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Abstract
The development of a complete organism from a single cell involves extraordinarily complex
orchestration of biological processes that vary intricately across space and time. Systems biology
seeks to describe how all elements of a biological system interact in order to understand, model,
and ultimately predict aspects of emergent biological processes. Embryogenesis represents an
extraordinary opportunity – and challenge – for the application of systems biology. Systems
approaches have already been used successfully to study various aspects of development, from
complex intracellular networks to 4D models of organogenesis. Going forward, great
advancements and discoveries can be expected from systems approaches applied to embryogenesis
and developmental biology.
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The Systems Biology Paradigm
Systems biology is an experimental and theoretical framework that treats biology as an
informational science, and seeks to study the behavior of biological systems as a whole. In
particular, the deep complexity of developmental processes motivates the use of systematic
and integrative analyses to garner biological insights. In these approaches, biological
information is represented as being transmitted, modulated and integrated by biological
networks that are then executed by molecular 'machines' (Hood et al. 2004; Price et al.
2009). At its heart, systems biology seeks to understand the dynamic behavior of complex
biological systems in sufficient detail to construct computational models that can predict
how various perturbations will affect a living system. An iterative model-building process is
often employed, wherein an in silico model evolves through various iterations and increases
in complexity, completeness and predictive accuracy as it is informed by increasing
experimental data. The constructed computational model thus serves as a large-scale
hypothesis about how an integrated biological process works as a whole. That is, the model
characterizes explicitly the relevant components, their relationships to one another, and the
dynamics of the interacting system. For example, a systems analysis of a mouse embryo
might involve as a first step the identification of all proteins and genes expressed using shot
gun proteomics and transcriptomics. Then the systems biologist might try to identify how
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these interact using yeast two-hybrid screening or affinity purification. Based on the results,
a model is built and the system is tested ‘virtually’ by imposing different constraints or
perturbations (such as a knock out) – and the predictions are compared with experiments.
The model is further refined based on the novel results, and new and more accurate
predictions are made. This process is repeated over and over again, with understanding and
predictive accuracy increasing accordingly. Ultimately what is sought is the ability to predict
how perturbations to any individual component (or combination of components) will affect
the system, in order to effect desired changes to the system such as to recover health from a
disease state.

The need for a systems biology approach in complex biological systems such as
embryogenesis can be illustrated by analogy to complex physical machines such as
automobiles. The ultimate structure and function of a car is dependent upon interactions
between several constituent components – from small, regulatory electronics to the engine
and chassis. To fully understand the nature of a car – and to be able to fix or build one – the
behavior of each part must be understood, but so too must the complex schema of how all
parts interact to create the full ‘emergent behavior’ of an automobile. Biological ‘machines’
exhibit even more multi-scale complexity than do cars, and it is thus just as important to
understand how the constituent parts work together in the biological setting as it is the
mechanical. Systems biology strives to characterize this interactivity using rigorous and
systematic approaches. This challenge is daunting, but the capabilities to succeed in this
endeavor are ever increasing.

Enabling Tools and Technologies in Systems Biology
Systems biology research typically requires large amounts of high-throughput experimental
measurements to be successful. Probably the most familiar and frequently used high-
throughput technology today is microarrays, which provide large-scale quantitative data for
both transcriptional and genomic measurement (Allison et al. 2006; Gunderson et al. 2005;
Schena et al. 1995). Among the most rapidly advancing measurement technologies is
nucleotide sequencing, with novel ‘Next-Generation’ sequencing methods promising
improved efficiency and significantly reduced expense (Eid et al. 2009; Mardis 2008; Mir et
al. 2008; Shendure and Ji 2008). Using reverse transcription techniques these sequencing
technologies can also be applied for the de novo interrogation of transcription, small RNA
species (Landgraf et al. 2007), alternative splicing (Pan et al. 2008), and noncoding
transcripts (Core et al. 2008). Of great importance to systems biology as it applies to human
development and medicine is the advent of technologies for personalized genomics – which
has already enabled sequencing of several individual human genomes (Bentley et al. 2008;
Kidd et al. 2008; Wang et al. 2008; Wheeler et al. 2008). Major efforts are underway in both
academic and industry settings to bring the cost of a full genome sequence down to $1000 or
even less (Quail et al. 2008; Rothberg and Leamon 2008). Example large projects in
academia for personalized genomics include the Personal Genome Project at Harvard led by
George Church (Kaiser 2008), and a multi-institution Systems Medicine project led by
Leroy Hood at the Institute for Systems Biology in Seattle (Langton 2008). These programs
strive to catalyze advancements in generating and analyzing personalized sequence data by
validating their use in large-scale experimental efforts. Increasingly robust and inexpensive
measurement technologies for nucleotide measurement – both genomics and transcriptomics
– will continue to empower systems-based studies of biology highly relevant to human
embryogenesis.

