden state transition (Eqn. 15) has a linear Gaussian form with A21xk as a control
input. The hand kinematics (Eqn. 14) can be thought of as a measurement in addition to
neural firing rate of each observed neuron in Equation 3. With this extra measurement, the
estimation of posteriors of the hidden state conditioned on the full observation, P(qk+1, qk|
{xk, yk}; θi) and P(qk|{xk, yk}; θi), involves more computations than that in the GLMHS-IS
model (Appendix A). Assuming the normality on the posteriors, we also compute the means
and covariances, Eqk|{xk, yk}; θi], Cov[qk|{xk, yk}; θi,], and Cov[qk+1, qk|{xk, yk}; θi]
(labeled as qk|M, and Wk|M, and Wk+1,k|M, respectively).

Likelihood Computation: We compute the joint likelihood of the observed firing rates and
hand state in the training data with parameters θi. The likelihood can then be written as

(16)

Lawhern et al. Page 8

J Neurosci Methods. Author manuscript; available in PMC 2011 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Here the initial probability, P(x1), is assumed as a constant c. For each k,

where we use a Monte-Carlo method in the last step in that qk|x1:k, y1:k−1 ~ N(qk|k−1,
Wk|k−1) (see Appendix C).

The first term in Equation 16 can be computed in the same way except that there is no
transition in the hand state; that is,

The same Monte-Carlo procedure can be applied here.

2.4.2. EM Algorithm for GLMHS-DS: M-Step—Similarly, the expected complete log-
likelihood in Equation 13 can be written as

where

(17)

(18)

Here E3 and E4 contain different parameters. We can maximize E3 to identify A and V, and
maximize E4 to identify {μc}, {βc}, {γc}, and {lc}. Note that Equation 18 is identical to
Equation 11. Therefore the update of the parameters {μc}, {βc}, {γc}, and {lc} is the same as
that in the M-step for the GLMHS-IS model.

The Maximization of E3 with respect to A has a closed-form solution:

The covariance V = diag(Cx, Cq) is a block-diagonal matrix where Cq denotes the
covariance of the hidden state. To make the system identifiable, we fix Cq as the identity
matrix. Based on the updated A(i+1), the solution to Cx also has a closed form:
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Note that each of the optimizations involved in the M-step for this model have unique
solutions, although the marginal likelihood log P({yk}|θ) may not be concave with respect to
all of the elements of the parameter vector θ (Paninski, 2005). Thus initialization of the
parameter search can play an important role, especially in the GLMHS-DS model, which has
a few more parameters to describe the interaction of the kinematic state xk with the hidden
state qk. We found that initializing the GLMHS-IS parameters to the GLM solution, and
then initializing the GLMHS-DS parameters to the GLMHS-IS solution, led to reliable and
accurate results.

2.5. Decoding
After all parameters in the model (GLMHS-IS or GLMHS-DS) are identified, we can use
the model to decode neural activity and reconstruct the hand state. To make the decoding
useful in practical applications, we focus on on-line “filtering” estimates, defined as the
posterior distribution of the hand state conditioned on the previous and current spiking rate.
Note that the exact estimation of the posterior distribution is intractable as the measurement
equation is based on a non-linear Poisson model (Eqn. 3). To simplify the process, we
approximate the posterior with a normal distribution whose mean and covariance we update
with each time step. This allows us to use an efficient point process filter which is a
nonlinear generation of the classical Kalman filter (Fahrmeir and Tutz, 1994;Brown et al.,
1998;Truccolo et al., 2005). To use the point process filter in this situation, we combine the
kinematic states xk and the hidden states qk to form a new state vector sk. The procedure
(omitted here) is similar to that described in Appendix A.

2.6. Goodness-of-Fit Analysis
A common way to perform goodness-of-fit analysis when spike trains are modeled in
continuous time is to use the idea of Time Rescaling (Brown et al., 2002). Briefly, one
would use the fitted point process rate function, and “rescale” the time axis. Under the
assumption that the fitted model is “correct”, the rescaled spike train should be a
homogeneous Poisson process.

