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Purpose: Unlabeled medical image data are abundant, yet the process of converting them into a
labeled �“truth-known”� database is time and resource expensive and fraught with ethical and
logistics issues. The authors propose a dual-stage CADx scheme in which both labeled and unla-
beled �truth-known and “truth-unknown”� data are used. This study is an initial exploration of the
potential for leveraging unlabeled data toward enhancing breast CADx.
Methods: From a labeled ultrasound image database consisting of 1126 lesions with an empirical
cancer prevalence of 14%, 200 different randomly sampled subsets were selected and the truth
status of a variable number of cases was masked to the algorithm to mimic different types of
labeled and unlabeled data sources. The prevalence was fixed at 50% cancerous for the labeled data
and 5% cancerous for the unlabeled. In the first stage of the dual-stage CADx scheme, the authors
term “transductive dimension reduction regularization” �TDR-R�, both labeled and unlabeled im-
ages characterized by extracted lesion features were combined using dimension reduction �DR�
techniques and mapped to a lower-dimensional representation. �The first stage ignored truth status
therefore was an unsupervised algorithm.� In the second stage, the labeled data from the reduced
dimension embedding were used to train a classifier toward estimating the probability of malig-
nancy. For the first CADx stage, the authors investigated three DR approaches: Laplacian eigen-
maps, t-distributed stochastic neighbor embedding �t-SNE�, and principal component analysis. For
the TDR-R methods, the classifier in the second stage was a supervised �i.e., utilized truth� Baye-
sian neural net. The dual-stage CADx schemes were compared to a single-stage scheme based on
manifold regularization �MR� in a semisupervised setting via the LapSVM algorithm. Performance
in terms of areas under the ROC curve �AUC� of the CADx schemes was evaluated in leave-one-
out and .632+ bootstrap analyses on a by-lesion basis. Additionally, the trained algorithms were
applied to an independent test data set consisting of 101 lesions with approximately 50% cancer
prevalence. The difference in AUC ��AUC� between with and without the use of unlabeled data
was computed.
Results: Statistically significant differences in the average AUC value ��AUC� were found in
many instances between training with and without unlabeled data, based on the sample set distri-
butions generated from this particular ultrasound data set during cross-validation and using inde-
pendent test set. For example, when using 100 labeled and 900 unlabeled cases and testing on the
independent test set, the TDR-R methods produced average �AUC=0.0361 with 95% intervals
�0.0301; 0.0408� �p-value�0.0001, adjusted for multiple comparisons, but considering the test set
fixed� using t-SNE and average �AUC=.026 �0.0227, 0.0298� �adjusted p-value�0.0001� using
Laplacian eigenmaps, while the MR-based LapSVM produced an average �AUC=.0381 �0.0351;
0.0405� �adjusted p-value�0.0001�. The authors also found that schemes initially obtaining lower
than average performance when using labeled data only showed the most prominent increase in
performance when unlabeled data were added in the first CADx stage, suggesting a regularization
effect due to the injection of unlabeled data.
Conclusion: The findings reveal evidence that incorporating unlabeled data information into the
overall development of CADx methods may improve classifier performance by non-negligible
amounts and warrants further investigation. © 2010 American Association of Physicists in Medi-
cine. �DOI: 10.1118/1.3455704�
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I. INTRODUCTION

The rise of digital imaging followed by increased sophistica-
tion of image output and lowering cost of data storage has
resulted in the accumulation of a substantial amount of clini-

cal image information. This new reality provides ample
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opportunity for enhancing the development of computer-
aided diagnosis �CADx� algorithms.1 More robust method-
ologies can now be implemented due to the simultaneous
increase in the size of training, testing, and validation image

databases and the availability of images with higher informa-
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tion content. However, the algorithmic training of CADx is
commonly implemented via supervised classification, which
requires that “truth” �i.e., actual biological disease status
such as “malignant” or “benign”� be known for each image.
Unfortunately, reliable truth labeling is seriously time and
resource consuming and therefore acts as a limiting factor to
databases’ sizes.2 Even if the gathering of pathological, ge-
netic, and radiological information associated with each
clinical case is expected to become more efficient, a relative
abundance of readily available unlabeled �UL� �i.e., “truth-
unknown” or probability of disease equal to prevalence� or
incompletely labeled �i.e., “truth-partially-known” or prob-
ability of disease higher or lower than prevalence for each
specific case� images is likely to persist in most research
contexts. For example, in the clinic, patients may be referred
to an imaging follow-up rather than a biopsy. From a practi-
cal standpoint, it is wasteful to completely discard this infor-
mation, as these images are likely to contain useful informa-
tion as indicated, for example, by research suggesting that
radiologists’ decision making processes might be endlessly
refined by exposure to both labeled �L� �i.e., probability of
disease equal to 0 or 1� and unlabeled image data, interpret-
able as a development of a general sense of familiarity with
the structures contained in the image “space.”3

Unlabeled image data can be regarded as a sample drawn
from the underlying probability distribution marginalized
over the combined class-categories, e.g., all cases ignoring
whether they are malignant or benign. A large and unbiased
unlabeled database sample provides detailed knowledge of
the inherent structure of the marginal distribution of the im-
ages, which can guide the subsequent design of supervised

FIG. 1. Simplified example illustrating how the use of unlabeled data might p
a number of labeled samples from a hypothetical 2D feature space with a de
on those data. The upper-right-hand section depicts the same data, plus unla
the classifier and decision boundary. The lower section illustrates the class-co
applying the two trained classifiers as described above to the population.
classification on labeled cases and perhaps improve
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performance.4 In other words, the unlabeled data may help
“regularize” the training of CADx algorithms. Figure 1 illus-
trates these concepts.

The possibility for meaningful integration of unlabeled
and labeled image data have been provided by “transductive”
methods such as the recently developed unsupervised, local
geometry preserving, nonlinear dimension reduction �DR�
and data representation techniques, including Laplacian
eigenmaps �Belkin and Niyogi� and t-distributed stochastic
neighbor embedding or t-SNE �van der Maaten and
Hinton�.5–7 Additionally, building on the DR conceptual
foundations for preserving inherent data structure, manifold
regularization �MR� establishes the possibility for “truly”
semisupervised approaches, allowing for a natural extension
to the immediate classification of out-of-sample test cases.8

The purpose of our study is to introduce these methods to
breast CADx and to provide a preliminary exploration of the
potential for leveraging unlabeled databases toward the de-
sign of more robust breast mass lesion diagnosis algorithms.
Additionally, the experimental design considered here aims
to mimic, within the constraints imposed by the available
data set, clinically relevant scenarios involving potentially
available unlabeled diagnostic data sets, specifically in terms
of the expected cancer prevalence.

II. BACKGROUND

II.A. Current perspectives on breast CADx

A detailed discussion of past and present breast image
CADx methods can be found in a number of reviews.1,9 A
quick recapitulation suggests that these methods are intended

ially improve CADx classifier regularization. The upper-left section displays
n boundary �for likelihood ratio equal to 1� produced by a classifier trained
samples which provide additional structural information, therefore altering

onal density functions of the classifier output decision variables obtained by
otent
cisio
beled
nditi
to improve the quality and consistency of radiologists’ clini-
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cal diagnoses and that they are usually designed following a
supervised pattern recognition scheme constituted of seg-
mentation, feature extraction, feature selection, and classifier
training/testing/validation. The relative merits of these steps
are partially confounded by the limitation of utilizing rela-
tively small data sets. Critical to the success of such methods
are the informative value of the extracted features toward the
specific diagnostic task and the robustness of the classifica-
tion algorithm employed to make use of the feature informa-
tion. Feature selection �FS� is the final step of information
evaluation and attempts to select the most discriminative in-
put subpace from a possibly large array of potential feature
candidates.10–12 An appealing alternative to explicit feature
selection is to perform DR, which we have previously com-
pared with FS for multimodality breast image CADx feature
spaces including full-field digital mammography, ultrasound,
and dynamic contrast enhanced magnetic resonance imaging
�MRI�.5 In this previous study, we evaluated classification
performance and visualization of high-dimensional data
structures. The methods investigated, t-SNE and Laplacian
eigenmaps, are designed to discover the underlying structure
of the data. Our analysis revealed that the DR methods,
while not necessarily ready to completely replace FS, gener-
ally lead to classification performances on par with FS-based
methods as well as providing 2D and 3D representations for
aiding in the visualization of the original high-dimensional
feature space.

