
A de novo 1p34.2 microdeletion identifies the
synaptic vesicle gene RIMS3 as a novel candidate
for autism

Ravinesh A Kumar,1 Jyotsna Sudi,1 Timothy D Babatz,1 Camille W Brune,2

Donald Oswald,3 Mayon Yen,4 Norma J Nowak,5 Edwin H Cook,2 Susan L Christian,1

William B Dobyns1,6,7

ABSTRACT
Background A child with autism and mild microcephaly
was found to have a de novo 3.3 Mb microdeletion on
chromosome 1p34.2p34.3. The hypothesis is tested that
this microdeletion contains one or more genes that
underlie the autism phenotype in this child and in other
children with autism spectrum disorders.
Methods To search for submicroscopic chromosomal
rearrangements in the child, array comparative genomic
hybridisation (aCGH) was performed using a 19 K whole
genome human bacterial artificial chromosome (BAC)
array and the Illumina 610-Quad BeadChip microarray.
Ingenuity pathway analysis (IPA) was used to construct
functional biological networks to identify candidate
autism genes. To identify putative functional variants in
candidate genes, mutation screening was performed
using polymerase chain reaction (PCR) based Sanger
sequencing in 512 unrelated autism patients and 462
control subjects.
Results A de novo 3.3 Mb deletion containing
w43 genes in chromosome 1p34.2p34.3 was identified
and subsequently confirmed using fluorescence in situ
hybridization (FISH). Literature review and bioinformatics
analyses identified Regulating Synaptic Membrane
Exocytosis 3 (RIMS3) as the most promising autism
candidate gene. Mutation screening of this gene in
autism patients identified five inherited coding variants,
including one (p.E177A) that segregated with the autism
phenotype in a sibship, was predicted to be deleterious,
and was absent in 1161 controls.
Conclusions This case report and mutation screening
data suggest that RIMS3 is an autism causative or
contributory gene. Functional studies of RIMS3 variants
such as p.E177A should provide additional insight into the
role of synaptic proteins in the pathophysiology of autism.

INTRODUCTION
Autism is characterised by deficits in reciprocal
social interaction, disrupted verbal and non-verbal
communication, and restricted interests and repet-
itive behaviours, and is known to have a strong
genetic component.1 2 Cytogenetic studies indicate
that w3e4% of autism patients have chromosomal
imbalances3e5 that include maternal 15q11q13
duplications (w1e2% of patients) and deletions of
2q37, 22q11.2 and 22q13.3.4 6 Higher resolution
approaches using array comparative genomic
hybridisation (aCGH) and single nucleotide poly-
morphism microarrays have recently identified
submicroscopic copy number variants (CNVs),7e10

including recurrent microdeletions and duplications
of 16p11.2 that have been reported in w1% of
autism patients.8 11 12 Importantly, the discovery
of chromosomal abnormalities and CNVs has led
to the identification of rare intragenic mutat-
ions through deep resequencing of autism candi-
date genes, including NLGN3 and NLGN4,13

NRXN1,10 14 15 SHANK316e18 and CNTNAP2.19e21

Although mutations in these genes account for only
a small proportion of individuals with autism, they
nonetheless provide insight into potential biological
mechanisms that may underlie autism, such as
synaptic dysfunction and abnormal brain connec-
tivity.22 23

Here, we report the case of a boy with autism,
microcephaly, and other dysmorphic features in
whom aCGH detected a w3.3-Mb interstitial dele-
tion in chromosome 1p34.2p34.3 that containsw43
genes, including Regulating synaptic membrane
exocytosis protein 3 (RIMS3), a gene previously
shown to be dysregulated in autism subjects.24 We
examined the role of RIMS3 in 512 unrelated autism
subjects by performing mutation analyses to look
for putative functional variants.

CLINICAL REPORT
The boy (LP99-105) was born at term to healthy
and unrelated parents, and appeared normal except
for right hydronephrosis and vesicoureteral reflux,
which both resolved. His head circumference was
normal at birth, but decelerated after 7 months and
subsequently followed a curve at or just below
e2 SD (figure 1A). His early motor development
was normal, but he walked late at 16 months. He
used his first few words at 15 months and slowly
increased to 50e75 words by 2.5 years, but then
progressively stopped using almost all speech by
3 years.
Onexamination,hehadanormal facial appearance

at 1 year (figure 1B), but by 10 years he had a long
narrow face and deep set or sunken eyes (figure 1C).
His general and neurological examinations were
normal, including good motor coordination. Serial
exams between 2 and 10 years all demonstrated poor
social communication including poor eye contact
and limited interactive play, striking anxiety, diffi-
culty with transitions, constant chewing, short
attention span, poor sleep pattern, and repetitive
activities such as bouncing on an exercise ball. Brain
magnetic resonance imaging (MRI) at 1 year
demonstrated mildly prominent extra-axial spaces,
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but was otherwise normal. Serial audiograms done during his first
several years of life demonstrated normal hearing.