However, for point processes modeled in discrete time, a different approach is needed.
Recently, Brockwell (Brockwell, 2007) introduced a new method for conducting goodness-
of-fit analysis for models in discrete time. In general, for continuous distributions, one can
use Rosenblatt's Transformation (Rosenblatt, 1952) to map a continuous k-variate random
vector X to one with a uniform distribution on a k-dimensional hypercube. Brockwell
generalized this transformation for any vector X (either discrete, continuous or mixed) and
showed that this new transformation of the vector X can still be mapped to a uniform
distribution on [0, 1], allowing us to do goodness-of-fit even for discrete spike trains. In the
context of neural spiking processes, this “generalized residual” is constructed as follows
(Brockwell et al., 2007): For k = 1, …, M, calculate

(19)
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and the left limits

(20)

where  is the spike count of the cth neuron at time t, and  is the collection of spike

counts up to t − 1. Using samples drawn from  (essentially the
prediction distribution up to the previous time step), we evaluate the Monte Carlo

approximation to  and . With estimates of  and , draw independently

 at each time k. Under the assumption of model correctness, the set of

residuals  should be uniformly distributed on [0, 1.] This procedure is done
for all C neurons in the study.

It should be noted, however, that this method is stochastic in nature (meaning, we should
expect slightly different results every time we execute this method). This is because there
are two sources of randomness in this method: One is in the Monte Carlo samples used to
evaluate the upper and lower limits (although this is not much of a problem since we expect
some degree of convergence for larger sample sizes), and the other is in generating the
residuals. It should also be noted that, while a goodness-of-fit procedure can provide us
important information about a model's lack of fit, in many cases multiple models may “pass”
a given goodness-of-fit test (indeed, this is the case here, as discussed further below).
Therefore, to determine which model is most appropriate, further analyses, such as
likelihood calculations or model selection procedures, need to be conducted. A detailed
likelihood analysis is performed later in the paper.

3. Results
3.1. Identification

To both identify and verify our model, we divide our data into two distinct parts: a training
set (to fit all necessary model parameters) and a testing set (to verify that the model fit is
appropriate). In each dataset, we use the first 50 trials as our training set, with the next 50
trials as a testing set. Each trial was about 4-5 seconds long; with a bin size of 10ms, this
results in about 400 to 500 observations for each trial, or a total size of 20000 to 30000
observations for the training set. This is a sufficient number for identification and modeling
purposes. The typical number of iterations in each EM procedure is about 10 to 20.

3.1.1. GLMHS-IS Model—In the GLMHS-IS model, the hand kinematics are modeled
independently of the common inputs (see Eqn. 1). This model is straightforward
mathematically, as it enables us to fit parameters separately using the standard least squares
method.

IPP case: Our first analysis involves measuring the goodness-of-fit in the GLMHS-IS IPP
model (see Section 2.6). Based on the assumption of “model correctness”, the residuals
constructed should be from a uniform distribution on [0, 1]. Here we calculate these
residuals for each of our 50 training trials. We found that the residuals for most of the cells
(around 90% in both datasets) are uniformly distributed (P-value > 0.05, Kolmogorov-
Smirnov test).
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We then analyze the CIF, , of the GLMHS-IS versus that of the classical GLM for IPP
spike trains. In the GLMHS-IS, we take log , and in the GLM, log

. Note that μc,  and  in the GLMHS models are fitted using the EM
approach, while μc and  in the classical GLM are fit through standard GLM methods. In
both cases, we assume that these parameters are fixed quantities, and that xk is known. We
use the filtering estimates to obtain the approximate posterior distribution of qk given the
data up to time bin k, namely qk ~ N(qk|k, Wk|k); using this distribution assumption, we can
calculate 95% confidence intervals for log  in the usual multiple regression manner, and
then exponentiate to obtain the (asymmetric) confidence limits for .

The CIFs of both models in one example trial are shown in Figure 2. We see from the figure
that the confidence intervals are generally fairly “tight” around the estimated CIF. Also, we
see that the GLMHS framework can better capture the significant variation of the spiking
activity whereas the classical GLM appears to over-smooth the activity. For example, the
CIF under our new model increases sharply when there is increased spiking activity (in the
beginning of the trial, for example), while the classical GLM CIF remains relatively
constant. It should be noted that, under this formulation, the CIF for the GLMHS model is a
function of the spike values at each time k (through the calculation of qk|k), while the CIF for
the classical GLM is not (though the parameters in the model are still estimated from the
spike values). This partially accounts for the apparently improved performance of the CIF in
the GLMHS model.

