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SUMMARY
Suppose that we are interested in using new bio- or clinical-markers to improve prediction or
diagnosis of the patient’s clinical outcome in addition to the conventional markers. The
incremental value from the new markers is typically assessed by averaging across patients in the
entire study population. However, when measuring the new markers is costly or invasive, an
overall improvement does not justify measuring the new markers in all patients. A more practical
strategy is to utilize the patient’s conventional markers to decide whether the new markers are
needed for improving prediction of his/her health outcomes. In this article, we propose inference
procedures for the incremental values of new markers across various subgroups of patients
classified by the conventional markers. The resulting point and interval estimates can be quite
useful for medical decision makers seeking to balance the predictive or diagnostic value of new
markers against their associated cost and risk. Our proposals are theoretically justified and
illustrated empirically with two real examples.
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1. Introduction
Biological and technological advances continually generate promising new clinical- and
biomarkers with the potential to improve medical care by providing more accurate,
personalized predictions of health outcomes and diagnoses of clinical phenotypes. However,
extensive use of new markers may provide only negligible improvements in prediction or
diagnosis, while subjecting patients to additional risks and costs. It is therefore important to
develop statistical methods that can quantify for individual patients the value of new
markers over conventional ones, especially when measuring these markers is costly or
invasive. As an example from a recent study, Wang et. al. (2006) examined extensively the
incremental values of ten new biomarkers in predicting first major cardiovascular events or
death in a Framingham cohort. There were 3209 participants in the study. They were
followed for a median of 7.4 years, during which 207 participants died and 169 had a first
major cardiovascular event. Based on various prediction precision criteria, the study
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investigators found that these ten contemporary biomarkers added only moderate overall
predictive value to the classical risk factors including gender, age, total cholesterol, HDL
cholesterol, blood pressure, smoking status, and diabetes mellitus. In contrast, other
investigators studying different populations with different prediction precision measures
demonstrated that certain biomarkers, for example, the high-sensitivity C-reactive protein,
provide clinically useful prognostic information on top of the traditional Framingham risk
score for heart diseases (Ridker et. al., 2002, 2007, Blumenthal et. al., 2007).

Despite these often controversial findings in the literature, clinical practitioners would
generally not change their recommendation for the patient’s care with the extra marker
information if the patient, for example, has either high or low conventional risk score.
Therefore, a practically important question is how to systematically identify patients who
would benefit from the additional markers instead of evaluating these markers based only on
their average incremental value across the entire population (D’Agostino, 2006). In this
article, we propose procedures to estimate the incremental values of new markers for
diagnosis or prediction in various subgroups of patients classified by conventional markers.
These, coupled with the sampling variations of the estimates, provide a useful tool for
researchers and practitioners to decide when, after observing the conventional risk factors,
the new markers are needed. In Section 2, we describe in detail the new procedure and
provide theoretical justification. In Section 3, we illustrate our methods with two examples,
one with a continuous response and the other with a binary outcome.

There are quite a few procedures in the literature for evaluating the over-all incremental
value of new markers for an entire population of interest. For example, Pepe et. al. (2004)
compared the ROC curves among models with and without an additional marker. Recently,
Tian et. al. (2007) and Uno et. al. (2007) proposed robust inference procedures for
evaluating prediction rules. Prediction or diagnostic precision measures, which may be used
for comparing different prediction procedures, have also been proposed and utilized, for
example, by Brier (1950), Breiman et. al. (1984), Speigelhalter (1986), Korn and Simon
(1990), McLachlan (1992), Mittlböck and Schemper (1996), Ripley (1996), Zhou et. al.
(2002), Pepe (2003) and Pencina et. al. (2008).

2. Estimating Subject-Specific Prediction Error Based on Risk Score
Constructed from Conventional Markers

Let Y be a continuous or binary response variable, U be the set of its conventional marker
values, and V be the corresponding counterpart from the new markers. Our data consist of n
independent copies {(Yi, Ui, Vi), i = 1, ⋯, n} from (Y, U, V). The problem is how to use the
data to identify future subjects via U, which would benefit from the new markers for better
prediction of their responses Y. Suppose that there are no well-established rules for
classifying subjects based on U for predicting Y. First, we may estimate a center value of Y
given U nonparametrically and use this estimate to construct a predictor for Y. We then
estimate the average prediction error, the “distance” between the observed response and its
predicted value over all subjects which have the same marker value U. Next, we estimate the
center of Y given U and V, and estimate the corresponding average prediction error
conditional only on U. Inferences about the improvement from the new markers can be
made via these functional estimates over U. Unfortunately, in general, we can only construct
nonparametric functional estimates, which behave reasonably well, when the dimension of
U is very small and the sample size n is quite large.