He was diagnosed with autistic disorder at age 4 years
at a university based assessment clinic for children with

developmental disorders. On the Autism Diagnostic Observation
ScheduleeGeneric (ADOS-G),25 he exceeded the autism cut-off
score on the communication, social, and communication plus
social domains, thus meeting the criterion for an Autism

Figure 1 (A) The patient’s head circumference (HC) was normal at birth, but decelerated after 7 months and subsequently followed a curve at e3 SD.
Y axis shows HC size in both centimetres and inches. X axis indicates age. The top and bottom dashed curves represent HC at +2 SD (98%) and e2 SD
(2%), respectively, in relation to the mean (50%) HC curve (solid). Serial HC measurements for the patient are represented as red dots. (B) The patient’s
facial appearance is normal at 1 year of age. (C) At 10 years the boy has subtle dysmorphism with a long narrow face and deep set or sunken eyes.
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Diagnostic Observation ScheduleeGeneric classification of
autism (domain scores: communication 6; social 12; stereotyped
behaviours and restricted interests 4). The diagnosis was further
supported by meeting the cut-off scores of autism on the Autism
Diagnostic IntervieweRevised (ADI-R)26 with his mother as the
informant. More widespread developmental abnormalities were
documented at 4 years based on an overall standard score of 28 on
the Scales of Independent BehavioreRevised,27 a parent report
measure of adaptive behaviour. This falls in the “limited to very
limited” range, equivalent to behaviours at 18 months in typi-
cally developing children.

During the subsequent 6 years, he has not regained any
language skills, except for using several signs inconsistently. He
developed a striking fear response when placed in a car at age
9 years that has persisted for more than 3 years. Chromosome
analysis and polymerase chain reaction (PCR) based fragile X
testing were normal, and no other genetic tests were done. This
boy is not part of the AutismGenetics Resource Exchange (AGRE,
Los Angeles, California, USA) consortium (http://www.agre.org/).

SUBJECTS AND METHODS
Autism and control subjects
We obtained phenotype data and DNA from the 1p34 deletion
proband under a protocol approved by the Institutional Review
Board at the University of Chicago. The remaining autism
probands selected for this study were a subset of the AGRE
subjects that were collected with informed consent and insti-
tutional review board approval.28 The AGRE cohort consisted of
512 unrelated autism subjects (151 females and 355 males) from
84 simplex and 428 multiplex families. Subjects who missed
criteria for autism on the ADI-R were classified as having ‘Not
Quite Autism’ (NQA) if their scores on each ADI-R behavioural
domain were within one point of the criteria, or if they met
criteria for each domain except for age of onset <3 years of age.
Fragile X testing was performed in all families and a subset of
families had karyotyping and CNVanalyses performed. Genomic
DNA from control subjects (225 females and 237 males) was
obtained from the National Institute of Mental Health Human
Genetics Initiative control sample set. These subjects were
screened for Axis I mental health disorders and none were
reported as having autism. A summary of the ethnic origins of
the autism patients and control subjects is provided in supple-
mentary table 1.

Array comparative genomic hybridisation
We performed aCGH on the patient using a 19-K whole genome
tiling path bacterial artificial chromosome (BAC) microarray as
previously described.7 We refined the size of the 1p34.2p34.3
microdeletion using the Illumina 610-Quad BeadChip microarray
(Illumina Inc, SanDiego,California,USA, http://www.illumina.com/).

Fluorescence in situ hybridisation (FISH) and microsatellite
analyses
FISH and microsatellite analyses were performed using standard
techniques (supplementary materials).

DNA amplification and sequencing
PCR primers were designed using MIT Primer3 with M13
forward and reverse tails added to each primer to facilitate high
throughput DNA sequencing (supplementary table 2). DNA
amplification and purification were performed using standard
conditions and protocols (supplementary materials).

Pathway analyses
A RIMS3 network was predicted through the use of Ingenuity
Pathways Analysis software (Ingenuity Systems Inc, Redwood
City, California, USA; http://www.ingenuity.com/). To generate
this network, a dataset of known autism genes (ie, focus genes)
was uploaded into the application. The Ingenuity Pathways
Knowledge Base was used to identify interactions between the
focus genes and other gene objects. The network was then
algorithmically generated based on their connectivity. The
network was comprised of ‘nodes’dthat is, the gene or gene
product, connected by ‘edges’ that are biological relationships
supported by at least one publication. The network was then
trimmed to show a refined network with minimal connections
between the autism focus genes.