We also calculate the Normalized Log-Likelihood-Ratios (NLLRs) in the testing part of
each data set. This is for the purpose of cross-validation. The NLLR is calculated as:

where Ld is the likelihood of the observed data under a d-dimensional GLMHS-IS model, L0
is the likelihood under the classical GLM IPP model, N is the number of bins used to
calculate the likelihood and Δt is the bin size. NΔt measures the time length of the data.
Using base 2 units, the NLLR is measured in bits/sec. The results for the IPP case are shown
as solid lines with stars in Figure 3. Here we see that the NLLR (computed on the test data)
is increasing for all values of d (from 0 to 4) in both data sets.

We use a standard Likelihood Ratio Test (LRT) to determine significance in the
improvement since the models are nested (the GLMHS-IS model is equivalent to the
classical GLM model if the hidden dimension d = 0). We found that the GLMHS-IS models
provide significantly better representation than the classical GLM for all values of d (details
omitted to save space). One can also use standard model-selection criterions such as the
Bayesian Information Criterion (BIC) (Rissanen, 1989) to determine model significance.
Lower values of the BIC indicate that the model is better when compared to another model.
It was found that the BIC is a decreasing function with respect to the hidden dimension d.
This indicates that larger hidden dimensions provide better representation on the neural
activity and hand kinematics. Again, we emphasize that all the likelihood comparisons (in
the above and in the following) are on the testing data. This indicates that the improvement
in the model-fitting is effective as the result is already cross-validated.

NPP case: It is understood that including spike history terms is very important in the
modeling of neural spiking processes (Brillinger, 1992; Paninski, 2004; Truccolo et al.,
2005; Truccolo and Donoghue, 2007). In the non-Poisson process case, the logarithm of the
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CIF is a linear function of hand state, spike history, and hidden state; that is, log

. In our data analysis, we choose N = 10. This indicates that a
neuron's current spiking activity is related to its spike values in the previous 100ms. Similar
results were obtained as in the IPP case for both the goodness-of-fit and in the comparison
of the CIF between the GLMHS-IS NPP model and the classical GLM model (the detail is
omitted).

When calculating the NLLR in the NPP case, we fix L0 to be the likelihood under the
classical GLM IPP model as a baseline measure to compare the modeling improvement
between IPP and NPP cases. The results for the NPP case are shown as dashed lines with
circles in Figure 3. Here we see a similar trend as in the IPP case: NLLR is increasing with
respect to d for each dataset. These results indicate that both IPP and NPP models with
hidden inputs outperform the classical GLM model in the modeling of neural spiking
processes. Furthermore, increasing the hidden dimension can provide a better representation.
Finally, as a comparison between IPP and NPP models, we see that the NLLRs for the NPP
are greater than for the IPP (significant jump between solid and dashed lines at d = 0 in
Figure 3), suggesting that the NPP can better represent the nature of the neural activity than
the IPP. Similar LRT and BIC analyses can be applied to quantify these results.

3.1.2. GLMHS-DS Model—In the GLMHS-DS model, the hand kinematics are allowed to
influence the common inputs, and vice versa. While this idea is fairly straightforward, the
mathematical approach involves more computations. We performed the same analysis as in
the GLMHS-IS model. The goodness-of-fit results for the GLMHS-DS model were very
similar to the previously discussed GLMHS-IS model, and are omitted to save space.
Moreover, similar to the result in the GLMHS-IS case (Fig. 2) the CIF under the GLMHS-
DS model can better characterize spiking activity than the classical GLM model. For
example, the GLMHS-DS model can correctly capture certain spiking signals whereas the
CIF of the GLM model seems to be over-smoothing the data.

Figure 4 compares the NLLRs for both IPP and NPP cases under the GLMHS-DS model.
Here we still see an increasing trend in the NLLRs with respect to d for each dataset. This
indicates that the neural activity is better represented with the GLMHS-DS model for both
the IPP and NPP cases. Consistent with our results in the GLMHS-IS model, the NLLRs for
the NPP are greater than for the IPP, suggesting that the NPP can better represent the nature
of the neural activity than the IPP.

3.2. Decoding
In the identification stage, we have used the EM algorithm to fit all necessary parameters in
the model, and performed model diagnostics including goodness-of-fit analysis and
likelihood calculations. Here we are interested in measuring the performance of our model
in the decoding on testing data. In this stage, we reconstruct the hand state using the
observed firing rates up to the current time. This “filtering” estimate would be desirable in
practical on-line applications.