II.B. Proposed incorporation of unlabeled data for
training CADx

In the previous work, we did not consider DR’s capability
of utilizing in a straightforward manner unlabeled data to-
gether with labeled data during the mapping from the higher
to the lower-dimensional space. Since feature extraction is
identical for labeled and unlabeled cases, instead of using
supervised feature selection �such as automatic relevance de-
termination�, which is dependent exclusively on the labeled
cases, unsupervised dimension reduction can use the high-
dimensional feature vectors, including the unlabeled feature
data, to construct a lower-dimensional representation.11 Ide-
ally, the unlabeled data can help to more accurately capture
the underlying manifold structure associated with the popu-
lation of the imaged objects, even if some of the structure
might not relate directly to the diagnostic task, e.g., describe
differences among benign cases. Figure 2 gives a broad out-
line of the proposed algorithm. We hypothesize that the la-
beled data subspace produced by this type of DR mapping
�including unlabeled data� could allow a supervised classifier
to achieve enhanced classification performance. We call this
approach “transductive-DR regularization” �TDR-R�. The
TDR-R approach requires the potentially computationally in-
tensive remapping step each time a new case is introduced.
As differentiated from supervised learning which requires
full knowledge of class categorization/labeling for training
data, and unsupervised methods which do not use any infor-
mation related to class identity, semisupervised learning

�SSL�, in general, refers to a class of algorithms designed to

Medical Physics, Vol. 37, No. 8, August 2010
make use of and learn from both labeled and unlabeled ex-
amples in a unified fashion for the task of classification.4 We
thus also included a truly semisupervised learning algorithm
known as MR, which is designed to explicitly incorporate
unlabeled data information data during training and can be
extended to classify new cases without the remapping and
retraining of transductive.8

II.C. Related work involving unlabeled data

To our knowledge, the use of nonlinear, local geometry
preserving DR and manifold regularization to exploit unla-
beled image feature data toward improving breast lesion
CADx classification performance has yet to be investigated.
However, methods involving unlabeled data have been
briefly investigated in the area of computer-aided detection
�CADe�. Li and Zhou13 proposed to use unlabeled image
data in conjunction with their algorithm “Co-Forest,” a
modification of ensemble and cotraining based learning tech-
niques, for a CADe application focused on microcalcifica-
tions in digital mammograms. In their paper, the authors pro-
vided limited results based on an experimental design using
only 88 images total. In the broader field of computer analy-
sis in medical imaging, others have investigated the use of
k-means clustering with texture analysis for unlabeled liver
MRI image regions toward diagnosis of cirrhosis; unfortu-
nately, their conclusions were also limited because of their
relatively small study size.14 The use of unlabeled data infor-
mation for classification tasks is a growing research interest
outside of the medical imaging arena as well, for example, in
the analysis of protein sequences and speech/audio
recognition.15,16 Additionally, research exists on full image-
space input based approaches �as opposed to using fixed pre-
determined features�, inspired in part by humanlike visual
systems that are intimately associated with the use of unla-

17

FIG. 2. Breast CADx algorithm work flow outline illustrating a two-stage
method for incorporating unlabeled data with the use of dimension
reduction.
beled stimuli. Again, because of the relative abundance of
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unlabeled or incompletely labeled data in healthcare related
fields, such as image processing and CAD research, we ex-
pect that the challenge of how to effectively use such infor-
mation will likely remain highly relevant.

III. METHODS

III.A. Overview

Our experiments were based on sets of randomly selected
cases from previously acquired retrospective data sets con-
sisting of labeled cases. Each of the cases was represented by
computer extracted features obtained from ultrasound �U.S.�
images of breast mass lesions. Each set consisted of labeled
and “mock” unlabeled samples �i.e., cases for which the truth
was ignored in that specific experiment for the purpose of
assessing the effect of unlabeled data�. For each experimen-
tal run, cases were selected, on a by-lesion basis, according
to specific sampling criteria, including clinically relevant
cancer prevalence percentages with respect to both the la-
beled and unlabeled data, as well as varying the total number
of labeled and unlabeled cases used. After generating these
samples, the algorithms were trained and tested, with and
without the unlabeled data. The subsections below review
our approach in detail.

III.B. CADx breast ultrasound data set

The U.S. data characterized in this study consists of clini-
cal breast lesions presented in images acquired at the Uni-
versity of Chicago Medical Center. Lesions were labeled ac-
cording to pathological truth, determined either by biopsy or
radiologic report and collected under HIPAA-compliant IRB
protocols.

TABLE I. Feature database composition.

Data set
Total number

of images

Number of
malignant

lesions

Number
of benign

lesions

Total
number
of lesion
features

calculated

Training and
cross-validation set

2956 158 968
�401 mass;
567 cystic�

81

Independent test set 369 54 47
�34 mass;
13 cystic�

81

TABLE II. Summary of the four approaches explored

Method type

1 Transductive DR regularization
2 Transductive DR regularization Lapla
3 Transductive DR regularization
4 Manifold regularization Com
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The U.S. image breast lesion feature data sets were gen-
erated from previously developed CADx algorithms at the
University of Chicago.18–21 Based on the manually identified
lesion center, the CADx algorithm performed automated-
seeded segmentation of the lesion margin followed by com-
puterized feature extraction. Morphological, texture, and
geometric features, as well as those related to posterior
acoustic behavior, were extracted from the images. Further
details regarding the previously developed features used here
can be found in the provided references.18–20 Table I summa-
rizes the content of the U.S. databases used, including the
total number of lesion features extracted. The benign ultra-
sound lesions can be subcategorized as benign solid masses
and benign cystic masses. This study only considered the
binary classification task of distinguishing between cancer-
ous vs noncancerous �termed malignant and benign� lesions.
The empirical cancer prevalence for the first data set was
approximately 14% and 50% for the independent testing data
set. Again, all sampling and performance evaluations were
conducted on a by-lesion basis, as multiple U.S. images may
be associated with a single unique lesion. In such an in-
stance, classifier output from all associated images for a
single physical lesion case is averaged.

III.C. Frameworks for incorporating unlabeled data in
CADx

III.C.1. General framework

The approaches considered here build on the geometric
intuitions motivating the design and use of nonlinear DR
techniques. This framework assumes that knowledge limited
to the underlying marginal probability distribution Px, i.e.,
without labeling, can contribute toward identifying better
classification decision functions for the task of modeling the
conditional probability P�y �x�, where y is the target class
label. This requires that if two points x1 and x2 are close
according to the intrinsic geometry of Px, the conditional
probabilities P�y �x1� and P�y �x2� are likely to be similar.4

Algorithmic details applying this concept using two different
techniques are provided below �Table II�. It is important to
note that all these methods assume that the unlabeled data
are from the same underlying population as the labeled data
and that both are unbiased samples �possibly conditional on
truth for the labeled data�. Therefore, in the form described
here, they are not designed to compensate for verification
bias and similar sampling issues. Additionally, we note that
for finite sample data sets, one cannot know with certainty if

ncorporating unlabeled data in breast CADx.