Protein predictions
We used several applications to predict the effects of missense
substitutions on protein function including SIFT (Sorting
Intolerant From Tolerant, http://sift.jcvi.org/),29 PolyPhen
(Polymorphism Phenotyping, http://coot.embl.de/PolyPhen/),30

and SNAP (http://cubic.bioc.columbia.edu/services/snap/).31

RESULTS
Discovery of a 1p34.2p34.3 microdeletion in a child with autism
and microcephaly
We performed aCGH using a 19-K whole genome tiling path
BAC microarray in patient LP99-105, and detected a w3.3 Mb
deletion in chromosome 1p34.2p34.3 that extended from RP11-
769L8 to RP11-483I17 and included w47 genes (figure 2A). The
microdeletion was not detected in 372 control subjects analysed
on the same BAC array platform.7 FISH studies confirmed the
deletion in the proband (figure 2B), and microsatellite analysis
demonstrated that the deletion was de novo (data not shown).
We used the Illumina 610-Quad BeadChip microarray to
refine the breakpoints to approximately chr1:39,794,296 and
chr1:43,058,974 (UCSC Genome Browser, http://genome.ucsc.
edu; Build 36.1; accessed November 2008), reducing the size of
the microdeletion by w56 kb and identifying w43 genes within
the deleted region.
We reviewed the Database of Genomic Variants (http://

projects.tcag.ca/variation/, Build 36; accessed November 2008)
to determine whether any CNVs in the general population were
present in the 1p34.2p34.3 microdeletion region. No CNVs
encompassed the entire deleted region, but we did find several
smaller blocks of CNVs (figure 2A). The largest of these blocks,
independently characterised by four groups (variations 3289,
4219, 5487 and 8322), was w435 kb in size and contained 11
genes (PPIE, PPT1, TRIT1,OXCT2,MYCL1, BMP8B,MFSD2, RLF,
CAP1, TMCO2, and ZMPSTE24). Both copy number gains and
losses of this region were reported in the general population.

Identification and characterisation of RIMS3 as a candidate
gene for autism
We hypothesised that rare mutations in one or more genes in the
1p34.2p34.3 microdeletion regiondexcluding the 11 in the
w435 kb polymorphic blockdmay be responsible for autism
in other affected individuals as well. Interrogation of these
w32 genes using published literature and online expression
databases identified RIMS3 as the most promising candidate.
Network analysis using Ingenuity Pathways Analysis software
demonstrated that RIMS3 directly interacts with the protein
tyrosine phosphatase PPFIA3 that belongs to the liprin-a gene
family (supplementary figure 1). RIMS3was also associated with
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Figure 2 (A) Array comparative genome hybridisation (aCGH) using a bacterial artificial chromosome (BAC) microarray demonstrates a deletion
in chromosome 1p34.2. The aCGH plot shows the log2 ratio of the patient versus reference DNA on the vertical axis. Each individual BAC is represented
as a single blue dot and the horizontal axis shows the position of each BAC along chromosome 1. The deletion of 1p34.2 is indicated by an arrow
pointing to a vertical line of dots. Interrogation of the UCSC genome browser for the microdeletion region in this region identifies w47 RefSeq genes
(shown below aCGH plot). Known copy number variants (CNVs) (orange blocks) and Indels (green blocks) are reported in the Database of Genomic
Variants track. (B) Fluorescence in situ hybridisation (FISH) analysis confirms the deletion 1p34.2 aCGH results. The distal breakpoint boundary is
indicated where RP11-67o15 (green arrows) shows two normal signals while RP11-120G12 (red arrow) shows a single signal in the interphase nucleus.
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many other autism candidate genes through an indirect inter-
action with FMR1, mutations of which cause fragile X syndrome
(OMIM 300624).

To test the hypothesis that mutations in RIMS3 underlie the
autism phenotype, we sequenced all RIMS3 coding regions, their
associated splice sites, and the 59 and 39untranslated regions in 512
unrelated autism patients. We also sequenced these regions in 462
control subjects to capture the natural genetic diversity of RIMS3
in the general population. In the autism samples, we identified five
novel coding variants (three non-synonymous and two synony-
mous) that were absent in control subjects and not reported
in public DNA databases (Ensembl, http://www.ensembl.org/
and dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/, both
accessed February 2009) (table 1). Demographic data for these five
subjects, including sex, race, and ethnicity, are provided in table 1.
We also identified a 59untranslated region variant as well as one
intronic variant located 30 bp upstream of the third exon. We
found five different sequence changes in the controls (table 1).

Sequencing of parental DNA indicated that all five coding
variants were inherited. We performed segregation analysis in
families by sequencing each variant in affected and/or unaf-
fected siblings. In two multiplex families (AU0247 and AU0125,
figure 3), the variant segregated with the autism phenotype in
siblings. In family AU0247, the maternally inherited p.E177A
variant first identified in patient HI0515 was also present in
a sibling with NQA, but absent in 1161 control subjects. We
reviewed available phenotype data on the carrier mother, who
had depression and symptoms of bipolar disorder and anxiety.
She also had a repaired cleft palate and had received speech
language therapy (the father had received speech language
therapy as well). The heterozygous sib had a ventricular septal
defect that closed spontaneously by 1 year and diastasis recti.
CNVanalysis on this family provided on the AGRE website ruled
out known CNVs associated with autism, including micro-
deletion of 22q11.

The p.E177A substitution, which changes a glutamic acid
(acidic and polar) to an alanine (neutral and nonpolar) residue,
was predicted to be deleterious according to both the SIFT and
SNAP programs. We determined the extent of conservation of
the E177 residue by comparing it against the RIMS3 primary
protein structure of other species (http://genome.ucsc.edu/, hg
18, accessed February 2009). E177 was conserved among all
18 eutherian mammals with data available, but differs from the
presumed ancestral Q177 residue found in six species of fish.