Figure 5 has an example for one trial in each of our datasets. Here we see that our new
model is able to capture the true value of the hand kinematics with the 95% confidence
intervals over time. Only in a few cases did the true hand kinematics stray outside of the
confidence limits. This is observed both in the IPP (Fig. 5 A) and NPP (Fig. 5 B) cases. We
quantify the decoding accuracy using a traditional 2-d Mean Square Error (MSE) in the units
of cm2, comparing the predicted hand trajectory to the true hand trajectory in the testing data
(Wu et al., 2006). The results are summarized in Tables 1 (for GLMHS-IS models) and 2
(for GLMHS-DS models).
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From Table 1, we notice that, for all values of d, the MSE in the GLMHS-IS is better than in
the classical GLM. Also, unlike the results in the linear case (Wu et al., 2009) where the
MSE was always decreasing with respect to d, here we see that larger d does not always
improve the decoding results. In Dataset 2, for example, the MSE is very consistent for all
four dimensions. Table 2 summarizes the decoding results for the GLMHS-DS models. We
found that overall the decoding here is more accurate than that in the GLMHS-IS models.
For example, here there are more improvements larger than 10% in Dataset 1, and one
improvement reaches 29% when d = 2 for the IPP case in Dataset 2 which is the maximum
over all models. This suggests that there should be some direct interaction between the hand
state and hidden state, and the interaction can help better characterize the dynamic systems
and improve decoding performance.

3.3. Comparison with the Linear State-Space Model with Hidden States
In (Wu et al., 2009), we proposed to add a multi-dimensional hidden state to a linear Kalman
filter model. Here we refer to it as a KFHS (Kalman filer with hidden state) method. The
KFHS shares many similarities to the GLMHS in this paper: 1) Both KFHS and GLMHS are
in the framework of state-space models where the neural firing rate is the observation, and
the hand kinematics and hidden state are the system state with a linear Gaussian transition
over time. 2) Adding the hidden state improves the representation of the neural data (larger
likelihoods in the hidden state models). In particular, the likelihood increases with respect to
the dimension of the hidden state. 3) Adding the hidden state improves the decoding
accuracy (lower mean squared errors). Based on the same datasets as in this study, the
decoding accuracy using the KFHS is shown in Table 3 (reproducing the results in (Wu et
al., 2009)). Comparing decoding results of the KFHS and the GLMHS (in Tables 1 and 2),
we found that MSE in the KFHS is lower in some cases, whereas higher in the others
(though the GLMHS models appear to often perform better than the classical Kalman filter).

Though the main results are consistent, there are significant differences between these two
methods which are worth emphasizing: 1) The KFHS assumes the neural firing is a
continuous variable with a Gaussian distribution. The model can be identified using the
conventional EM algorithm (Dempster et al., 1977). In contrast, the GLMHS is based on a
more realistic and accurate non-linear discrete model of spike trains. The model is identified
based on an approximate EM method (Smith and Brown, 2003). 2) In the KFHS, neural
firing rates are described as a linear Gaussian model without spike history. In contrast, the
firing rate in the GLMHS models can either include spike history (NPP model) or not (IPP
model). 3) In the KFHS, it is necessary to have dependency between the hand kinematics
and the hidden state, since we found empirically that the model can not be identified
otherwise (the likelihood does not increase in the EM iteration). However, both the
GLMHS-IS and GLMHS-DS can appropriately characterize the neural activity. 4) The
hidden dimension in the KFHS can only vary from 1 to 3 before performance begins to
decrease, whereas the hidden dimension in the GLMHS can be 4 or larger. 5) In the KFHS,
higher hidden dimensions resulted in better decoding accuracy. Such a trend is much weaker
in the GLMHS-IS and GLMHS-DS.

3.4. Analysis of the Hidden State
By adding a multi-dimensional hidden state to the classical GLM, we have obtained a better
model fit as well as improved decoding. However, our understanding of the hidden state is
still very limited as it is always unknown. Here we perform some rudimentary analysis to
explore its role in neural coding by examining the non-stationarity and higher-order
kinematics terms.
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Non-stationarity check—It is widely known that neural activity in motor cortex may be
highly non-stationary over time (Carmena et al., 2005; Kim et al., 2006; Chestek et al.,
2007). Our recent study in the KFHS model indicated that each dimension of the hidden
state decoded from neural activity has either a very weak or no trend at all over time. Results
similar to the KFHS model are also obtained under our new GLMHS model. For example,
fitting a linear regression to the 2-d GLMHS-IS model revealed R2 values of .0001 and .
0020, respectively. This suggests that the hidden states do not appear to capture the non-
stationarity in the neural signals. Instead, the hidden state term is allowing us to properly
account for overdispersion, i.e., higher variability than would be expected in the purely
Poisson GLM model.