Data-intensive pursuits in systems biology are also aided by advancing technologies for
measurement of protein concentrations, post-translational modifications, and molecular
interactions. Applications of proteomics in systems biology can be broadly divided into two
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groups: 1) shotgun proteomics, which focuses on global discovery of proteins relevant to
specific biological processes without prior knowledge of what those components may be;
and 2) targeted proteomics, where the specific proteins being searched for are known and
the focus is on the their quantitative measurement and dynamic characterization. Discovery
of cellular or serum-borne proteins is possible through the application of diverse techniques
in tandem mass spectrometry (Bantscheff et al. 2007; Gupta et al. 2007; Nesvizhskii et al.
2007), as well as two-dimensional gel electrophoresis (Froment et al. 2005; Kolkman et al.
2005). These methodologies allow large-scale examination of up to thousands of proteins,
and enable the discovery of relevant species participating in biological events. Once
important participating agents in a signaling or regulatory network are known, other
proteomic methods enable high-resolution study of causal linkages and dynamic parameters.
Techniques such as Multiple Reaction Monitoring of isotope-labeled peptides and other
diverse label-based approaches enable elucidation of quantitative and dynamic relationships
between signaling and regulatory proteins. Recently developed surface plasmon resonance
antibody microarrays (Boozer et al. 2006; Lausted et al. 2008; Usui-Aoki et al. 2005) also
enable such targeted proteomic screens for proteins that have adequate capture agents.
Complementing these interrogations of protein concentrations, diverse techniques have been
developed to assay protein-protein interactions and to characterize the substantial human
protein ‘Interactome’ (Braun et al. 2009; Gandhi et al. 2006; Rual et al. 2005). Proteomic
technologies contribute to systems-based analyses at multiple scales of biological
complexity.

Multiple online databases have been created for the storage and distribution of diverse
genome-scale data. A small subset of what is available for different data types includes: 1)
transcriptomics from the Gene Expression Omnibus Omnibus (Edgar et al. 2002) and the
Stanford Microarray Database (Sherlock et al. 2001); 2) regulatory sequences from the
Eukaryotic Promoter Database (Perier et al.) and the Transcription Regulatory Element
Database (Zhao et al. 2005); and 3) proteomics from the Proteomics Identification Database
(Martens et al. 2005). Additionally, standardized data formats such as the Systems Biology
Markup Language (Hucka et al. 2003) and CellML (Lloyd et al. 2004), as well as software
packages such as Cytoscape (Shannon et al. 2003) and the Gaggle (Shannon et al. 2006)
have been developed to enable rapid porting of datasets, annotations, and models between
different programs and formats. Cumulatively, these technologies for both experimental
measurement and data analysis embody powerful modalities for rigorous and quantitative
characterization of biological systems.

Systems Studies of Embryogenesis and Development
The process of embryogenesis exhibits diverse layers of complexity, including large-scale
modulation of transcription programs, and the propagation of information from the
molecular level to the scale of tissues and organs. The process involves more interacting
biological variables than are easily accounted for manually, from complex transcription
regulatory networks to multi-dimensional morphogen gradients. Furthermore,
embryogenesis is an intrinsically dynamical process in which both intracellular and tissue-
level phenotypes change immensely across time and space. However, such complexity does
not make the system inherently vulnerable to perturbations. In fact, biological robustness is
profoundly exemplified during embryogenesis – leading to the observed fact that networks
involved in development have evolved dramatic robustness to changes in kinetic parameters
associated with most system components (Eldar et al. 2002; Meir et al. 2002; von Dassow et
al. 2000). Improved characterization and modeling of the robustness of embryogenesis
amidst genetic heterogeneity and environmental perturbations is a major ongoing challenge
for developmental systems biology.
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An important concept underlying much systems-based thinking within and outside of
biology is the notion of ‘Complex Adaptive Systems’ (Gell-Mann 1994). These systems are
referred to as ‘complex’ because they are composed of many linked components; they are
modular in nature and form interconnected networks. 'Adaptive' refers to a capacity to
modify behavior in response to changing environment or context. At many different scales,
life – in the form of cells, tissues, organisms, and even ecosystems – exhibits the qualities of
complex adaptive systems. A complex and adaptive nature is particularly characteristic of
higher organisms, such as humans, in both health and disease (Coffey 1998; Schwab and
Pienta 1996). Particularly, cell lineages and differentiation programs can be considered
highly adaptive systems – for they achieve specific phenotypic character even in diverse and
dynamic biological contexts (Theise 2006; Theise and d'Inverno 2004). Such systems are
notoriously difficult to model and control accurately because their emergent behaviors are
dependent on the interactions of diffuse agents, and thus the challenge of modeling such a
complex and adaptive process as embryogenesis is great indeed.