A practically feasible alternative to handle this problem is to consider a parametric or semi-
parametric approach. To this end, let X be a p-dimensional vector, a function of U. Assume
that the conditional mean of Y given U can be approximated by the following working model
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(2.1)

where g1(·) is a smooth, strictly increasing, known function and β is an unknown vector of
parameters. Note that the first component of X is one. In this article, we deal with the
interesting and challenging case that β′X is a continuous variable.

To estimate the regression parameters for model (2.1) which, most likely, is an
approximation to the true conditional mean of Y given U, one may use the estimator β̂ based
on the simple estimating function

(2.2)

where {(Yi, Xi), i = 1, ⋯, n} are n-independent copies of (Y, X) (Tian et. al., 2007). Note that
even when (2.1) is not the true model, β̂ converges to a constant vector β0, as n → ∞. It is
not clear, however, that other standard estimators for β in (2.1) would be convergent as n
gets large.

Now, consider a future independent subject with (Y, X) = (Y0, X0). For a given β in (2.1), let
Ŷ1(β′X0) be the predictor for Y0. For example, when Y0 is continuous, one may let Ŷ1(β′X0) =
g1(β′X0) and when Y0 is binary, one may predict Y0 by a binary variable Ŷ1(β′X0) = I{g1(β
′X0) ≥ 0.5}, where I(·) is the indicator function. Other prediction rules for the binary case
will be discussed in the Example Section. To evaluate the performance of Ŷ1(β̂′X0), we first
need to quantify its prediction accuracy based on a “distance” between the true Y0 and the
predicted Ŷ1(β̂′X0), denoted by D{Y0, Ŷ1(β̂′X0)}. For example, a simple, physically
interpretable function is the absolute prediction error with D(a, b) = |a − b|. When Y is
binary, this distance function is simply the overall mis-classification rate. Choosing an
appropriate distance measure is a crucial yet often difficult step in evaluating the
incremental value for the cost-benefit decision. It is important to note that such
quantification should have a practical/clinical interpretation. We discuss this issue in great
details with real examples in Section 3 and also in the Remarks Section.

Since clinical practitioners almost always group subjects with a “risk scoring system” for
medical decision making, we consider an average prediction error over a set of X’s which
have “similar” g1(β̂′X) to evaluate Ŷ1(·). To be specific, let Jz = (cz, dz) be a data-independent

interval centered about z, where z ranges over a set of possible values of . The

average prediction error over Jz is , where the
conditional expectation is taken with respect to (Y0, X0) and β̂. As n → ∞,  converges
to

(2.3)

As a process of z, this moving average process { 1(z)} provides a performance profile of

Ŷ1(·) over all possible values of . The proper choice of interval Jz would be made on
a case-by-case basis and is illustrated with two examples in the next section.
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Now, let W be a q × 1 vector, a function of U and V. Assume that a working model for the
conditional mean of Y given U and V is

(2.4)

where g2(·) is a smooth, strictly increasing, known function and θ is an unknown vector of
parameters. The first component of W is one. Again, we assume that g2(θ′W) is a continuous
variable. Let θ̂ be the estimator for θ obtained from the following simple estimating function

(2.5)

where Wi, i = 1, ⋯, n, are n independent copies of W. Let θ0 be the limit of θ̂. Consider a
future independent (Y, X, W) = (Y0, X0, W0). Let Ŷ2(θ′W0) be the predictor constructed from
(2.4) with parameter value θ, the counterpart of Ŷ1(β′X0). For the aforementioned interval Jz,
let the average prediction error for Ŷ2(·) over Jz be

(2.6)

where the expectation is taken with respect to (Y0, X0, W0). Then, as a processes in z, 1(z),
2(z) and

(2.7)

provide a global picture for identifying subgroups of patients who would benefit from the
additional markers.