Higher-order kinematics check—We have shown that adding a hidden state to the
GLM model can better characterize the neuronal activity when the kinematics include
position, velocity, and acceleration. The improvement is quantified by comparing the
likelihood in each model. One may naturally hypothesize that the improvement might result
from the fact that the neurons are not only tuned to position, velocity, and acceleration, but
higher-order terms of the hand kinematic signal, and that the hidden state model is able to
capture this higher-order information. To check on this, we use kinematics with various
orders in the classical GLM and GLMHS models and compare their likelihoods. It was
found that the likelihood in the GLMHS is still consistently larger than that in the GLM. As
an example, the likelihood comparison in dataset 2 is shown in Figure 6 where the kinematic
order varies from 1 (position only) to 6 (position, velocity, acceleration, plus 4th, 5th, and
6th order kinematics). It is apparent that the improvement in the GLMHS consistently holds
over all kinematic orders. This result suggests that the hidden state represents information
other than the higher-order kinematics.

4. Discussion
Motor cortical decoding has been extensively studied over the last two decades since the
development of population vector methods (Georgopoulos et al., 1986; Moran and
Schwartz, 1999), and indeed even earlier (Humphrey et al., 1970). Previous methods have
focused on probabilistic representations between spiking activity and kinematic behaviors
such as the hand position, velocity, or direction (Paninski et al., 2004; Brockwell et al.,
2004; Truccolo et al., 2005; Sanchez et al., 2005; Wu et al., 2006). However, it was found
that the neural activity may also relate to other states such as muscle fatigue, satiation, and
decreased motivation (Carmena et al., 2005; Chestek et al., 2007; Truccolo and Donoghue,
2007). In this paper, we have proposed to incorporate a multi-dimensional hidden state in
the commonly used generalized linear models, where the spike train can be characterized
using an inhomogeneous Poisson process (IPP) or a non-Poisson process (NPP). The hidden
term, in principle, can represent any (unobserved or unobservable) states other than the hand
kinematics. We found that these hidden state models significantly improve the
representation of motor cortical activity in two independent datasets from two monkeys.
Moreover, the decoding accuracy can be improved by up to about 30% in some cases,
compared to the standard GLM decoder. These results provide evidence that, by taking into
account the various hidden effects that we do not measure directly during an experiment, we
can design better online decoding methods, which in turn should prove useful in prosthetic
design and in online experiments investigating motor plasticity. Consistent with our recent
results in the linear case (Wu et al., 2009), and also related previous approaches due to
(Brockwell et al., 2007) and (Yu et al., 2006, 2009; Santhanam et al., 2009), we found that
the GLMHS models are able to better capture the over-dispersion, or extra “noise”, in real
motor cortical spike trains than the classical GLM method. This suggests that the hidden
state models could contribute to understand the uncertainty in neural data, which is a key
problem in neural coding (Churchland et al., 2006a,b). Moreover, we think the same
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identification algorithms developed in this article can, in principle, be applied to other point
process models, but the log-concavity of the likelihood function needs to be verified in each
case.

A number of recent studies have emphasized similar points. For example, (Brockwell et al.,
2007) incorporated a hidden normal variable in the conditional intensity function of a GLM-
based model to address unobserved additional source of noise in motor cortical data. One
major difference from our study is that these authors assumed that the noise term is
independent over time and between neurons; in our case, the hidden noise term was assumed
to have strong correlations both in time and between neurons, and even with the kinematic
variables (in the GLMHS-DS model). It will be interesting to combine these approaches in
future work. In addition, the model identification in (Brockwell et al., 2007) was based on
Markov Chain Monte Carlo (MCMC) methods which are fairly computationally intensive;
we used faster approximate EM methods, which might be easier to utilize in online
prosthetic applications.