Stage 1 Stage 2

upervised DR Supervised classifier

CA �linear� BANN
igenmaps �nonlinear� BANN
E �nonlinear� BANN
stages using semisupervised algorithm: LapSVM
for i

Uns

P
cian e

t-SN
bined
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a sample satisfactorily represents the underlying population
probability distribution. However, as the data set size in-
creases, the quality of the underlying marginal distribution
representation is expected to improve.

III.C.1.a. TDR-R approach. As previously stated, features
are extracted in the same way for malignant and benign le-
sions as well as for and labeled and unlabeled lesions. There-
fore unsupervised DR can be applied to data sets made of
both labeled and unlabeled data in a straightforward manner
�stage 1, Figs. 2 and 3�. Next, a supervised classifier is
trained using only the labeled samples, with feature informa-
tion expressed in the reduced dimensionality representation
�stage 2, Figs. 2 and 3�. Conceptually, the DR mapping acts
as the agent through which the transductive learning prin-
ciple is accomplished. Specifically, because the structure of
the DR-generated “point-cloud” is dependent on the presence
of the unlabeled data, this influence acts as a regularizing
force on the reduced-representation of the labeled cases, and
hence the term TDR-R. Figure 3 provides an overview of the
training and testing �on an independent test data set� of a
breast CADx algorithm scheme incorporating TDR-R. It
should also be noted that the TDR-R mappings considered
here are, in general, nonparametric, reflected by the require-
ment that they must be recomputed with each new set of
data. In practice, a potential computational limitation may be
incurred due to the requirement to recompute the DR map-
ping for whenever new data needs to be analyzed. However,
such concerns are expected to dissipate in time with the
rapid, ongoing advance of computing technology, i.e., multi-
core processors and “grid” computing. Methods such as
nearest neighbors �NN� approximations and the Nyström ap-
proximation can be used to estimate a lower-dimensional
mapping directly on new test data without including them
into the DR process.22 However, these approaches are not
exact and often result in inconsistent performance. Thus, we
decided to start exploring the potential of unlabeled data us-

ing transductive means. Because the test data must be intro-
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duced �albeit indirectly in an unsupervised fashion� during
the training process, this approach is nonideal and computa-
tionally costly. New approaches are under development
aimed at overcoming these potential weaknesses.23

III.C.2. First stage: Combining labeled and
unlabeled features in unsupervised dimension
reduction

Mathematically, the general problem of dimensionality re-
duction can be described as: Provided an initial set x1 , . . . ,xk

of k points in Rn, discover a set x1� , . . . ,xk� in Rm, where m
�n, such that xi� sufficiently describes or “represents” the
qualities of interest found in the original set xi. For the spe-
cific context of high-dimensional breast lesion CADx feature
spaces, ideally, such lower-dimensional mappings should
help to reveal relevant structural information associated with
the categorization of the lesion subtypes and disease status
for a population of breast image data.

Described briefly below are three DR techniques, one lin-
ear, and two nonlinear, respectively: Principal component
analysis �PCA�, Laplacian eigenmaps, and t-SNE. The latter
two methods were chosen because of their distinct ap-
proaches to nonlinearity and local structure. A brief descrip-
tion of these approaches is provided in the following, while a
deeper discussion in the context of breast CADx can be
found in our previous study.5 Using this previous study as a
heuristic reference point, in these experiments, beginning
with all 81 features as initial input, the output reduced di-
mension was set to 7D for PCA, 5D for t-SNE, and 7D for
the Laplacian Eigenmaps. For the PCA and Laplacian eigen-
maps, we simply use the first consecutive output embeddings
up to the dimension desired. For the t-SNE, the output di-
mension is predetermined and all outputs are used. Details
are described below.

PCA linearly transforms the input matrix of data into a

FIG. 3. Schematic diagram illustrating the side by side
comparison showing how new independent test data are
handled for the TDR-R �left side� and MR �right side�
algorithm workflows that incorporate unlabeled data for
breast CADx.
new orthogonal basis set ordered according the fraction of
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global variance captured; in other words, it performs an ei-
genvalue decomposition of the data covariance matrix.24

Lacking the ability to explicitly account for nonlinear and
local structure, and hence assumed less likely to make effi-
cient use of unlabeled data for regularizing labeled input
used to train supervised classifiers, this linear dimension re-
duction method is included experimentally for comparison
purposes only.

Building off of spectral graph theory, Laplacian eigen-
maps, proposed by Belkin and Niyogi, utilize the optimal
embedding properties of the Laplace–Beltrami operator on
smooth manifolds and its theoretical connections to the
graph Laplacian.25,26 Specifically, after a weighted neighbor-
hood adjacency graph is formed using the original high-
dimensional data space, eigenvalues and eigenvectors are
computed for the graph Laplacian. Acting as a discrete ap-
proximation to the Laplace–Beltrami operator, the Laplacian
of the point-cloud graph can be shown to preserve local
neighborhood information optimally for some criteria,25,26

hence motivating the use of its eigenfunctions in embedding
into lower-dimensional spaces.6 Two parameters are required
to be set for Laplacian eigenmaps: First, the number of NN
for constructing the connected graph, and second, the expo-
nential heat kernel parameter, �heat. Based on our previous
study,5 we chose NN=55 and �heat=1. Currently, no theoret-
ical basis exists for univocal parameter selection.

The third method considered is t-SNE, proposed by van
der Maaten and Hinton.7 Unlike the more theoretically mo-
tivated Laplacian eigenmaps, t-SNE attacks DR from a
probabilistic framework. The basis of t-SNE is to carefully
define and compute pairwise similarities between all points
in the original high-dimensional space and then attempt to
match this distribution in some lower-dimensional embed-
ding by calculating a corresponding set of pairwise similari-
ties. The algorithm begins by randomly initializing points
according to a Gaussian distribution in the lower-
dimensional space, and then iteratively updates point posi-
tions by way of a cost function and update gradient based on
the Kullback–Leibler divergence. Although such iterative
and statistically oriented approaches may require orders of
magnitude more computational effort, greater flexibility and
generality may be possible due to the easing of theoretical
formalism, provided the system is well-conditioned. In the
implementation used here, PCA is first applied to the data to
accelerate convergence. In addition to the target embedding
dimension, a single parameter called the Perplexity must be
set which aids in the control of the local scaling used for the
similarity calculations. This parameter was set to 30, follow-
ing our previous paper.5

III.C.3. Second stage: Using DR mapped labeled
cases in the training of a supervised
classifier

In order to perform supervised classification on labeled
cases in the reduced mappings as noted in Fig. 2, we imple-
mented a Markov chain Monte Carlo Bayesian artificial neu-

ral network �BANN� classifier using Nabney’s NETLAB pack-
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age for MATLAB.27 Provided sufficient training sample sizes, a
BANN can be shown to model the ideal observer and
achieve optimal classification, given a data source.28 The net-
work architecture consisted of the input layer nodes, a con-
nected hidden layer with one node more than the input layer,
and a single output target as probability of malignancy.