Embryogenesis can be considered a ‘unidirectional’ adaptive process, in which individual
system components modulate behavior in response to changing biological context, but do so
in a (typically) ‘irreversible’ manner with clear directionality. Furthermore, these
developmental processes exhibit discrete ‘stages.’ That is, as cells differentiate, they occupy
a series of discrete phenotypic states, and are less stable outside of these defined conditions.
Quantitative transcriptomic analyses have shown that differentiating cells are drawn towards
‘attractor states’ – particular configurations which exhibit high stability, and a corresponding
tendency of cells to reach and remain therein (Chang et al. 2006; Huang et al. 2005;
Kashiwagi et al. 2006). The phenomenon of ‘canalization’ is one feedback process for such
attraction dynamics – in which differentiating cells are ‘guided’ into particular phenotypic
states by internal processes, such as transcriptional regulatory circuits circuits (Lott et al.
2007) and microRNA (Hornstein and Shomron 2006). Canalization is one example of
systems-level, emergent phenomena witnessed in complex adaptive processes such as
embryogenesis.

Box 1: Systems-Based Models of Embryogenesis

Common types of systems-based models of embryogenic and developmental biology,
including experimental data sources, analytical frameworks, and representative examples
of prior studies for each model type.
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Biological networks operating in the process of embryogenesis exhibit marked robustness to
perturbations due to redundancy in control and feedback across a wide and diffuse network.
The survival need and evolutionary selection for robustness is clear in that embryogenesis is
such an immensely complex process that, remarkably, operates correctly so much of the
time. Such robustness to uncertainty and noise is considered as a hallmark of living systems
(Kitano 2004). A recent study found that the segment polarity network in Drosophila
development was robust to large changes in the biochemical kinetic constants that govern its
behavior (von Dassow et al. 2000). This intriguing study showed that picking a kinetic
parameter in this network at random, even over multiple orders of magnitude, would on
average work to produce proper segmentation over 90% of the time. This robustness of the
overall phenotype to differences in individual kinetic properties makes the network resistant
to the effects of mutations and other developmental 'noise' that alters the dynamics of
catalyzed reactions occurring during embryogenesis. Similar behavior has been observed in
networks governing cell growth, development, metabolism and chemotaxis (Stelling et al.
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2004). Biological robustness should not be misunderstood to imply a phenotypic constancy
regardless of stimuli or mutations: rather, robust networks maintain specific functionalities
in the context of perturbations, while remaining sufficiently flexible to change modes of
operation in a suitable manner. Certain biological systems thus exist at a 'critical' state – at
the boundary of ordered and chaotic states, imbuing sufficient rigidity to resist small
uncertainties, but flexible enough to adapt to major environmental changes (Nykter et al.
2008). Such design principles can potentially be exploited to study dynamic and complex
biological systems such as those at work in embryogenesis.

Given this multifaceted complexity, embryogenesis lends itself to characterization through
systems-based approaches. Detailed experimental investigations identify a substantial ‘parts
list’ in which genes, signals, and phenotypes important to embryogenesis are elucidated.
Systems biology, complementary to this important process, presents a framework to collate
the behaviors of these diverse biological components and to form cohesive, integrated
explications of biological phenomena. Systems biology presents a powerful set of analytical
tools well-suited to recording and assessing the complex phenomena of embryogenesis.
Systems analysis has already been brought to bear on a number of aspects of the
developmental process, including 1) intracellular networks, 2) communication signals
between cells and with the environment, and 3) multi-scale integration (Box 1).

Intracellular Networks
Perhaps the most common form of systems-based study has been the characterization of
intracellular networks involved in developmental processes. In silico modeling of these
networks describes variously the genetic, transcriptional, and signaling events relevant to
large-scale cellular and tissue phenotype. A pioneering achievement was the elucidation of a
gene regulatory network that regulates the specification of endoderm and mesoderm layers
in the sea urchin embryo by Eric Davidson’s group (Davidson et al. 2002). This study
involved large-scale perturbation experiments, genomic and transcriptomic measurement,
and computational analyses to define the transcriptional regulatory ‘circuit’ that underlies
this developmental process – and was among the first systems-based characterizations of
molecular networks governing embryogenesis. This network showed a basis for
irreversibility in cellular development in rigorous, readily visualized form – including
activating cues from maternal tissues, and internal regulatory feedback processes which
progress and ‘lock-down’ the embryogenic process such that it is self-sustaining. This
project also spoke to the idea of biological attractor states, as the study’s multi-component
transcriptional program propels differentiating cells towards specific phenotypic trajectories.
These discrete developmental states exhibit particular stability in the environmental and
genetic context wherein they reside. Such preferentially stable states represent an intrinsic
quality of any dynamical system with internal or external sources of feedback, and
developmental systems are frequently found to have both (Alon 2007).