The use of correlated latent variables in the modeling of neural spiking processes was also
previously examined in (Yu et al., 2006). They used latent variable models to examine the
dynamical structure of the underlying neural spiking process in the dorsal premotor area
during the delay period of a standard instructed-delay, center-out reaching task. The
identification of the model also follows an EM framework. The main difference from this
study is that they used Gaussian quadrature methods in the maximization of the expected
log-likelihood in the M-step. In contrast, in our model the Hessian matrix is negative
definite (therefore the function is strictly concave), allowing us to use an efficient Newton-
Raphson approach for the maximization (see also (Paninski et al., 2009) for further
discussion). More recently, these authors introduced Factor Analysis (FA; (Santhanam et al.,
2009)) and Gaussian Process Factor Analysis (GPFA; (Yu et al., 2009)) methods for
modeling these latent processes in the context of brain-machine interfaces. The GPFA is an
extended version of multivariate methods such as Principal Component Analysis (PCA), in
which temporal correlations are incorporated, much as we utilize a simple Gaussian
autoregressive prior model for the kinematics xk and hidden state qk here. These authors
used their methods, as we do here, to extract a lower-dimensional latent state to describe the
underlying neural spiking process which can help account for over-dispersion and non-
kinematic variation in the data. A few differences are worth noting: first, (Yu et al., 2009)
use a simple linear-Gaussian model to model the (square-root transformed) spike count
observations, while we have focused here on incorporating a discrete representation
(including spike history effects) of the spike trains. (Santhanam et al., 2009) investigate a
Poisson model with larger time bins than we used here and no temporal variability in their
latent Gaussian effects, but found (for reasons that remain somewhat unclear) that the fully
Gaussian model outperformed the Poisson model in a discrete (eight-target center-out)
decoding task; this is the opposite of the trend we observed in section 3.3. Second, there are
some technical computational differences: the general Gaussian process model used in (Yu
et al., 2009) requires on the order of T3 time to perform each EM iteration, where T is the
number of time bins in the observed data (note that T can be fairly large in these
applications), whereas the state-space methods we have used here are based on recursive
Markovian computations that only require of order T time (Paninski et al., 2009). Again, it
will be very interesting to explore combinations of these approaches in the future.

One other technical detail is worth discussing here. In the definition of the CIF (Eqn. 5), one
can also add interneuronal interactions in the history term (Brillinger, 1988,1992;Paninski,
2004;Truccolo et al., 2005;Nykamp, 2007;Kulkarni and Paninski, 2007a;Pillow et al.,
2008;Stevenson et al., 2009;Truccolo et al., 2009). However, this can significantly increase
the computational burden, since now on the order of C2 parameters must be fit, where C ~
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100 is the number of simultaneously observed cells. This large number of parameters could
also generate instability in the model identification; see, e.g., (Stevenson et al., 2009) for
further discussion of these issues. (Note that decoding in the presence of these interneuronal
terms is quite straightforward, and can be done in real-time; the bottleneck is in the model
identification, which may make these coupled multineuronal models somewhat less suitable
for online decoding applications.) Thus, for simplicity, we set all interneuronal interaction
terms to zero in this study, but we plan to explore these effects in more detail in the future.

In this study, the hidden dimension only varies from 1 to 4. When the dimension is larger,
the EM identification procedure may become inefficient and unstable. Also, in the linear
KFHS (Wu et al., 2009), we found that the model could not be identified by the EM
algorithm if the kinematics and hidden state were assumed to evolve independently, or if the
dimension of the hidden state is larger than 3. These problems may also be due to the
iterative update in the EM algorithm. To better address these issues, we are exploring
alternative approaches for the model identification. Based on the log-concavity of the
likelihood function, a direct Laplace approximation method is attractive; see (Koyama et al.,
2008, 2009; Paninski et al., 2009) for further details. Our preliminary results show that this
Laplace method can lead to significant improvements in efficiency (gains in computational
speed of approximately 2-4x compared to the EM method). Further investigation of these
techniques will be conducted in the future. Finally, because of their accuracy and efficiency,
the hidden-state models we have discussed here (both the KFHS and GLMHS) should be
useful tools in on-line applications. An important next step will be to apply these new
methods and to test their efficacy in real-time closed-loop experiments.
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Appendix

A. Posterior Distributions in GLMHS-IS
The estimation of qk|M, Wk|M, and Wk+1,k|M includes a forward (filtering) and a backward
(smoothing) step. The “filtering” step computes the posterior of hidden state conditioned on
the past and current observations. The computation is performed via a point process filter
(Eden et al., 2004).