III.C.3.a. Truly semisupervised learning with manifold
regularization approach. Belkin, Niyogi, and Sindhwani8 in-
troduced the idea of MR. Using “Representer” theorems and
reproducing kernel Hilbert spaces �RKHS�, their key theoret-
ical accomplishment was to discover functional solutions ca-
pable of both explicitly incorporating information from the
intrinsic geometric structure of the data �including unlabeled
data� and also naturally extending to the classification of
future out-of-sample cases, without having to rely on trans-
ductive means.8 Figure 3�b� illustrates a side by side com-
parison showing how new independent test data are handled
by the respective TDR-R algorithm and the MR algorithm
for CADx workflows. All 81 features extracted here are input
into the MR algorithm. To briefly illuminate the nature of
this latter approach, first we consider general supervised
learning using only labeled data, which can be framed as the
following problem:

f� = arg min
f�HK

1

l �i=1

l

V�xi,yi, f� + �A�f�K
2 . �1�

Equation �1� contains two terms, the empirical loss function
�V�, which attributes penalty cost for incorrect classification
�e.g., the hinge loss �1−yif�xi���, and the regularization term
�f�K

2 , which constrains the complexity of the function solu-
tion �f��, defined within the Hilbert space Hk. The relative
penalty imposed on the “smoothness” of a function is con-
trolled by the parameter �A. Notably, the penalty norm in Eq.
�1� is defined in what is called the ambient space, or the
space in which the original data �in this case high-
dimensional breast image CADx features� exist. Solutions of
the form

f��x� = �
i=1

l

�iK�xi,x� , �2�

where K is any positive semidefinite kernel can be found
with the familiar convex optimization techniques used for
RKHS-based support vector machines �SVMs�.29

Manifold regularization works by including an additional
term �I�f�I

2, which imposes a smoothness penalty on func-
tions linked to the structure of the underlying lower-
dimensional manifold geometry defined by the intrinsic
structure of Px,

f� = arg min
f�HK

1

l �i=1

l

V�xi,yi, f� + �A�f�K
2 + �I�f�I

2. �3�

Depending on whether the marginal distribution is known
or unknown, Belkin, Niyogi, and Sindhwani8 provide a the-
oretical basis for expressing solutions in terms of RKHS-
based functional forms. Note that in the context of empirical

sample-based applications, the true underlying distribution is
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not known, and thus an approximation to the intrinsic �i.e.,
properties are local and thus variable from point to point�
geometry is required. Building off of the utility of Laplacian
eigenmaps for DR embedding, the intrinsic structure of the
data is approximated with the graph Laplacian in a similar
fashion as described above in Sec. III C 1. This approxima-
tion is shown to also admit solutions in the familiar and
convenient functional form of a RKHS, allowing for a rela-
tively simple algorithmic implementation, as done in this re-
search effort. The optimization problem for the approximate
case is provided here,

f� = arg min
f�HK

1

l �i=1

l

V�xi,yi, f� + �A�f�K
2 +

�I

�u + l�2 fTLf , �4�

where L is the graph Laplacian, f is the decision function,
and 1 / �u+ l�2 is the scaling factor for the Laplace operator.
The u unlabeled samples are explicitly incorporated into the
optimization problem above as well as in the associated so-
lution f� of form

f��x� = �
i=1

l+u

�iK�xi,x� , �5�

where K is again any positive semidefinite kernel and � is
the associated weighting coefficients. This solution can then
be applied to classify independent test data.

III.C.4. Truly SSL classifier algorithm: LapSVM

Since the solution to the above optimization problem ad-
mits the same form as standard kernel based approaches,8

SVM algorithms can be extended to include intrinsic regu-
larization, this is called LapSVM. Details of the algorithmic
derivation can be found in the original publication.8 We em-
ployed a MATLAB implementation of the LapSVM algorithm
using radial-basis function kernels and setting � to 3. The
graph Laplacian was built with nearest neighbors=25 and the
heat kernel parameter set to 3.6 Each time the LapSVM was
trained, �A and �I in Eq. �4� were adjusted according to the
relative ratio of labeled and unlabeled cases. Note that when
�I=0, LapSVM reverts to the SVM solution. Although a vi-
tal component, it is important to note again that no theoreti-
cal formalism exists for optimal selection of the aforemen-
tioned parameters. We selected “reasonable” settings based
off heuristic observations. Due to the finite sample size of the
data, if attempts are made to tweak the parameter space ex-
cessively the risk of overfitting may become significant. Be-
cause of this concern, we postpone a more thorough investi-
gation of the parameter configurations to future simulation
studies. Again, all 81 extracted features were input into the
LapSVM algorithm.

Notably, the LapSVM can also be treated in a transductive
fashion �similar to those schematics shown on the left in Fig.
3� by including the independent test set data into the graph
Laplacian. This approach was investigated for comparison’s
sake when testing the smaller ultrasound independent test

data and will be referred to as T-LapSVM.
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III.D. Experimental design and sampling protocol

Different experimental configurations were considered in
order to explore the possible impact of incorporating unla-
beled ultrasound image feature data into CADx classification
algorithms. Within the context of this classification task, we
hypothesize that the two most important factors influencing
performance are the number of cases involved and the preva-
lence of cancer for both the labeled and unlabeled data sets
used, respectively. We attempted to mimic clinically relevant
situations to provide some guidance to the practical design
and use of CADx systems.

Due to the finite size of the available ultrasound database
used here, the scope of settings possible for our experimental
design is restricted. Hence, beyond a point, scenarios involv-
ing a large number of labeled or unlabeled cases cannot be
modeled reliably. Additionally, we were constrained by the
inherent empirical cancer prevalence in our initial data set.
The cancer prevalence is approximately 14% for the entire
1126 case �2956 ROIs� diagnostic U.S. feature data set
�Table I�. For the labeled supervised training/testing we fo-
cused on smaller set sizes of 50, 100, and 150 lesions. Be-
cause the calculations are highly demanding, we explored
only a limited number of unlabeled data set sizes: Small,
medium, and as large as practically possible �NUL=900�. The
cancer prevalence was fixed at 50% malignant for the labeled
case samples and 5% malignant for the unlabeled case
samples �other prevalence configurations were considered
but were not included in this article due to length con-
straints�. The table below summarizes the configurations
considered �Table III�.

For each experimental configuration, 200 independently
randomly sampled subsets were drawn, by-lesion, from the
entire ultrasound feature data set and identified to the algo-
rithm as labeled or unlabeled according to the design speci-
fications. For each sample set, the labeled and unlabeled sub-
sets of cases were forced to be mutually exclusive. Sampling
was performed without replacement. It is important to accu-
mulate an adequate number of samples to boost statistical
power for identifying trends and overcoming the noise pro-
duced by intersample variability in performance due to the
small data set sizes, which is related to sampling distribution
variability. Again, due to the finite data set size limitation, it
is important to note that for the larger unlabeled data sets
�900 UL�, the case composition will be highly similar be-
tween the larger sample sets. This is consistent with using the
original data set as the population because this limits feature

TABLE III. Summary of the experimental run configurations according to the
number of cases used for L and UL data sets.

Number of labeled cases �L�

Number of unlabeled cases �UL�

Small Medium Large

50 50 500 900
100 100 500 900
150 150 400 900
values and their combinations in the sampled cases. On the
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other hand, this is a reasonably large data set and the purpose
of this paper was to explore the new methods with empirical
data.

Lastly, we tested the effect of using unlabeled data during
training on the separate independent test set �Table I�, ob-
tained independently from the original larger data set.

III.E. Performance evaluation methodology

The area under the receiver operating curve �AUC� was
used to quantify classifier performance because it is not re-
stricted to a specific and likely arbitrary operating point, sen-
sitivity or specificity. Moreover, it usually provides larger
statistical power. The AUC values were estimated using the
nonparametric Wilcoxon statistic computed using libraries
from the Metz’s group at the University of Chicago.30 Clas-
sification performance was estimated by leave-one-out
�LOO�, for the 50L and 100L experiments, and 0.632+ boot-
strap �632+� cross-validation �CV� for the 150 L experiments
and the independent test set, all on a by-lesion basis.31 For a
given experimental configuration, for each of the 200 runs,
the difference in the estimated AUC, ��AUC
=AUCwith unlabeled−AUCwithout unlabeled�, was found between
classification performed with and without the use of unla-
beled data. The paired, nonparametric Wilcoxon signed-rank
test was applied to the �AUC values in each 200 run sets
and to each of the subgroups defined by the original AUC
�without unlabeled� quartiles, i.e., top 25th, top 25th–50th,
bottom 50th–25th, and bottom 25th percentile. When neces-
sary, p-values were adjusted for multiple comparisons testing
using the Holm–Sidak step-down method.32,33 Because of the
considerable computational requirements, especially during
cross-validation, the calculations were run on a local 256
CPU computing cluster. For example, while using an Intel
Xeon E5472 CPU running at 3.0 GHz, although the Laplac-
ian eigenmaps DR usually requires less than 15 s, the t-SNE
DR can take over 15 min to complete on a 1000 case U.S.
data set sample.