To estimate 1(z) and 2(z), one may use ̂1(z) = ̃1(z, β̂) and ̂2(z) = ̃2(z, β̂, θ ̂),
respectively, where

(2.8)

and

(2.9)

We then let Δ̂(z) = ̂1(z) − ̂2(z) to estimate Δ0(z). In Appendix A of the web-based
supplementary material available at http://www.tibs.org/biometrics, we show that with the
distance function D(a, b) = |a − b| or a function thereof, the above three estimators are
uniformly consistent over an interval Ω consisting of all z’s whose intervals Jz’s are properly

in the support of . Similar arguments may be used for cases with other distance
functions.
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To make further inferences about the added value from the new markers for predicting the
response, in Appendix A of the web-based supplementary material, we show that the
limiting distributions of the processes , 
and , are the same as those of the Gaussian processes

, respectively, for z ∈ Ω, where ,

and {G1, …, Gn} are independent standard normal random variables that are independent of
the data. Here, realizations from three Gaussian processes  given
above can be generated easily for any interval of z, where ̂1(z) and ̂2(z) are well-defined.
In practice, one may not be able to construct reasonably well-behaved interval estimators for

l(z), l = 1, 2, for z is the tail parts of Ω. To this end, let Ω̂ be a set of z such that Jz ⊂ [η1,

η2], where , and d1 and d2 are given
positive numbers. Then, with the above large sample approximations, for z ∈ Ω ̂, a (1 − α), 0
< α < 1, point-wise confidence interval for l(z), l = 1, 2, is

(2.10)

Here,  is the variance of the random variable  and ξα is the upper 100αth
percentage point of the standard normal. Furthermore, a (1 − α) simultaneous confidence
band for { l(z), z ∈ Ω ̂} is

(2.11)

where

It is important to note that in contrast to the standard subgroup analysis, our proposal takes
care of the multiple comparison problems with such simultaneous confidence interval
estimates via the scoring system indexed by z.

To construct interval estimators for Δ0(z), it is important to note that Δ̂(z) has a degenerate

limiting distribution when  for all . Therefore, to obtain
reasonable interval estimators in practice, we consider the set Ω̃ ⊂ Ω ̂ such that for
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, where d3 is a
given positive number. Then, for z ∈ Ω̃, a (1 − α), 0 < α < 1, point-wise confidence interval
for Δ0(z), is

(2.12)

Here,  is the variance of the random variable *(z). Moreover, a (1 − α) simultaneous
confidence band for {Δ0(z), z ∈ Ω̃} is

(2.13)

where

Note that for the case with a continuous response Y, Ω ̂ = Ω̃.

Now, since we use the entire data set to estimate the parameters in (2.1) and (2.4) and also to
estimate the average prediction errors (2.3) and (2.6), ̂1(·) and ̂2(·) may be significantly
underestimated. To reduce such potential bias, one may consider the commonly used K-fold
crossvalidation scheme. Specifically, we randomly split the data into K disjoint subsets of
about equal size and label them as ℐk, k = 1, ⋯, K. For each k, we use all the observations,
which are not in ℐk, to estimate parameters in (2.1) and (2.4) via estimating functions (2.2)
and (2.5), and then use the observations in ℐk to estimate prediction errors 1(·) and 2(·)
with (2.8) and (2.9). Let the resulting estimators be denoted by ̂1k(·) and ̂2k(·),
respectively. The crossvalidated estimators for 1(·), 2(·) and Δ0(·) are

 and Δ̃(·) = ̃1(·) − ̃2(·), respectively. Again,
these estimators are uniformly consistent if K is relatively small with respect to n.

In Appendix B of the web-based supplementary material, we show that for large n, the
distributions of the processes  and

 can also be approximated well by those of ,
respectively. Point-wise and simultaneous confidence intervals for 1(·), 2(·), and Δ0(·) can
then be constructed based on the crossvalidated estimates and their large sample
distributions accordingly.