For k = 2, ⋯ , M:

The “smoothing” step computes the posterior of hidden state conditioned on the entire
observations. As the posterior distributions are normal, the computation follows a standard
backward propagation (Haykin, 2001).

For k = M − 1, ⋯ , 1:
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For k = M :

For k = M − 1, ⋯ , 2:

B. Newton-Raphson Method
We want to solve the equation

(21)

where the vector,

The integrand in Equation 21 includes two parts: The first one, , includes the
density rate, but the second one, , does not. The integration on the second part can be
easily obtained:

where the equality holds as 1, xk, and  are constant with respect to the integration, and by
definition qk|M = ∫qk P(qk| ⋯)qkdqk. Similarly, we can compute the integration on the first
part:

Denoting the sums
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we try to find the root of the function f with variables μc, βc, γc, and lc; that is,

(22)

This system has a highly non-linear structure. There are no simple closed-form solutions for
updating the parameters μc, βc, γc, and lc, c = 1, ⋯ , C. Here we use a standard Newton-
Raphson method to search the root to the equation. Based on Equation 22, the Jacobian
matrix for all parameters can be obtained as follows:

J is negative definite. This is because for each term in the above sum 1) exponential term is
always positive; 2) Δt > 0; 3) any matrix multiplied by its transpose must be semi-positive
definite; 4) the matrix with covariance Wk|M in the last main diagonal is semi-positive
definite. Finally, the variability in the kinematics and neural activity implies that the sum is
nonsingular. This negative definiteness ensures fast convergence in finding the root of f.

Finally, the Newton-Raphson update on parameters μc, βc, γc, and lc is written as:

(23)

C. Posterior Distributions in GLMHS-DS
As in the GLMHS-IS, the estimation of qk|M, Wk|M, and Wk+1,k|M includes a forward
(filtering) and a backward (smoothing) step. As the hand state in the GLMHS-DS also
follows a generative representation from the hidden state (Eqn. 14), more computations are
required than that described in Appendix A.
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Filtering
At first we define notation in the “filtering” step. For k = 2, ⋯ , M, let qk|k−1 = E(qk|x1:k,
y1:k−1), Wk|k−1 = Cov(qk|x1:k, y1:k−1) as the mean and covariance of the prior estimate, and
qk|k = E(qk|x1:k+1, y1:k), Wk|k = Cov(qk|x1:k+1, y1:k) as the mean and covariance of the
posterior estimate. Then the recursive formula is as follows:

For k = 2, ⋯ , M:

The first two equations are naturally derived using the linear Gaussian transition of the
hidden state (Eqn. 15). The last two equations are based on the measurement on firing rate
(Eqn. 3) and hand state (Eqn. 14). The derivation of this posterior is similar to that in an
adaptive point process filter (Eden et al., 2004) and is described as follows:

Using the basic probability rules, we have

Taking the logarithm, we have

We further assume the posterior P(qk|x1:k+1, y1:k) follows a Gaussian distribution. Then

Taking derivative with respect to qk on both sides, we have

(24)

Let qk = qk|k−1 in Equation 24. Then,
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Taking the derivative with respect to qk in Equation 24 and then let qk = qk|k−1, we have

Smoothing
In the smoothing step, we estimate qk|M, Wk|M, and Wk+1,k|M, which describe the
distribution of the hidden state conditioned on entire recording of firing rate and hand
kinematics. The procedure is the same as the smoothing recursion in Appendix A expect for
the computation of qk|M which results from the control input term in Equation 15. The
derivation is fairly standard and can be briefly described as follows:

Use the probability rules,

(25)

Based on the normality assumption, we have

Matching the linear term of qk on both sides of Equation 25, we have
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Figure 1.
Upper two panels: True hand trajectory, x- and y-position, for one example trial in the study.
Bottom panel: A raster plot of spike trains of 5 simultaneously-recorded neurons during the
same example trial. We plot the hand trajectory as one-dimensional plots to help show the
temporal correspondence between the hand trajectory and the spike trains.