IV. RESULTS

As an illustrative example, Fig. 4 displays the first three
embedding dimensions produced �out of the 5D total� for the
t-SNE DR mapping as well as AUCLOO classification perfor-
mance for a single data set run �out of the total 200 gener-
ated� with 100 L cases and 900 UL. The plot in Fig. 4�a�
displays the t-SNE DR mapping produced with labeled data
only, while for Figs. 4�b� and 4�c�, unlabeled data are incor-
porated during the mapping. For this particular single run,
the estimated AUCLOO increased from 0.79 �SE=0.044�
without the use of unlabeled data to 0.87 �SE=0.034� when
unlabeled data are included during the DR mapping �these
standard errors refer only to the test set variability, i.e., we
are analyzing the performance of the trained classifiers and
not the training protocol�. Importantly, this run is a single
positive performance change example and is not representa-
tive of the entire set of runs or average performance.

Estimated classification performance changes for the en-

tire 200 runs and covers a wide range, as shown in scatter
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plots displayed in Fig. 5. Figure 5 displays the AUC0.632+

performance for 150 L cases using 150 �blue�, 400 �green�,
and 900 �red� UL cases for all 200 runs for each classifier.
Both the CV and independent test results are shown for all
methods, with the x-axis as the AUC without UL data and the
y-axis as the AUC with UL data. The thin diagonal line in-
dicates equivalence between the two estimates.

A few observations can be made regarding these results.
Overall, the t-SNE and Laplacian eigenmap DR methods,
Figs. 5�c�–5�f�, produced the largest variation �both posi-
tively and negatively� in AUC performance and, therefore,
exhibited the noisiest distributions. For the cross-validation
based performances, Figs. 5�a�–5�e�, i.e., except the
LapSVM, it is difficult to discern which side of the diagonal
the majority of points lie with an unaided eye. It is possible
that the cross-validation procedure counteracts or blurs out
the changes produced by incorporating unlabeled data. In-
deed, when using the independent test data for all the meth-
ods except the linear PCA TDR-R �Figs. 5�b�, 5�d�, 5�f�, and
5�h��, it is clearer that the majority of points reside on the
upper side of the equivalence diagonal, indicating that the
average AUC estimate obtained with unlabeled data is higher
than that obtained without unlabeled data. For the indepen-
dent test data, LapSVM most evidently displays an improve-
ment in estimated AUC increase with the use of unlabeled
data even if the estimated absolute AUC performance is re-
duced, which might be an indication that, for this specific
instance, the LapSVM algorithm was more prone to overfit-
ting than the other three. Additionally, as indicated by the
distinct layering of the blue, green, and red dots in Fig. 5�h�,
it is clear that a higher amount of unlabeled data produces
greater performance enhancement.

The AUC estimate distribution across the 200 generated
runs can be condensed into a mean AUC and plotted accord-
ing to the number of UL data included in the algorithm as
shown in Fig. 6 for the use of 50, 100, and 150 L cases
across all classifier methods with associated error bars, based
on the variance of the sample mean for the distribution of
points, such as shown in the scatter plots �i.e., we are con-
sidering the large data set as the population and ignoring
validation-set variability because we are focusing on the ef-
fect this specific data set�. Additionally, statistically signifi-
cant differences from �AUC=0 for the average AUC are
tabulated along with the rest of the results in Table IV, in-
cluding associated p-values adjusted for multiple-hypothesis
testing by employing the Holm–Sidak correction. Consistent
with the scatter plots in Fig. 5, the influence of incorporating
unlabeled data is most obvious for the independent set tests.
For all the nonlinear approaches, Laplacian eigenmap,
t-SNE, and LapSVM, the respective plots are positively
sloped as more unlabeled data are added. Displaying this
same trend most prominently, also included in Fig. 6, are the
results for transductive LapSVM or T-LapSVM on the inde-
pendent test data. Notably, the linear PCA TDR-R appears
relatively flat for both the cross-validation and independent
test set performance in Fig. 6. Also, as seen in Fig. 6, the
mean AUC increases from approximately 0.78 at 50 L to

0.85 at 100 L, and finally close to 0.90 for 150L for the
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LapSVM CV. This trend clearly indicates the performance
advantage of using more labeled data during training. For
this data set, on a per case basis, unlabeled data appear to
have less impact on average performance gains. This is to be
expected because unlabeled data lack the variable that we are
trying to predict: Whether a case is cancerous or not. How-
ever, as mentioned earlier, unlabeled cases are frequently less
resource consuming to acquire and put to use, and often a
collection of unlabeled or poorly labeled data is readily
available besides the labeled data.

Only looking at the differences in average AUC ignores
certain information, e.g., what is the effect of using unla-
beled data on the variability of the resulting classifiers. As
noted for Fig. 5, due to the relatively small number of la-
beled cases used, a wide distribution of performances esti-
mates is produced. Dividing the 200 run sets according to

FIG. 4. Example 3D visualization of the incorporation of unlabeled data fo
performance for a single run data set �out of the total 200 generated� with 10
embedding dimensions produced of the total 5D t-SNE DR. �a� Displays t-SN
data are incorporated during the mapping. For this particular single run,
=0.044� without the use of unlabeled data to 0.87 �SE=0.034� when unlab
representative of the entire set or average performance; rather, it is a single p
for the entire set of runs conducted �see Fig. 5�.
their initial performance quartiles �without UL data�, as de-
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scribed previously, allows one to observe how the use of
unlabeled data appears to affect the relatively under-average,
average, or above-average performing classifiers each of
which was trained with a given labeled data set. The differ-
ential impact on performance caused by the incorporation of
unlabeled data in these CADx schemes may consider classi-
fier regularization effects in terms of whether differently per-
forming classifiers tend to move closer to an average �and
higher� performance after regularization. And while the re-
strictions of our finite data sets limit the generalizability of
our results, we believe it is reasonable to assume that the
overall trend in performance changes will reflect a more gen-
eral property of this type of regularization.

Specifically, the initial AUC estimate performance distri-
bution from the classifier without UL data was further de-
composed in to respective quartiles: Top 25th, top 25th–50th,

ssifier regularization using t-SNE DR alongside the AUCLOO classification
ases and 900 UL. The three dimensions visualized are simply the first three

mapping conducted with labeled data only, while for �b� and �c�, unlabeled
ification performance as estimated by AUCLOO increased from 0.79 �SE
data are included during the DR mapping. However, this single run is not
e performance change example, a broad distribution of performances exists
r cla
0 L c
E DR
class
eled
ositiv
bottom 50th–25th, and bottom 25th percentile. Figures 7 and
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FIG. 5. Scatter plots summarizing the classification performance distribution for the entire set of the 200 generated runs. The plots display the AUC0.632+

performance for training with 150 L cases using 150 �blue�, 400 �green�, and 900 �red� UL cases for all 200 runs. The CV and independent test results are
shown for all methods, ��a� and �b�� PCA, ��c� and �d�� Laplacian eigenmap, ��e� and �f�� t-SNE, and ��g� and �h�� LapSVM, with the x-axis denoting the AUC

without UL data and the y-axis as the AUC with UL data for each run.