3. Examples
We use two examples to illustrate the new proposals. The first example is from a clinical
trial conducted by the AIDS Clinical Trials Group, ACTG 320 (Hammer et. al., 1997). The
study demonstrates that for various response endpoints, on average the three-drug
combination therapy consisting of indinarvir, zidovudine and lamivudine, is much better
than the two drug combination without indinarvir for treating HIV infected patients.
Unfortunately, even with this potent combination, some patients may not respond to
treatment, but suffer from non-trivial toxicity. Therefore, for future patients’ management, it
is important to have a reliable model for predicting patient’s treatment responses based on
certain “baseline” markers. A general conception is to use the baseline CD4 count and HIV
RNA, a measure of viral load, and the early changes of these two markers after initiation of
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therapy for treatment guidance (Demeter et. al., 2001). For resource-limited regions,
however, the cost of obtaining RNA is relatively expensive. Therefore, a challenging
question is when we need RNA in addition to CD4 for better prediction of patient’s
response.

Recently Tian et. al. (2007) demonstrated that, on a population average sense, neither the
baseline nor early RNA change (from baseline to week 8) would add a clinically meaningful
value for predicting the long term change of CD4 (from baseline to Week 24), an important
measure of the patient’s immune response. Here, we try to locate a subgroup of patients, if
any, who would benefit from the expensive marker RNA. To this end, let the response Y be
the change of CD4 cell counts from Week 0 to 24, let U consist of age, baseline CD4 and the
early change in CD4, and let V consist of the baseline RNA and the early change in RNA.
For our analysis, in Models (2.1) and (2.4), we let X = (1, U′)′, W = (1, U′, V′)′, and g1(·) and
g2(·) be the identity function. Also, we let Ŷ1(β′X) = β′X, Ŷ2(θ′W) = θ′W, D(a, b) = |a − b|
and interval Jz be [z − 10, z + 10] for z ∈ Ω ̂ = [15, 165]. Note that the intra-patient standard
deviation of the CD4 count is about 60. Therefore, a choice of Jz whose length of the similar
magnitude to 60 would be appropriate from a practical point of view. Moreover, in our
analysis, we let d1 = d2 = 0.01 discussed in Section 2 for choosing Ω̂. With n = 392 sets of
complete observations of (Y, U, V), the regression parameter estimates for Models (2.1) and
(2.4) are reported in Table 1. Note that the short term changes of CD4 and RNA are
statistically highly significant.

For both working models, we utilized 5-fold crossvalidation scheme discussed in Section 2
to obtain the regression parameters and then ̃1(·), ̃2(·), and Δ̃(·). In Figure 1, we present
these estimated prediction errors and their differences with the corresponding 0.95 point-
wise and simultaneous confidence intervals given in (2.10)–(2.13). The values of { ̃1(z)}
based on the model with age, baseline CD4 and early change in CD4 range from 37 to 74.
The values of { ̃2(z)} based on the model with additional RNA information range from 36
to 73. The estimated differences {Δ̃(z)} range from −1.7 to 6.0. These indicate that there is
no clinically meaningful gain from RNA for any subgroup of patients classified by β̂′X. One
may draw further statistical inference about the Δ0(·). For example, for subjects whose score
g1(β̂′X) ∈ Jz = [40, 60], the estimated Δ̃(50) = 0.45 with 0.95 point-wise interval of (−3.25,
4.15) and simultaneous interval of (−7.48, 8.38). Note that the results reported here are
based on Jz with interval length of 20, which is well within the intra-patient variation of
CD4 measures. Various analyses have also been done with Jz’s whose lengths range from 30
to 60. All the results lead to the same conclusion. That is, statistically or clinically, we
cannot identify a subgroup of patients who would benefit from the extra information of
RNA for prediction of the long term CD4 change.

The data for the second example is from a population of patients screened for a clinical
study, called TRACE, for treating heart failure or acute myocardial infraction (MI) (Kober
et. al., 1995). There were 6676 patients screened. Each patient had six routine clinical
covariates: age, creatine (CRE), occurrence of heart failure (CHF), history of diabetes
(DIA), history of hypertension (HYP), and cardiogenic shock after MI (KS). Moreover, each
patient had an echocardiographic assessment of left ventricular systolic function which was
quantified by a measure called the wall motion index (WMI). Compared with the above six
covariates, the WMI is relatively expensive to obtain. Although not every screened patient
entered the clinical trial, all patients screened were followed closely for mortality.