In family AU0125, the p.M260V exon 6 variant identified in
patient HI0686 was not predicted to affect protein function by
any of the three in silico protein programs. The carrier father had
obsessiveecompulsive disorder, depression, anxiety, and atten-
tion deficit hyperactivity disorder. The presence of psychiatric
disorders in parents of children with autism has been observed
previously in several studies,32e34 consistent with the hypothesis
of multiple genes with small additive effects in autism. By
parental report, both children had compulsions and rituals, and
difficulties with changes in routines and their environment. A
summary of phenotype information for the affected siblings in
families AU0247 and AU0125 is provided in table 2, with detailed
phenotype data for all members of families AU0247 and AU0125
included in the supplementary materials. Phenotypic data for the
other three families with coding variants (AU0783, AU0679, and
AU0841) were not available.

We also sequenced RIMS3 in the boy with the 3.3 Mb deletion
to test the hypothesis that the microdeletion might unmask
a recessive allele on the non-deleted chromosome. We did not
identify any putative functional coding variants.

In control subjects, we identified four coding variants that
were distinct from those identified in autism patients; one of
these was predicted to affect protein function (table 1). Three of
the four variants were located in exon 2, a region that did not
contain any of the five variants reported in the autism subjects.
The fourth variant, p.I162V, was located in the same coding
region in exon 4 that harboured the p.E177A substitution.
Interestingly, the subject harbouring this variant presented with
symptoms of obsessiveecompulsive disorder. Phenotypic data on
the parents of the control subjects were not available.

DISCUSSION
We report a boy with postnatal microcephaly, minor dysmorphic
features, mental retardation and autism associated with
a 3.3 Mb deletion involving w43 genes in chromosome
1p34.2p34.3. The deletion is large and de novo, leading us to
hypothesise that it is responsible for his abnormal phenotype.
However, the specific genes responsible for different features of
the 1p34.2p34.3 deletion phenotype are unknown.
Only a few patients with interstitial deletions of 1p34.2p34.3

have been reported. The closest match is the recent report of
a Dutch boy with a 4.1 Mb deletion that completely overlaps
the deletion we report, with loss of an additional 14 genes
including the glucose transporter gene SLC2A1.35 Overall, he has
a more severe phenotype than our patient with severe mental
retardation and hypotonia, ‘profound’ microcephaly and
epilepsy, as well as heterotopia and ponto-cerebellar atrophy on
brain imaging. The more severe phenotype is not surprising given
the severe phenotype associated with loss of SLC2A1 alone
(OMIM 606777). Three other patients have been reported with
deletions involving this general region. One boy with a much
larger w17 Mb visible deletion had severe developmental
delay, poor growth, and microcephaly.36 Two sibs who inherited
a juxtaposed inversion (inv 1p22.3p34.1) and deletion
(1p34.1p34.3) of this region presented with behaviour disorders,
although their intelligence and appearance were normal.37 A
detailed genotypeephenotype analysis involving 1p34.2p34.3 in
these patients is provided in the supplementary materials.
Based on the reported altered regulation of RIMS3 in

autism24 (see below) and our pathway analysis, we hypothesise
that mutations in the synaptic protein RIMS3 is the primary
contributor to the autism phenotype in the 1p34.2p34.3 micro-
deletion patient. A large number of autism related genes are
involved in synapse function, neuronal cell adhesion, or both.38

Several of these have been implicated in autism based on cytoge-
netic rearrangements, CNVs or rare mutations, including NLGN3
andNLGN4,13NRXN1,10 14 15 SHANK3,16e18 andCNTNAP2.19e21

RIMS3 belongs to the RIM protein family that function as
important components of the presynaptic machinery for synaptic
vesicle fusion and neurotransmitter release.39 Expression analysis
of RIMS3 in the rat demonstrated that it is exclusively expressed
in the brain40 and protein studies indicated that RIMS3 was
detected only in rostral brain regions but not in spinal cord,
hindbrain, or midbrain.40 Overexpression of RIMS3 has been
demonstrated to greatly facilitate Ca2+ triggered exocytosis,
supporting a role for RIMS3 as a regulator of exocytosis in the
synaptic membrane.40 One recent study demonstrated that
expression of RIMS3 is dysregulated in lymphoblastoid cells from
autism patients with either maternal duplications of 15q11q13
or fragile X syndrome.24 Others have reported increased expression
of RIMS3 in schizophrenia,41 42 a neuropsychiatric disorder
hypothesised to have shared genetic aetiology with autism.43

Thus, several lines of evidence converge to support the hypothesis
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that abnormal RIMS3 function due to chromosomal imbalances or
rare mutations may underlie autism. However, we cannot exclude
the possibility that other genes within or near the w 3.3 Mb
1p34.2p34.3 deletion may contribute to autism.

To address whether RIMS3 point mutations underlie autism,
we sequenced the complete RIMS3 coding region in 512 unre-
lated autism patients. In total, five coding variants were identi-
fied in autism patients that were absent in w460 controls. None
of these variants were de novo and all were inherited with no bias
between maternal versus paternal transmission. We used several
in silico programs to assess the functional impact of these vari-
ants on protein function, and identified one variant (p.E177A)
that was predicted to be deleterious. This variant segregated with
the autism phenotype in two sibs, was not identified in 1161
controls, and is highly conserved among eutherian mammals.