Medical Physics, Vol. 37, No. 8, August 2010
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8 displays the change in AUC ��AUC=AUCwith unlabeled

−AUCwithout unlabeled� according to the quartile decomposition
across all classifiers for both cross-validation and indepen-
dent test sets. In each plot, the quartile dependent change in
AUC is ordered according to the use of 50, 100, and 150 L
data moving left to right. Within each subset group, the trip-
let represents the use of a low �50, 100, and 150 UL�, me-
dium �400/500 UL�, and high �900 UL� number of unlabeled
data. Statistically significant differences from �AUC=0 us-
ing a paired, nonparametric Wilcoxon signed-rank test, with
consideration for multiple-hypothesis testing by employing
the Holm–Sidak correction, are indicated by the � above the
bars in Figs. 7–9. �Tests are again based on the distribution
of points, as described previously.�

The primary observation to be made from constructing the
�AUC quartile decomposition is essentially that the use of
unlabeled data most dramatically impacts the performance of
the initially lower-than-average performing runs, suggestive
of a potentially regularizing effect on the classifiers. As
clearly indicated by the long dark blue bars in Figs. 7 and 8,

FIG. 6. The average AUCcross-validation and AUCindependent classification perform
UL data incorporated in the given algorithm. Three plots are shown for
respectively.
the incorporation of unlabeled data provided the strongest
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performance boost to runs originating in the lowest 25th
quartile �blue bars�. Furthermore, moving from the lower
quartile to the upper quartiles, respectively, the relative in-
fluence caused by including unlabeled data on classifier AUC
performance is weakened. Interestingly, for a limited group
of experimental configurations, such as for t-SNE and La-
placian eigenmap with 50 L data shown in Figs. 7�c� and
7�e�, the upper quartiles actually appear to trend in the nega-
tive direction.

For the CV results �Figs. 7�a�, 7�c�, and 7�e��, it is appar-
ent that the number of labeled data used to train impacts the
consequent degree of change in AUC when UL data is added,
with the largest differences appearing for when training with
50 L cases. However, with the independent data test, the
effect of the number of labeled training cases was less pro-
nounced, as seen in Figs. 7�b�, 7�d�, and 7�f�. Turning to the
impact of the number of unlabeled used overall, especially
for the independent test set such as for the LapSVM in Fig.
8�b�, the magnitude of the �AUC trends upward as more

, with associated error bars, for all 200 runs, plotted against the number of
0, �b� 100, and �c� 150 L cases including during the algorithm training,
ance
�a� 5
unlabeled data is included.
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TABLE IV. Results for the average change in AUC due to the use of unlabeled data are shown using �a� cross-validation data and �b� independent test set data.
Included are the 95% confidence intervals and statistically significant differences from �AUC=0 using a paired, nonparametric Wilcoxon signed-rank test,
with consideration for multiple-hypothesis testing by employing the Holm–Sidak correction.

Method

Number of Cases

Mean �AUC

95% Conf. Int.

Adj. p-value Stat. Sig.Labeled Unlabeled Lower Upper

�a� Cross-validation results: Average �AUC

TDR-R: PCA 50 50 �0.0007 �0.0033 0.0031 1 NO
100 100 �0.0009 �0.0026 0.0019 1 NO
150 150 0.0003 �0.0014 0.0012 1 NO

50 500 �0.0057 �0.0086 �0.0009 1 NO
100 500 �0.0020 �0.0038 0.0011 1 NO
150 400 �0.0014 �0.0028 �0.0004 1 NO

50 900 �0.0055 �0.0093 �0.0011 1 NO
100 900 �0.0037 �0.0060 �0.0002 1 NO
150 900 �0.0019 �0.0031 �0.0006 0.4733 NO

TDR-R: Laplacian 50 50 0.0139 0.0081 0.0196 0.0017 YES
100 100 0.0035 0.0013 0.0069 0.8847 NO
150 150 0.0026 0.0008 0.0047 0.8513 NO

50 500 0.0088 0.0022 0.0143 1.0000 NO
100 500 0.0062 0.0028 0.0098 0.1432 NO
150 400 0.0050 0.0031 0.0074 0.0012 YES
50 900 0.0122 0.0054 0.0175 0.0549 NO

100 900 0.0060 0.0024 0.0097 0.2089 NO
150 900 0.0055 0.0040 0.0084 0.0001 YES

TDR-R: t-SNE 50 50 0.0044 �0.0005 0.0091 1.0000 NO
100 100 0.0017 �0.0020 0.0048 1.0000 NO
150 150 0.0033 0.0017 0.0051 0.0492 YES

50 500 0.0002 �0.0073 0.0064 1.0000 NO
100 500 0.0061 0.0022 0.0102 0.4308 NO
150 400 0.0047 0.0023 0.0068 0.0234 YES
50 900 0.0001 �0.0066 0.0072 1.0000 NO

100 900 0.0052 0.0010 0.0089 1.0000 NO
150 900 0.0036 0.0012 0.0059 0.5995 NO

MR: LapSVM 50 50 0.0084 0.0067 0.0097 3.43�10−18 YES
100 100 0.0022 0.0018 0.0026 2.67�10−17 YES
150 150 0.0030 0.0022 0.0035 5.56�10−11 YES

50 500 0.0259 0.0208 0.0287 2.67�10−21 YES
100 500 0.0105 0.0088 0.0119 4.65�10−22 YES
150 400 0.0056 0.0046 0.0066 3.49�10−17 YES

50 900 0.0287 0.0222 0.0314 1.40�10−20 YES
100 900 0.0117 0.0094 0.0137 9.07�10−17 YES
150 900 0.0070 0.0057 0.0080 3.71�10−19 YES

�b� Independent test set results: Average �AUC

TDR-R: PCA 50 50 0.0015 �0.0012 0.0028 1.00�1000 NO
100 100 �0.0007 �0.0032 0.0012 1.00�1000 NO
150 150 �0.0015 �0.0037 0.0009 1.00�1000 NO

50 500 0.0002 �0.0032 0.0027 1.00�1000 NO
100 500 �0.0020 �0.0050 �0.0005 1.00�1000 NO
150 400 �0.0009 �0.0027 0.0018 1.00�1000 NO

50 900 �0.0014 �0.0055 0.0004 1.00�1000 NO
100 900 �0.0026 �0.0057 �0.0006 1.00�1000 NO
150 900 �0.0012 �0.0031 0.0018 1.00�1000 NO
Medical Physics, Vol. 37, No. 8, August 2010
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Figure 8 displays the quartile decomposition in the com-
parison of all classifiers using 100 L cases during training
and the highest number �900 UL cases� unlabeled data.
Again, the independent data set reveal the largest changes in
�AUC. Figure 9 also supports the idea that the linear PCA
TDR-R is relatively ineffective in making use of unlabeled
when assessed using AUC values, showing no indication of a
sizable regularization effect.

Lastly, it is important to again emphasize the nature of the
results analyzed here and the interpretation of the statistical
significance reported. As noted above, the difference in AUC
between classifiers incorporating unlabeled data and those
which do not is based on 200 runs, each generated using
samples from the same larger 1126 lesion U.S. data set. In
the context of this experiment, the large data set is regarded
as the “population.” Aside for the single independent test,
experiments here do not �and could not� explicitly evaluate
variability on expected performance changes by validation
sets. Thus, statistically significant differences discovered
here may not necessary generalize to other U.S. data sets at
large.

TABLE IV.