Recently, Thune et. al. (2005) studied the prognostic importance of left ventricular systolic
function in patients diagnosed with either heart failure or acute MI in addition to the
patient’s medical history. It would be interesting to identify subpopulations that can benefit
from the extra WMI measure for predicting clinical outcomes such as mortality. Here, we let
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the outcome Y be a binary variable, which is one if the patient died within five years. The
five-year survival rate for this data set is approximately 42%. To evaluate the incremental
value of WMI, we first fit the data using Model (2.1) with X = (1, AGE, CRE, CHF, DIA,
HYP, KS), and g1(s) = exp(s)/{1 + exp(s)}. With the extra variable WMI, we fit a second
logistic regression model with W = (X′, WMI)′. A total of 5921 subjects have complete
predictor information. The estimates for the regression parameters with their standard errors
are reported in Table 2. Note that the WMI is highly statistically significant.

Here, we consider the prediction rules

(3.1)

and

(3.2)

Note that we have also fitted the data with more complicated models, for example, by
including various interaction terms. The results for the present case, however, are almost
identical to that based on the above two additive models. For binary response variables, we
consider the distance function D(a, b) = |a − b|, where a is the observed response and b is a
binary predicted response based on the working model with the assumed event rate of g(·).
This distance function is a conventionally used metric for evaluating the binary prediction
rules. One may use other possible distance functions, for instance, by letting b be g(·) from
(2.1) and (2.4) and D(a, b) = |a − b| or (a − b)2. Moreover, one may consider a likelihood-
based criterion to evaluate Models (2.1) and (2.4). In general, the metric comparing Y and
the estimated g(·) can efficiently discriminate two prediction models. On the other hand, for
the present case, we are more interested in evaluating the practical performance of the
specific prediction rules, not the adequacy of the model fitting (although these two are
closely related). Thus, considering distance functions between a practically applicable
prediction rule Ŷ and the true response Y seems more relevant. The distance function, |a − b|,
consists of two discordance rates or two types of error rates. Specifically, 1(z) in (2.3) is

11(z) + 10(z), where

are the discordance rates for false negative and false positive errors, respectively. Similarly,
2(z) = 20(z) + 21(z). Let Δ0(z) = 10(z) − 20(z) and Δ1(z) = 11(z) − 21(z).

Oftentimes, a false negative error is more serious than a false positive one. Therefore, one
may consider a weighted sum Δ0(w, z) = w0Δ0(z) + w1Δ1(z) to evaluate the prediction rules.
Here, w = (w0, w1)′ and the weights w0 and w1 reflect the “cost” of making these two types
of errors. It is interesting to note that the corresponding distance function for Δ0(w, z) is

. For a given w, the crossvalidated point estimates Δ̃(w, z) and their interval
estimates for Δ0(w, z) can be constructed as for Δ0(z) in Section 2. The large sample
properties for Δ̃(w, z) are derived in Appendix A of the web-based supplementary material.

We first considered the most commonly used prediction rule with c = 0.5 and w0 = w1 = 1.
The 5-fold crossvalidated estimates, obtained by letting Jz be the entire real line in (2.8) and
(2.9), for the overall prediction errors E[D{Y0, Ŷ1(β̂′X0)}] and E[D{Y0, Ŷ2(β̂′W0)}] are 0.28
and 0.26, respectively, a modest overall incremental gain from the extra information of
WMI for the entire population of interest. To identify which subgroup of patients who would
benefit with WMI, we let Jz = [z − 0.1, z + 0.1], for z ∈ Ω ̂ = [0.15, 0.82]. Here, the scale of z
is the probability of developing the event within five years based on the conventional risks
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factors in the model. The choice of the interval length of Jz is not obvious as that for the HIV
example and should be made by the entire research team (not only from the statistical point
of view). For example, it may depend on the cost of obtaining the WMI measure, the
distribution of the initial predicted risk score, and the clinical interpretation of the scale of
such a scoring system. In our analysis, Ω̂ is chosen by letting d1 = d2 = 0.01 discussed in
Section 2. To estimate l(z), l = 1, 2, and Δ0(z), we used the 5-fold crossvalidation to obtain
̃1(·), ̃2(·) and Δ̃(·). In Figure 2, we present these point estimates and their corresponding