The p.E177A substitution resides in a C2B domain that is
known to bind to several proteins including a-liprins, SNAP-25,
and voltage gated calcium channels.44 45 However, the critical
residues for some of these interactions are downstream of p.E177
and this amino acid is not conserved among the RIM family of
proteins.40 a-Liprins are known to interact directly with CASK,
a calcium/calmodulin dependent serine protein kinase that

belongs to the membrane associated guanylate kinase family.
CASK regulates the trafficking, targeting and signalling of
numerous presynaptic proteins including neurexins, APBA1
(Mint1) and ion channels,46 and is also implicated in brain
development.47 Interestingly, a C2B domain is also found in
Doc2-a (Double C2-like domains, a), a protein that belongs to
the same superfamily as RIMS3. DOC2A is one of w24 genes
located within the 16p11.2 microdeletion-duplication region that
has recently been detected inw1% of patients with autism.8 11 12

Although the p.E177A variant was not found in a large
number of controls and was predicted to be deleterious using
SIFTand SNAP, further studies are needed to prove whether the
p.E177A substitution is pathogenic or not, as protein simulation
programs do not substitute for experimental confirmation.29 48

Only two of the three in silico methods we used predicted
a deleterious effect from the p.E177A variant. This is not
surprising, given that each program varies in methodology,
including differences in classification approaches (eg, machine
learning vs rule based systems) and input information
(eg, sequence data, functional annotation, protein structure,
solvent accessibility).29 31 We also identified one variant in
a control subject that was predicted to be deleterious. Only

Figure 3 Mutation analysis of RIMS3 identifies two missense variants that segregate with autism and autism related phenotypes. (A) The pedigree for
family AU0247 shows that the p.E177A missense variant is present in a patient with autism (AU0247-03), in a sibling with Not Quite Autism (NQA)
(AU0247-04), and in the mother who presents with psychiatric symptoms. Chromatograms indicate the presence of the A/C substitution. The SIFT
program predicted the p.E177A substitution to be deleterious. (B) The pedigree for family AU0125 shows that the p.M260V missense variant is
present in two siblings with autism (AU0125-03 and AU0125-04) as well as in the father who presents with psychiatric symptoms, including
obsessiveecompulsive disorder (OCD). Chromatograms indicate the presence of the A/G substitution. The variant is not predicted to affect protein
function.
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limited phenotype data are available for this subject, so we
cannot determine whether it is a benign or weakly pathogenic
variant. Detailed phenotypic assessment of this subject would
help distinguish between these possibilities.

In summary, our data demonstrate that heterozygous loss of
one or more of the 43 genes located within a w3.3 Mb interval
on chromosome 1p34.2p34.3 are associated with abnormal
development, including mental retardation, postnatal micro-
cephaly and autism. Furthermore, our data suggest but do not
prove conclusively that RIMS3 is an autism causative or
contributory gene. To our knowledge, this is the first study to
suggest that mutations in a RIM protein may underlie autism or
other neurodevelopmental disorders. The identification of puta-
tive mutations in RIMS3 is consistent with the identification of

CNVs and intragenic mutations of other pre- and post-synaptic
proteins in patients with autism, and lends further support to the
hypothesis that abnormalities in synaptic development and
function underlie autism in some (and perhaps many) patients.
Functional studies of RIMS3 variants such as p.E177A should
provide additional insight into the role of pre-synaptic proteins in
autism. Finally, the rare association of microcephaly and autism
suggests that other gene(s) in the region are associated with brain
growth.
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Table 2 Phenotype analysis

AU012503 AU012504 AU024703 AU024704

Mutation M260V M260V E177A E177A

Sex Male Female Male Male

Ethnicity Non-Hispanic Non-Hispanic Non-Hispanic Non-Hispanic

Race White White White White

ADI-R

Age (years) at ADI-R 10 7 6 3

Social domain 11 19 24 9

Communication-verbal domain 17 13 20 16

Restricted, repetitive behavior domain 11 12 5 3

Classification Autism Autism Autism NQA

Age of 1st words (months) 12 12 48 36

Age of 1st phrases (months) 16 14 54 38

Any language regression No No No No

Overall level of language Phrase speech Phrase speech Phrase speech Phrase speech