Lawhern et al. Page 25

J Neurosci Methods. Author manuscript; available in PMC 2011 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
CIFs in the GLMHS-IS and GLM with IPP spike trains in one example trial. Upper plot:
The thick black line denotes the CIF for the 50th neuron from Dataset 1 under the GLMHS-
IS IPP Model with d = 4 with 95% confidence intervals (thin gray lines). The dashed black
line denotes the CIF of the classical GLM. Here we see that the CIF for the GLMHS-IS
model can capture more of the dynamics of the spike train when compared to the classical
GLM. Lower plot: the original spike train.
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Figure 3.
A. A comparison of the NLLRs for the GLMHS-IS models in the testing part of Dataset 1
when the spike train is modeled as an inhomogeneous Poisson process (solid line with stars)
and when modeled as a non-Poisson process (dashed line with circles). The model is a
classical GLM if the hidden dimension d = 0. We notice that the NLLR increases as d
increases in both IPP and NPP cases. Also, we see the NLLR for the NPP case is higher than
that for the IPP case. B. Same as A but for Dataset 2.
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Figure 4.
A. A comparison of the NLLRs for the GLMHS-DS models in the testing part of Dataset 1
when the spike train is modeled as an IPP (solid lines with stars) and when modeled as an
NPP (dashed lines with circles). The model is a classical GLM if the hidden dimension d =
0. We observe that the NLLR increases with respect to d in both IPP and NPP cases. Also,
we see the NLLR for the NPP case is higher than for the IPP case. B. Same as A but for
Dataset 2.
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Figure 5.
A. True hand trajectory (dashed red), x- and y-position, of an example trial from dataset 1,
and its reconstruction (solid blue) and 95% confidence region (thin solid blue) using the
GLMHS-IS with d = 4 under the IPP case. The reconstruction by the classical GLM (solid
green) is also shown here. B. Same as A except from another trial in dataset 2 in the NPP
case with d = 1 in the model. In both cases, we see that the reconstructions from the
GLMHS models perform well, and they are close to those from the classical GLM models.

Lawhern et al. Page 29

J Neurosci Methods. Author manuscript; available in PMC 2011 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Log-likelihoods of the GLM (dashed line with stars) and the GLMHS-IS with d = 1 under
the IPP case (solid line with circles) in dataset 2 where the kinematic order varies from 1 to
6. We see that the separation between the GLM and GLMHS is fairly constant for all
kinematic orders.

Lawhern et al. Page 30

J Neurosci Methods. Author manuscript; available in PMC 2011 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lawhern et al. Page 31

Table 1

Comparison of decoding accuracy (MSE in the units of cm2) between GLMHS-IS models and the classical
GLM. The comparison is for both IPP and NPP cases in each of the two datasets. Numbers in the square
brackets indicate the improvement by the NPP over the IPP. Numbers in parentheses indicate the improvement
by the hidden state models over the classical GLM model.

Method Dataset 1 Dataset 2

IPP NPP IPP NPP

classical GLM 9.17 8.61 [6%] 9.78 8.47 [13%]

d=1 8.66 (5%) 8.20 (5%) 7.91 (19%) 7.26 (14%)

d=2 8.41 (8%) 8.04 (7%) 8.11 (17%) 7.36 (13%)

d=3 8.50 (8%) 8.27 (4%) 7.79 (20%) 7.17 (15%)

d=4 7.77 (16%) 7.26 (16%) 7.70 (21%) 7.40 (13%)
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Table 2

Mean Squared Error (in the units of cm2) of GLMHS-DS models and the classical GLM for IPP and NPP
cases in each of the two datasets. Numbers in the square brackets indicate of the improvement by the NPP
over the IPP. Numbers in parentheses indicate the improvement by the hidden state models over the classical
GLM model.

Method Dataset 1 Dataset 2

IPP NPP IPP NPP

classical GLM 9.17 8.61 [6%] 9.78 8.47 [13%]

d=1 8.59 (6%) 8.27 (4%) 7.81 (20%) 7.31 (14%)

d=2 7.53 (18%) 7.40 (14%) 6.95 (29%) 6.40 (24%)

d=3 8.02 (13%) 8.00 (7%) 7.19 (26%) 6.80 (20%)

d=4 7.71 (16%) 7.39 (14%) 7.24 (26%) 6.93 (18%)
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Table 3

Mean Squared Error (in the units of cm2) of KFHS models and the classical Kalman filter (KF) in each of the
two datasets. Numbers in parentheses indicate the improvement by the hidden state models over the classical
KF.

Method Dataset 1 Dataset 2

classical KF 8.35 9.78

d=1 8.09 (3%) 8.37 (14%)

d=2 7.60 (9%) 8.23 (16%)

d=3 7.47 (11%) 7.61 (22%)
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