Following this seminal study, many other intracellular networks involved in development
have been characterized using similar and advancing methods, with multiple reviews
available on the topic (Davidson and Erwin 2006; Levine and Davidson 2005). Several
projects have extended the study of germ layer specification to elucidate similar networks in
other organisms, including Drosophila (Sandmann et al. 2007) and the tadpole (Imai et al.
2006). These studies have demonstrated that such networks exhibit extensive combinatoric
regulation of developmental genes, and have revealed important biomolecular control points
in embryogenic events. Intracellular processes in development are now commonly referred
to as Genetic Regulatory Networks (GRNs), and are becoming represented by increasingly
quantitative and genome-scale models (Longabaugh et al. 2005; Reeves et al. 2006). For
example, recent investigations were able to define ‘clusters’ of genes related according to
biological function and expression patterns through global gene expression analysis in
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Drosophila embryogenesis (Hornstein and Shomron 2006; Shalgi et al. 2007; Tomancak et
al. 2007). Another major focus has been analysis of cis-regulatory motifs. Recent studies
have combined computational and experimental approaches to identify the nature of
transcriptional regulatory sites across the genome, and the connectivity between
transcription factors and their cognate binding sites (Kuntz et al. 2008; Li et al. 2007; Van
Loo et al. 2008). Noncoding transcripts such as microRNA also play important roles in
developmental processes. Recent studies have revealed that miRNA-mediated events are a
ubiquitous mechanism to augment the robustness and precision of gene regulation
(Aboobaker et al. 2005; Johnston et al. 2005; Tsang et al. 2007). By examining
biomolecular networks at the systems level, these methods elucidate both important
individual components involved in developmental processes, and the systems-level
architecture of the circuits they compose.

Cell-Cell Communication and the Extracellular Environment
The ability of cells to respond appropriately to surrounding cells and the extracellular
environment serves as a major basis for developmental processes. The complex relationships
observed between intracellular networks and extracellular cues warrants rigorous modeling
and simulation to more fully comprehend. A major area for human systems biology and
medicine going forward involves characterizing and interpreting the information content of
the ‘secretome’ – the set of all biomolecules secreted by cells and tissues (Price et al. 2009).
Importantly, the secretome can serve as a fully non-invasive proxy to survey cell/cell and
cell/tissue interactions – including those involved in development. Learning to non-
invasively monitor important aspects of embryogenesis and development via the secretome
has been the subject of intensive research in recent years (Dominguez et al. 2009; Katz-Jaffe
et al. 2009). These investigations used a combination of high-throughput proteomic
techniques, including two-dimensional gel electrophoresis and tandem mass spectrometry, to
characterize major elements of the secreted proteome. They have revealed a substantially
global portrait of the secretome and elucidated biomolecules important to differentiation and
development. Similar recent studies have identified secreted proteins associated with the
differentiation of mesenchymal stem cells into osteoblasts and adipocytes (Chiellini et al.
2008; Schinköthe et al. 2008). The molecular processes that drive the highly multi-potent
character of mesenchymal stem cells are intrinsically complex and involve many regulatory
agents. In striving to consider a large repertoire of cellular factors simultaneously, systems
approaches are well-suited to examine such integrated, multi-component processes.