Any regression of other skills No H, P, SH, M No No

Anxiety None + None +

Aggression +++ +++ + +

Overactivity + + + +

History of seizures No Possible No No

Age first steps (months) 14 11 11 13

Gait Abnormal Abnormal Hx abnormal Unusual

Coordination impairment (Gross/Fine) GF GF None GF

Savant skills Memory Drawing Drawing e

ADOS classification Spectrum Autism Autism Autism

Physical measures and abnormalities

Age (years) at physical examination 12 10 7 5

Birth weight (g) 4309 3600 3374 2920

Height (cm) 154.9 139.7 50 e

Percentage 61 42 <3

Weight (kg) 80 31.8 e e

Percentage 97 29

Head circumference (cm) 57.7 51.8 e 49.4

Head circumference (%) 98 53 e 27

Ear length (cm) 6 5.7 5.5 5.1

Functioning/psychiatric

Age (years) at IQ testing 12 10 7 5

Verbal IQ 126 e e e

Non-verbal IQ 94 107 110 e

Depressive symptoms No Yes No No

OCD symptoms Yes Dx Yes No

Other diagnosis Anxiety, ADHD Bipolar, ADHD

Stimulants (current) Adderal

Other medications (current) Paxil, risperidone Depakote, clonidine Naltrexone none

ADHD Dx Dx Yes Yes

Sleep problems 0e1 yo 0e1 yo 1e2 yo Missing

Asst. reproduction None None None None

Handedness Right Right Right Right

ADHD, attention deficit hyperactivity disorder; ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observation Schedule; H, loss of purposive hand use; M, motor; NQA, not
quite autism; OCD, obsessiveecompulsive disorder; P, play and imagination; SH, self help.

88 J Med Genet 2010;47:81e90. doi:10.1136/jmg.2008.065821

Original article



control samples were acquired from the NIMH Center for Collaborative Genetic
Studies on Mental Disorders. We also thank Elizabeth Berry-Kravis of Rush University
Medical Center for performing fragile X testing in our deletion 1p3 proband. This work
was supported in part by grants from the National Institute of Neurological Disorders
and Strokes to SLC (R01-NS051812) and WBD (R01-NS050375), and the Roswell
Park Cancer Institute Comprehensive Cancer Center Grant (P30 CA01605632) to NN.
We are grateful to Autism Speaks for awarding Postdoctoral Fellowships to Ravinesh
A Kumar and Camille W Brune. AGRE is a program of Autism Speaks and is
supported, in part, by grant 1U24MH081810 from the National Institute of Mental
Health to Clara M Lajonchere (PI).

Competing interests None.

Funding NIMH, NINDS, Autism Speaks.

Ethics approval This study was conducted with the approval of the University of
Chicago.

Patient consent Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
1. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M. Autism

as a strongly genetic disorder: evidence from a British twin study. Psychol Med
1995;25:63e77.

2. Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, Jakobsson G,
Bohman M. A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden.
J Child Psychol Psychiatry 1989;30:405e16.

3. Veenstra-Vanderweele J, Christian SL, Cook EH Jr. Autism as a paradigmatic
complex genetic disorder. Annu Rev Genomics Hum Genet 2004;5:379e405.

4. Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L.
Identification of novel autism candidate regions through analysis of reported
cytogenetic abnormalities associated with autism. Mol Psychiatry 2006;11:1, 18e28.

5. Xu J, Zwaigenbaum L, Szatmari P, Scherer S. Molecular cytogenetics of Autism. Curr
Genomics 2004;5:1e18.

6. Martin CL, Ledbetter DH. Autism and cytogenetic abnormalities: solving autism one
chromosome at a time. Curr Psychiatry Rep 2007;9:141e7.

7. Christian SL, Brune CW, Sudi J, Kumar RA, Liu S, Karamohamed S, Badner JA,
Matsui S, Conroy J, McQuaid D, Gergel J, Hatchwell E, Gilliam TC, Gershon ES,
Nowak NJ, Dobyns WB, Cook EH Jr. Novel submicroscopic chromosomal
abnormalities detected in autism spectrum disorder. Biol Psychiatry
2008;63:1111e17.

8. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R,
Pinto D, Ren Y, Thiruvahindrapduram B, Fiebig A, Schreiber S, Friedman J, Ketelaars CE,
Vos YJ, Ficicioglu C, Kirkpatrick S, Nicolson R, Sloman L, Summers A, Gibbons CA,
Teebi A, Chitayat D, Weksberg R, Thompson A, Vardy C, Crosbie V, Luscombe S,
Baatjes R, Zwaigenbaum L, Roberts W, Fernandez B, Szatmari P, Scherer SW.
Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet
2008;82:477e88.

9. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S,
Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT,
Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V,
Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M.
Strong association of de novo copy number mutations with autism. Science
2007;316:445e9.