0.95 point-wise and simultaneous confidence intervals. For the interval estimation, we let d3
= 0.01. This results in Ω̃ = [0.26, 0.76]. Note that the point estimates Δ̃(z) for z outside Ω̂ are
not reliable, and Δ̃(z) is pretty at around 0 for z ∈ Ω ̂ − Ω̃, indicating that there is no evidence
that WMI has a meaningful gain outside the interval Ω̃. On the other hand, with the point
and interval estimates displayed in Figure 2(c), one may conclude that WMI is likely to be
beneficial for patients with conventional risk scores g1(β̂′X) ranging from 0.16 to 0.74. If
WMI is relatively affordable to the population of interest, then one may consider using the
upper bound of the simultaneous confidence intervals to identify the subpopulation based on

 0 and thus conclude that patients with g1(β̂′X) ∈ [0.16, 0.86] are likely
to benefit from the WMI. On the other hand, when WMI is not quite affordable, then one
may select the region conservatively and use the lower bound of the simultaneous

confidence intervals based on  and thus conclude that patients with
g1(β̂′X) ∈ [0.29, 0.63] are likely to benefit from the WMI.

To illustrate the effect of the weighting parameter w = (w0, w1) on the incremental value of
WMI, we present in Figure 3(a),(b),(c) and (d) the point and interval estimates of Δ0(w, z)
for the predictors (3.1) and (3.2) with c = 0.5 and various choices of w.

Note that when w0 ≠ w1, even if the working model is correctly specified, the prediction rule
in (3.1) or (3.2) with c = 0.5 is not optimal with respect to the weighted error rate.
Furthermore, with the unequal weighting criterion, for some subgroups of patients, inclusion
of the extra information of WMI may significantly decrease the prediction precision. For a
given w, with the weighted sum prediction precision measure, w0 10(z) + w1 11(z), it is
straightforward to show that the optimal prediction rule based on X that minimizes the above
criterion is Ŷ = I{pr(Y = 1 | X) ≥ cw}, where cw = w0/(w0 + w1). Therefore, for the present
example, if g1(β̂′X) and g2(θ ̂′W) are reasonably good approximations to E(Y|U) and E(Y|U,
V), the predictors I(g1(β̂′X) ≥ cw) and I(g2(θ ̂′W) ≥ cw) are almost optimal. In Figure 4, we
present the crossvalidated point estimates along with the 0.95 interval estimates of Δ0(w, z)
with w = (1, 4)′ and (1, 9)′ when “optimal” prediction rules are used for both models. It
appears that there is minimal gain from WMI across all sub-populations indexed by g(β̂′X) ∈
Jz for both cases. These findings underscore the importance of selecting the cut-off value as
well as the distance measure for quantifying the incremental predictive value of new
biomarkers. In any event, we highly recommend to perform such sensitivity analyses to
provide an over-all picture of the incremental value from the new biomarkers when there is
no consensus about the weights used in the binary classification.

As suggested by a reviewer of the paper, we have also applied our method to quantify the
incremental value of new biomarkers based on the integrated discrimination improvement
(IDI) index (Pencina et. al., 2008, Pepe et. al., 2008). The IDI index is defined as the
integrated difference in Youden’s indices (Youden, 1950). It can be viewed as an
improvement of the average sensitivity and specificity with the new markers. The
crossvalidated point estimates and the corresponding 0.95 simultaneous interval estimates
are presented in Figure 1 of the web-based supplementary material. With this utility
function, it appears that the WMI would be beneficial for all patients whose conventional
risk scores are between 0.10 and 0.81 for predicting subject’s five year survival. It is
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important to note that there are no specific prediction rules attached to this approach (similar
to the area under curve as an average measure over a class of prediction rules). Therefore, at
the end it is not clear which prediction rule(s) one would recommend for practical usage
based on the model with the additional markers. Utilizing an over all measure of the
incremental value for evaluating new markers over various subgroups of patients can be
useful at the initial stage of the investigation.