Method

Number of Cases

Mean �AULabeled Unlabeled

TDR-R: Laplacian 50 50 0.0046
100 100 0.0119
150 150 0.0048

50 500 0.0235
100 500 0.0207
150 400 0.0108

50 900 0.0333
100 900 0.0260
150 900 0.0169

TDR-R: t-SNE 50 50 0.0094
100 100 0.0133
150 150 0.0149

50 500 0.0320
100 500 0.0286
150 400 0.0252

50 900 0.0351
100 900 0.0361
150 900 0.0304

MR: LapSVM 50 50 0.0026
100 100 0.0033
150 150 0.0050

50 500 0.0309
100 500 0.0252
150 400 0.0177

50 900 0.0467
100 900 0.0381
150 900 0.0334
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V. DISCUSSION

V.A. General observations on the use of unlabeled
data

Overall, the above results provide evidence that classifi-
cation performance is potentially enhanced by incorporating
unlabeled feature data during the training of breast CADx
algorithms. In particular, while the change in the mean AUC
due to adding UL data appeared modest relative to the im-
pact of using more labeled data, statistically significant re-
sults were found for both the cross-validation and the inde-
pendent test set evaluations. Interestingly, after further
analysis of the results via the quartile decomposition, a more
detailed understanding of the nature of the performance
changes was developed. Specifically, chief among the obser-
vations presented above, is that classifiers trained with a la-
beled sample set producing lower than average performance
�using cross-validation or independent test data� were more
likely to be positively impacted consequently by incorporat-
ing unlabeled data via either the TDR-R or MR-based ap-
proaches. We interpreted this trend as a manifestation of the
more general regularization properties one might expect to

ntinued.�

95% Conf. Int.

Adj. p-value Stat. Sig.Lower Upper

0.0029 0.0093 4.80�10−02 YES
0.0089 0.0144 2.04�10−10 YES
0.0027 0.0078 1.61�10−02 YES
0.0207 0.0281 2.02�10−19 YES
0.0180 0.0244 2.19�10−18 YES
0.0073 0.0128 3.37�10−09 YES
0.0310 0.0385 2.62�10−23 YES
0.0227 0.0298 1.91�10−19 YES
0.0140 0.0198 2.21�10−17 YES

0.0051 0.0131 2.16�10−03 YES
0.0082 0.0165 6.83�10−06 YES
0.0104 0.0187 9.79�10−08 YES
0.0264 0.0361 8.78�10−21 YES
0.0224 0.0330 3.05�10−14 YES
0.0193 0.0283 1.34�10−15 YES
0.0299 0.0389 2.29�10−20 YES
0.0301 0.0408 3.00�10−20 YES
0.0256 0.0345 1.43�10−18 YES

0.0017 0.0036 4.19�10−05 YES
0.0023 0.0038 1.24�10−10 YES
0.0041 0.0055 5.18�10−24 YES
0.0281 0.0346 1.74�10−27 YES
0.0224 0.0268 4.31�10−29 YES
0.0160 0.0190 1.43�10−30 YES
0.0428 0.0505 1.97�10−31 YES
0.0351 0.0405 2.39�10−30 YES
0.0311 0.0349 5.93�10−32 YES
�Co

C

encounter by using unlabeled data in such a CADx scheme.
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We speculate that these observations may be consistent with
the hypothesis that incorporating UL data via the use of
structure-preserving DR techniques may help to more com-
pletely capture the inherent underlying distribution and thus
render the classifiers trained on different samples more simi-
lar. Assuming such a theory to be true, the injection of UL
data would most strongly impact sample sets which represent
“poor” empirical estimations of the true underlying distribu-
tion and hence initially more likely to lead to trained classi-
fiers with lower relative generalization performance. Conse-
quently, the incorporation of the UL data, by aiding in more
accurately capturing the inherent geometric structure of the
data, could be construed as a beneficial regularizing influ-
ence on classifier performance. Conversely, for labeled

FIG. 7. Results for the TDR-R methods, highlighting classifier regulariza
=AUC�with UL data�−AUC�without UL data�� organized according to
unlabeled data �lower 25% in blue, lower 25%–50% in light blue, upper 50%
change in AUC is ordered according to the use of 50, 100, and 150 L data
represents the use of a low �50, 100, and 150 UL�, medium �400/500 UL�,
�AUC=0 using a paired, nonparametric Wilcoxon signed-rank test, with
correction, are indicated by the � above the bars �setting �=0.05 or for adju
and �b�� PCA, ��c� and �d�� Laplacian eigenmap, and ��e� and �f�� t-SNE, wit
the right.
sample sets which are more consistent with the inherent dis-
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tribution, the introduction of additional UL cases would yield
less enhancements, if any at all. Future investigations, and in
particular simulations, are under way to answer these ques-
tions in more detail.

V.B. Performance comparisons of the different
approaches

The PCA TDR-R based approach appeared least capable
of using unlabeled data. This result was expected as PCA is
linear and cannot make efficient use of local and nonlinear
geometric qualities in the data structure, including when
large amounts of UL data are present. Additionally, as sug-
gested by the quartile decompositions �Fig. 7–9�, PCA

rends due to the use of unlabeled data. The difference in AUC ��AUC
rtile decomposition of the initial AUC performance without the use of
in orange, and upper 25% in dark red�. In each plot, the quartile dependent

ing left to right, during training. And within each subset group, the triplet
igh �900 UL� number of UL data. Statistically significant differences from
sideration for multiple-hypothesis testing by employing the Holm–Sidak
p-values�0.05�. The plots are organized by the respective techniques, ��a�
ss-validation performance in the left column and the independent test set on
tion t
a qua
–25%
mov

and h
con

sted
h cro
TDR-R did not appear to exhibit regularization trends
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present in the other methods. On the other hand, of the other
approaches evaluated here, the MR LapSVM and
T-LapSVM algorithms exhibited the most evident capacity
for using unlabeled data to enhance classification perfor-
mance. Specifically, as characterized in Figs. 5�g� and 5�h�,
the classification performance of the LapSVM nearly always
improved by incorporating unlabeled data. Furthermore, in
addition to producing the “cleanest,” least noisy scatter plots,
the LapSVM showed the clearest differentiation in the rela-
tive performance enhancement for different amounts of UL
data added, as seen in the layering of the blue, green, and red
points on Fig. 5�h�. These results are perhaps not totally un-
expected as the LapSVM algorithm is more sophisticated
and theoretically grounded in its design for the explicit use
of unlabeled data compared to the more heuristic TDR-R
based approaches considered here. It should also be noted
that when only using labeled data �that is, 0 UL, e.g., the
leftmost point on plots found in Fig. 6�, the LapSVM mimics
a plain SVM classifier using all 81 features as input. Along
these lines, as mentioned earlier, we had previously shown
that regularized classifiers using a large number of input fea-
tures will perform similarly to classifiers trained on DR rep-
resentations of the same features.5

However, while displaying a strong boost in estimated
performance from the inclusion of unlabeled data, the

FIG. 8. Results for the MR-based methods, highlighting classifier regulariz
=AUC�with UL data�−AUC�without UL data�� organized according to
unlabeled data �lower 25% in blue, lower 25%–50% in light blue, upper 50%
change in AUC is ordered according to the use of 50, 100, and 150 L data
represents the use of a low �50, 100, and 150 UL�, medium �400/500 UL�,
�AUC=0 using a paired, nonparametric Wilcoxon signed-rank test, with
correction, are indicated by the � above the bars �setting �=0.05 or for ad
LapSVM with the independent test, and �c� T-LapSVM on the independent
LapSVM produced a lower absolute AUC performance on
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the independent test set compared to the other methods. It is
not immediately clear why the LapSVM under-performed
compared to the other methods with the independent test
data. One possibility is that the kernel and Laplacian param-
eters used were not optimal for the independent data set. It is
possible that the TDR-R methods partially avoided this di-
lemma by imposing stronger point-by-point regularization
due to the requirement for generating a new reduced map-
ping when including the independent test data �which could
also bias their performance evaluation making them look
better on the independent test set because of that�. In order to
avoid further biasing the results and overfitting the algorithm
to the data, we did not attempt to adjust or tweak any param-
eters during the performance evaluation on the independent
test data set for any of the methods, and preserve the “one-
shot” testing nature. This specific dilemma raises the more
general and theoretically difficult problem of choosing ap-
propriate parameters for techniques involved with manipulat-
ing and making use of unlabeled data or other unsupervised
type tasks, such as clustering and DR. Moreover, this sug-
gests that one should be very careful when assessing the
performance of such an algorithm. These problems are active
topics in machine learning research and we anticipate further
advancements to be made in the near future.34 Due to the
current lack of adequate guidance on these issues, we iden-