10. Autism Genome Project Consortium, Szatmari P, Paterson AD, Zwaigenbaum L,
Roberts W, Brian J, Liu XQ, Vincent JB, Skaug JL, Thompson AP, Senman L, Feuk L,
Qian C, Bryson SE, Jones MB, Marshall CR, Scherer SW, Vieland VJ, Bartlett C,
Mangin LV, Goedken R, Segre A, Pericak-Vance MA, Cuccaro ML, Gilbert JR, Wright HH,
Abramson RK, Betancur C, Bourgeron T, Gillberg C, Leboyer M, Buxbaum JD, Davis KL,
Hollander E, Silverman JM, Hallmayer J, Lotspeich L, Sutcliffe JS, Haines JL, Folstein SE,
Piven J, Wassink TH, Sheffield V, Geschwind DH, Bucan M, Brown WT, Cantor RM,
Constantino JN, Gilliam TC, Herbert M, Lajonchere C, Ledbetter DH, Lese-Martin C,
Miller J, Nelson S, Samango-Sprouse CA, Spence S, State M, Tanzi RE, Coon H,
Dawson G, Devlin B, Estes A, Flodman P, Klei L, McMahon WM, Minshew N, Munson J,
Korvatska E, Rodier PM, Schellenberg GD, Smith M, Spence MA, Stodgell C, Tepper PG,
Wijsman EM, Yu CE, Roge B, Mantoulan C, Wittemeyer K, Poustka A, Felder B, Klauck
SM, Schuster C, Poustka F, Bolte S, Feineis-Matthews S, Herbrecht E, Schmotzer G,
Tsiantis J, Papanikolaou K, Maestrini E, Bacchelli E, Blasi F, Carone S, Toma C, Van
Engeland H, de Jonge M, Kemner C, Koop F, Langemeijer M, Hijimans C, Staal WG,
Baird G, Bolton PF, Rutter ML, Weisblatt E, Green J, Aldred C, Wilkinson JA, Pickles A,
Le Couteur A, Berney T, McConachie H, Bailey AJ, Francis K, Honeyman G,
Hutchinson A, Parr JR, Wallace S, Monaco AP, Barnby G, Kobayashi K, Lamb JA,
Sousa I, Sykes N, Cook EH, Guter SJ, Leventhal BL, Salt J, Lord C, Corsello C, Hus V,
Weeks DE, Volkmar F, Tauber M, Fombonne E, Shih A. Mapping autism risk loci using
genetic linkage and chromosomal rearrangements. Nat Genet 2007;39:319e28.

11. Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, Badner JA, Gilliam TC,
Nowak NJ, Cook EH Jr, Dobyns WB, Christian SL. Recurrent 16p11.2 microdeletions in
autism. Hum Mol Genet 2008;17:628e38.

12. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E,
Stefansson H, Ferreira MA, Green T, Platt OS, Ruderfer DM, Walsh CA, Altshuler D,

Chakravarti A, Tanzi RE, Stefansson K, Santangelo SL, Gusella JF, Sklar P, Wu BL,
Daly MJ. Association between microdeletion and microduplication at 16p11.2 and
autism. N Engl J Med 2008;358:667e75.

13. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H,
Giros B, Leboyer M, Gillberg C, Bourgeron T. Mutations of the X-linked genes encoding
neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003;34:27e9.

14. Feng J, Schroer R, Yan J, Song W, Yang C, Bockholt A, Cook EH Jr, Skinner C,
Schwartz CE, Sommer SS. High frequency of neurexin 1beta signal peptide structural
variants in patients with autism. Neurosci Lett 2006;409:10e13.

15. Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y, Lally E, Weiss LA,
Najm J, Kutsche K, Descartes M, Holt L, Braddock S, Troxell R, Kaplan L, Volkmar F,
Klin A, Tsatsanis K, Harris DJ, Noens I, Pauls DL, Daly MJ, MacDonald ME, Morton CC,
Quade BJ, Gusella JF. Disruption of neurexin 1 associated with autism spectrum
disorder. Am J Hum Genet 2008;82:199e207.

16. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F,
Nygren G, Rastam M, Gillberg IC, Anckarsater H, Sponheim E, Goubran-Botros H,
Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Roge B, Heron D,
Burglen L, Gillberg C, Leboyer M, Bourgeron T. Mutations in the gene encoding the
synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.
Nat Genet 2007;39:25e7.

17. Moessner R,Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L,
Fernandez B, Roberts W, Szatmari P, Scherer SW. Contribution of SHANK3 mutations
to autism spectrum disorder. Am J Hum Genet 2007;81:1289e97.

18. Wilson HL, Wong AC, Shaw SR, Tse WY, Stapleton GA, Phelan MC, Hu S,
Marshall J, McDermid HE. Molecular characterisation of the 22q13 deletion syndrome
supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological
symptoms. J Med Genet 2003;40:575e84.

19. Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J,
Wigler M, Martin CL, Ledbetter DH, Nelson SF, Cantor RM, Geschwind DH. Linkage,
association, and gene-expression analyses identify CNTNAP2 as an autism-
susceptibility gene. Am J Hum Genet 2008;82:150e9.

20. Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M, Rea A, Guy M,
Lin S, Cook EH, Chakravarti A. A common genetic variant in the neurexin superfamily
member CNTNAP2 increases familial risk of autism. Am J Hum Genet
2008;82:160e4.

21. Bakkaloglu B, O’Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM, Chawarska K,
Klin A, Ercan-Sencicek AG, Stillman AA, Tanriover G, Abrahams BS, Duvall JA,
Robbins EM, Geschwind DH, Biederer T, Gunel M, Lifton RP, State MW. Molecular
cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism
spectrum disorders. Am J Hum Genet 2008;82:165e73.

22. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of
a new neurobiology. Nat Rev Genet 2008;9:341e55.

23. Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection
syndromes. Curr Opin Neurobiol 2007;17:103e11.

24. Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI,
Sigman M, Steindler C, Pellegrini S, Schanen NC, Warren ST, Geschwind DH.
Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different
forms of autism and reveals shared pathways. Hum Mol Genet 2007;16:1682e98.

25. Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A,
Rutter M. The autism diagnostic observation schedule-generic: a standard measure of
social and communication deficits associated with the spectrum of autism. J Autism
Dev Disord 2000;30:205e23.

26. Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised
version of a diagnostic interview for caregivers of individuals with possible pervasive
developmental disorders. J Autism Dev Disord 1994;24:659e85.

27. Bruininks R, Woodcock R, Weatherman R, Hill B. Scales of independent
behaviordrevised. Itasca, IL: Riverside Publishing, 1996.

28. Geschwind DH, Sowinski J, Lord C, Iversen P, Shestack J, Jones P, Ducat L,
Spence SJ. The autism genetic resource exchange: a resource for the study of autism
and related neuropsychiatric conditions. Am J Hum Genet 2001;69:463e6.

29. Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affect protein
function. Genome Res 2002;12:436e46.

30. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey.
Nucleic Acids Res 2002;30:3894e900.

31. Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on
function. Nucleic Acids Res 2007;35:3823e35.

32. Daniels JL, Forssen U, Hultman CM, Cnattingius S, Savitz DA, Feychting M,
Sparen P. Parental psychiatric disorders associated with autism spectrum disorders
in the offspring. Pediatrics 2008;121:e1357e62.

33. Mouridsen SE, Rich B, Isager T, Nedergaard NJ. Psychiatric disorders in the parents
of individuals with infantile autism: a case-control study. Psychopathology
2007;40:166e71.

34. Yirmiya N, Shaked M. Psychiatric disorders in parents of children with autism:
a meta-analysis. J Child Psychol Psychiatry 2005;46:69e83.

35. Vermeer S, Koolen DA, Visser G, Brackel HJ, van der Burgt I, de Leeuw N,
Willemsen MA, Sistermans EA, Pfundt R, de Vries BB. A novel microdeletion in
1(p34.2p34.3), involving the SLC2A1 (GLUT1) gene, and severe delayed development.
Dev Med Child Neurol 2007;49:380e4.

36. Howard PJ, Porteus M. Deletion of chromosome 1p: a short review. Clin Genet
1990;37:127e31.

37. Martinez JE, Tuck-Muller CM, Gasparrini W, Li S, Wertelecki W. 1p microdeletion in
sibs with minimal phenotypic manifestations. Am J Med Genet 1999;82:107e9.

J Med Genet 2010;47:81e90. doi:10.1136/jmg.2008.065821 89

Original article



38. Sutcliffe JS. Genetics. Insights into the pathogenesis of autism. Science
2008;321:208e9.

39. Wang Y, Sudhof TC. Genomic definition of RIM proteins: evolutionary amplification of
a family of synaptic regulatory proteins (small star, filled). Genomics
2003;81:126e37.

40. Wang Y, Sugita S, Sudhof TC. The RIM/NIM family of neuronal C2 domain proteins.
Interactions with Rab3 and a new class of Src homology 3 domain proteins. J Biol
Chem 2000;275:20033e44.

41. Weidenhofer J, Bowden NA, Scott RJ, Tooney PA. Altered gene expression in the
amygdala in schizophrenia: up-regulation of genes located in the cytomatrix active
zone. Mol Cell Neurosci 2006;31:243e50.

42. Weidenhofer J, Scott RJ, Tooney PA. Investigation of the expression of genes
affecting cytomatrix active zone function in the amygdala in schizophrenia: effects of
antipsychotic drugs. J Psychiatr Res 2009;43:282e90.

43. Rzhetsky A, Wajngurt D, Park N, Zheng T. Probing genetic overlap among complex
human phenotypes. Proc Natl Acad Sci U S A 2007;104:11694e9.

44. Coppola T, Magnin-Luthi S, Perret-Menoud V, Gattesco S, Schiavo G, Regazzi R.
Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and
synaptotagmin. J Biol Chem 2001;276:32756e62.

45. Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka
RC, Sudhof TC. RIM1alpha forms a protein scaffold for regulating neurotransmitter
release at the active zone. Nature 2002;415:321e6.

46. Hsueh YP. The role of the MAGUK protein CASK in neural development and synaptic
function. Curr Med Chem 2006;13:1915e27.

47. Najm J, Horn D, Wimplinger I, Golden JA, Chizhikov VV, Sudi J, Christian SL,
Ullmann R, Kuechler A, Haas CA, Flubacher A, Charnas LR, Uyanik G, Frank U,
Klopocki E, Dobyns WB, Kutsche K. Mutations of CASK cause an X-linked brain
malformation phenotype with microcephaly and hypoplasia of the brainstem and
cerebellum. Nat Genet 2008;40:1065e67.

48. Tchernitchko D, Goossens M, Wajcman H. In silico prediction of the deleterious
effect of a mutation: proceed with caution in clinical genetics. Clin Chem
2004;50:1974e8.

90 J Med Genet 2010;47:81e90. doi:10.1136/jmg.2008.065821

Original article