4. Remarks
As for any scientific investigation, we need to define the endpoint of the study at the very
first step. For the HIV example in Section 3, instead of using the change of the CD4 counts
as the endpoint, one may be interested in the percent of change in CD4 counts from the
baseline level. This is equivalent to considering the change in the log transformed CD4
counts as the endpoint. For the TRACE study example in Section 3, we dichotomized the
patient’s survival time to make the response variable being the binary survival status at 5
years in our analysis. Naturally we may consider prediction rules for other time points. A
good prediction rule for five-year survival may not be appropriate for ten-year survival.
Therefore, when evaluating prediction rules for the patient’s survival time, a global distance
function, for example, based on the L1 norm, between the observed and predicted survival
times may not be desirable. Moreover, in practice, often the survival time cannot be
observed completely and the support of its censoring variable is generally shorter than that
of the survival time. As a result, it is difficult to evaluate prediction rules efficiently with, for
example, the L1 distance without artificial extrapolation. On the other hand, using the
approach taken by Uno et. al. (2007), one may identify patients who would benefit from the
additional biomarkers via prediction of t-year survival.

After we select the endpoint of the study, we should make every effort to find the “best”
models (2.1) and (2.4), which fit the data well. Model (2.1) would thus provide us a
reasonable scoring system with which we can classify future patients into different
subgroups via the conventional markers. Subsequently, we fit the response variable with the
conventional and new marker values jointly to build model (2.4). Such an elaborate joint
model may include interactions between the conventional and new markers, which would be
potential contributing factors to the varying incremental values from the new markers.

The next crucial step is to choose a proper prediction precision measure to quantify the
incremental value of the new markers. Different distance functions between the predicted
and observed may result in quite different conclusions regarding the selection of subset of
patients as illustrated by two real examples in Section 3. Since the final decision of using the
new biomarkers would be based on the trade off between the risk/cost and benefit, the
distance function needs to be “clinically” or heuristically interpretable. In analyzing the data
from the HIV and TRACE trials, we proposed several distance functions for illustration. The
choice of such functions is by no means restricted to those discussed in Section 3. For
example, one may use a theoretically interesting metric such as the conventional likelihood
ratio statistic or the mean square error loss to differentiate two prediction models (one with
and the other without new markers). However, the magnitude of gain under such a metric is
often difficult to interpret when the cost or risk is involved for decision making.

In practice the choice of the distance function even for the simple case with a binary
response is rather complex. In the cardiovascular disease arena, conventionally a patient
with more than 10% risk for having a serious cardiovascular event within ten years is
generally regarded as having a high risk, and usually would be recommended for certain
preventive treatments. However, the utility function may vary across individuals and hence
different patients may have different optimal cutoff points for predicting patient-level
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outcomes. The weighted sum of prediction error rates presented in this article is an attempt
to cope with this complicated cost-benefit issue. The complexities of choosing a distance
function extend to the case with continuous responses. For example, weighting absolute
prediction errors according to the observed response may lead to a more meaningful penalty
in some applications compared to the un-weighted counterpart.

In this paper, we provide a useful tool for making valid inferences on the incremental value
of new markers simultaneously over subsets of patients with well-defined endpoint,
prediction models, utility (distance) function and the study population. We propose the use
of the simultaneous confidence band for the incremental values to control the type one error
and determine whether the new markers have a positive incremental value in a subset of
patients. As the sample size increases, the confidence bands become tighter and one would
be able to more accurately identify all subsets of interest.

Lastly, we may want to identify subsets where the incremental value is greater than a
positive threshold to incorporate the cost of measuring the new markers. As such, subsets
where the new markers have a positive, yet very small added predictive value would be
excluded. If the new markers become less costly or invasive in the future, we may construct
a new scoring system to index patients. It is likely that some old markers may not be needed
on top of the new ones.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Point estimates for 1(·), 2(·) and Δ0(·) with corresponding 0.95 point-wise (dashed lines)
and simultaneous (shaded regions) confidence intervals for the HIV example.
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Figure 2.
Point estimates for 1(·), 2(·) and Δ0(·) with corresponding 0.95 point-wise (dashed lines)
and simultaneous (shaded regions) confidence intervals for the screened population of the
TRACE study (the prediction with c = 0.5).
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Figure 3.
Point estimate Δ̃(w, ·) for Δ0(w, ·) with various weights and the corresponding 0.95 point-
wise (dashed lines) and simultaneous (shaded regions) confidence intervals for the screened
population of the TRACE study (the prediction with c = 0.5).
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Figure 4.
Point estimate Δ̃(w, ·) for Δ0(w, ·) with the “optimal” weights and the corresponding 0.95
point-wise (dashed lines) and simultaneous (shaded regions) confidence intervals for the
screened population of the TRACE study.
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