trends due to the use of unlabeled data. The difference in AUC ��AUC
rtile decomposition of the initial AUC performance without the use of
in orange, and upper 25% in dark red�. In each plot, the quartile dependent

ing left to right, during training. And within each subset group, the triplet
igh �900 UL� number of UL data. Statistically significant differences from
sideration for multiple-hypothesis testing by employing the Holm–Sidak
d p-values�0.05�. The plots display �a� LapSVM for cross-validation, �b�
ation
a qua
–25%
mov

and h
con

juste
test.
tified this problem as beyond the scope of this manuscript.
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We are planning future simulation studies to more thor-
oughly investigate these theoretically oriented problems and
how to possibly optimize the use of unlabeled data sets. We
note that the primary objective of our effort here was to
introduce these methods to breast CADx and provide a pre-
liminary evaluation of the potential for using unlabeled data
in the improvement of classification performance.

It should also be noted that in general, there is no reason
to assume an independent test sample should necessarily pro-
duce high performance, even when classified by the optimal
ideal observer. This is because the independent test set may
simply consist of samples from a poorly separating subspace.
In fact, as shown here in the independent test results, Fig. 5
�dotted lines�, as the labeled training set size is increased �50,
100, and 150 L�, although the variance decreases, the mean
performance increased only slightly or not at all across all
methods. This trend contrasts to the cross-validation results
�Fig. 5, solid lines�, in which the mean estimated AUC clas-
sification performance continued to rise considerably as the
training set size is increased. This is expected as cross-
validation methods, in addition to accounting for training and
testing variability, attempt to estimate the expected perfor-

FIG. 9. Using 100 L cases during training and highest number of UL cases
�900 UL�, displayed are the differences in AUC ��AUC
=AUC�with UL data�−AUC�without UL data�� organized according to a
quartile decomposition of the initial AUCCV/Ind performance without the use
of unlabeled data �lower 25% in blue, lower 25%–50% in light blue, upper
50%–25% in orange, and upper 25% in dark red�, highlighting classifier
regularization trends. Statistically significant differences from �AUC=0 us-
ing a paired, nonparametric Wilcoxon signed-rank test, with consideration
for multiple-hypothesis testing by employing the Holm–Sidak correction,
are indicated by the � above the bars �setting �=0.05 or for adjusted
p-values�0.05�. The plots show �a� the cross-validation performance and
�b� the independent test set performance.
mance of a classifier on the population. Thus, as more train-
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ing cases are available both variability and expected classi-
fication performance on the population should improve.

V.C. Impact of cancer prevalence

In our experience, the cancer prevalence in the labeled
training set has a limited effect on classifier performance,
unless the data set is extremely unbalanced �very low or very
high prevalence�. The lower cancer prevalence in the unla-
beled set reflects the fact that in clinical practice a “hard”
truth based on biopsy or surgery is much more likely to be
unavailable for benign appearing lesions than for malignant
looking ones. If lesions appear sufficiently benign, they are
often assigned for imaging follow-up and not all of these will
be processed to be included in a clinical database �too ex-
pensive and time consuming�, while those that appear to be
cancerous will be biopsied and included. Of the lesions as-
signed to imaging follow-up, a few may be missed cancers,
while of the biopsied lesions, a certain fraction will turn out
to be benign. Hence, there is a “natural” division into how
labeled �i.e., biopsied� cases and unlabeled cases are pro-
cessed in clinical practice, which will produce a different
prevalence �and might produce a bias if not done carefully�.
The majority frequently is unlabeled depending on the
biopsy/recall rate of a given institution. Although only results
for a single cancer prevalence �50% and 5% malignant, re-
spectively, for the labeled and unlabeled sets� were shown
here, other cancer prevalence settings were investigated. Fur-
ther results were suppressed for this article as the presented
findings were representative of the general trends, i.e., per-
formance characteristics were not found to change in any
considerable between the different cancer prevalence con-
figurations. While this study did not reveal any overwhelm-
ing and immediately obvious trend associated with variation
in cancer prevalence and the use of unlabeled data, as a
general and unavoidable limitation to the overall study con-
ducted here, the restriction of working with a finite data set
available may have limited the statistical power required to
clearly observe underlying differences due to cancer preva-
lence. Despite these initial findings, we believe that cancer
prevalence and more generally the composition of categori-
cal lesion subtypes and structure of the population space
�such as ductal carcinoma in situ, cystic, infiltrating ductal
carcinoma, etc.� which make up a set of feature data, may be
of fundamental importance and potentially of critical interest
to understanding how to use most effectively make use of
unlabeled data in future work, including practical/clinical cir-
cumstances. Along these lines, it is of interest to consider
how one might apply as additional input for training a po-
tentially more robust classifier, the use of estimated prior,
partial, or incomplete information �such as genetic, ethnic,
and risk characteristics� associated with an unlabeled data
distribution when coupled to an existing known labeled data
set. Additionally, it is worth investigating whether certain
types of CADx data may be more amenable to the usage of

unlabeled than others.
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V.D. Clinical relevance and future considerations

For the specific methods considered here, the MR
LapSVM was currently the most practical candidate algo-
rithm for clinical type situations, as it may be trained only
once with inclusion of the unlabeled data and then later used
to classify new independent test data without retraining.
However, as the reality of affordable “desktop supercomput-
ers” and scalable, real-time grid/”cloud” computing emerges,
computational demands may be of less concern.35 In fact,
there may be definite advantages to conducting more com-
putationally intensive, full transductive-DR-based ap-
proaches when analyzing new test data. The use of TDR-R
based techniques, such as those employing t-SNE or Laplac-
ian eigenmaps �or other DR-based methods not considered
here�, may offer useful visualization, such as for the example
in Fig. 4, of the comparative structure and relative geometric
orientation of newly acquired UL or new test cases added
along with the original known data structure. It should also
be noted that because the t-SNE and Laplacian eigenmaps
approach the DR problem via distinct algorithmic mechan-
ics, complementary information may also be gathered by
combining both techniques in some fashion. As hinted in our
previous article, such an evaluation may provide at least
qualitative, but also, as techniques continue to mature, poten-
tially quantitative, insight into the nature of the new data
sets.5 One such step in this direction is the recent proposal
for a parametric t-SNE DR using deep neural networks.23

Lastly, we wish to emphasize again an important point.
For most realistic scenarios, labeled data will almost always
be more effective at improving performance than the same
amount of unlabeled data. However, even if the “per case”
utility of unlabeled data is only a fraction of that for labeled
data, we believe the abundance of unlabeled available data,
due to modern radiology practice, will provide sufficient im-
petus, in many contexts, to motivate exploitation of such
nascent information.

VI. CONCLUSIONS

In summary, the incorporation of unlabeled feature data
for the purpose of enhancing classification performance in
the context of breast CADx was explored on four different
algorithms. As discussed above, the results provide support
for the hypothesis that including unlabeled data information
during classifier training can act as a regularizing influence
over cancer classification performance. The main limitation
of this current study was the restriction of a finite, albeit
relatively large, clinical database. However, we believe our
results motivate future studies, both with simulations and
using larger real clinical data sets. We expect a growing fo-
cus on such methods in the CADx research community with
time.
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