Similar proteomic techniques have been employed to study the extracellular matrix and its
application to developmental processes in cells and tissues (Xiao et al. 2009). These
investigations have examined roles played by the ECM in structural support, intercellular
communication, and the modulation of cell growth and behavior. Detailed understanding of
the extracellular matrix is necessary for successfully culturing cells in synthetic conditions
that mimic the in vivo scenario. Many model tissue systems employ this knowledge in an
attempt to recapitulate natural ECM to study and rationally direct cellular differentiation on
artificial substrates (El-Ali et al. 2006). In systematically characterizing the complex
extracellular environments observed in developmental processes, these studies inform more
precise laboratory investigations for further experimental research. Large-scale proteomics
has also been applied directly to clinical medical tasks. Importantly, a recent analysis of the
secretome of human embryos identified extracellular predictors of viable embryos for
implantation (Katz-Jaffe et al. 2006). Extracellular phenomena represent the mechanistic
bridge between intracellular networks and tissue-level events; they thus embody a crucial
component of any systems-based study of embryogenesis and development.
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Multiscale and Integrative Modeling
Multiscale modeling approaches strive to connect microscopic events with macroscopic
phenomena, and to model the molecular processes that propagate information from the scale
of genes to the scales of cells, tissues, and organs (Lewis 2008; Walker and Southgate
2009). Such models have progressed substantially from the simple mathematical models of
neurons by Hodgkin and Huxley, up to modern models of morphogen diffusion in
developing embryos (Tomlin and Axelrod 2007). Digital simulation of three-dimensional
structures formed during embryonic development can be performed using tools such as
Compucell3D (Cickovski et al. 2007). For example, this tool has been employed to model
skeletal development in a vertebrate limb (Chaturvedi et al. 2005). An impressive recent
project elucidated a four-dimensional in silico model of pancreatic organogenesis as it
progresses in space and time (Setty et al. 2008). This model considers interactions from the
level of genes to the level of organs to model and visualize pancreatic development over
multiple time scales. Similar multiscale models have examined the migration of germ layers
in Xenopus laevis as a function of Wnt/β-catenin signaling (Peirce et al. 2006; Robertson et
al. 2007), and the effects of extracellular growth factors on epithelial development (Walker
et al. 2006).

Models of embryogenesis have been aided by advancements in technologies such as in situ
hybridization and MRI. These tools have enabled detailed three-dimensional recording of
gene expression patterns during embryogenesis and development in both humans (Matsuda
2005) and several model organisms such as Drosophila (Christiansen et al. 2006; Peng et al.
2007; Pisarev et al. 2009; Wei et al. 2006). Additionally, spatial gene expression patterns
from such diverse organisms have been integrated into a large public database, enabling
comparison of gene expression patterns across species (Haudry et al. 2008). These spatial
models do not explicitly account for the transfer of information from the molecular to the
tissue level. Nonetheless, they enable a large-scale consideration of gene expression
programs – including the dynamics by which genes and gene clusters are activated, both
spatially across tissues and temporally throughout developmental processes.

Future Challenges and Opportunities
A long-term objective of systems approaches to embryogenesis is the construction of in
silico biological models of the developing embryo that accurately recapitulate in vivo
biological events. One could potentially predict and perform in silico experiments using
such computational models, thereby providing focused hypotheses for further experimental
study. This exciting prospect would permit not only a rigorous description of biological
activities, but also enable the prediction of responses given by cells or organisms to
exogenous and therapeutic perturbations. Such technologies would empower researchers to
conduct virtual trials of medical procedures or therapeutics, reducing the need for expensive
and potentially high-risk experimentation.

The promises of systems biology are grand and exciting, yet there are many hurdles to be
passed before such approaches come to fruition. We do not have complete knowledge of the
cell and systems models of cellular processes are still at their infancy. For example,
epigenetic phenomena are now understood to play crucial roles in the differentiation and
maintenance of cell type, but systems-level computational models of epigenetic events in
embryogenesis are only beginning to emerge (Bock and Lengauer 2008; Jones and
Martienssen 2005). Similarly, recent studies have shown that different forms of noncoding
transcription are ubiquitous throughout the genome (Seila et al. 2008), and it has been
speculated that such activity forms a major locus for the regulation of developmental
processes (Dinger et al. 2008; Mattick 2007; Taft et al. 2007). These phenomena too, due
perhaps to their recent discovery, have not yet been studied extensively using systems-based
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approaches. Another factor that stifles the creation of most large-scale models is the lack of
quantitative data. Until recently, the bulk of data in biology were qualitative and were not
amenable for modeling. With the development of new high throughput methods that
generate quantitative data, more systems analysis like those outlined above will emerge.
Finally, it should be clear that while computational modeling will aid tremendously in
generating hypotheses, predicting the effects of perturbations, and yielding insight into
system behavior, it can never replace physical experiments.

In summary, systems approaches have contributed substantially to the study of early
embryogenesis and development – from the level of transcriptional regulation and
intracellular signaling, to cellular differentiation and tissue patterning. These innovative
studies have begun to elucidate embryogenic processes that are network-based, multi-
component, and distributed across several scales of biological and physical complexity.
While presenting significant technological, experimental, and theoretical challenges, this
pursuit promises to advance our understanding of embryogenesis and development beyond
what has been attainable previously.
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