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Purpose: Breast density measurement has the potential to play an important role in individualized
breast cancer risk assessment and prevention decisions. Routine evaluation of breast density will
require the availability of a low-cost, nonionizing, three-dimensional �3-D� tomographic imaging
modality that exploits a strong properties contrast between dense fibroglandular tissue and less
dense adipose tissue. The purpose of this computational study is to investigate the performance of
3-D tomography using low-power microwaves to reconstruct the spatial distribution of breast tissue
dielectric properties and to evaluate the modality for application to breast density characterization.
Methods: State-of-the-art 3-D numerical breast phantoms that are realistic in both structural and
dielectric properties are employed. The test phantoms include one sample from each of four classes
of mammographic breast density. Since the properties of these phantoms are known exactly, these
testbeds serve as a rigorous benchmark for the imaging results. The distorted Born iterative imaging
method is applied to simulated array measurements of the numerical phantoms. The forward solver
in the imaging algorithm employs the finite-difference time-domain method of solving the time-
domain Maxwell’s equations, and the dielectric profiles are estimated using an integral equation
form of the Helmholtz wave equation. A multiple-frequency, bound-constrained, vector field inverse
scattering solution is implemented that enables practical inversion of the large-scale 3-D problem.
Knowledge of the frequency-dependent characteristic of breast tissues at microwave frequencies is
exploited to obtain a parametric reconstruction of the dispersive dielectric profile of the interior of
the breast. Imaging is performed on a high-resolution voxel basis and the solution is bounded by a
known range of dielectric properties of the constituent breast tissues. The imaging method is
validated using a breast phantom with a single, high-contrast interior scattering target in an other-
wise homogeneous interior. The method is then used to image a set of realistic numerical breast
phantoms of varied fibroglandular tissue density.
Results: Imaging results are presented for each numerical phantom and show robustness of the
method relative to tissue density. In each case, the distribution of fibroglandular tissues is well
represented in the resulting images. The resolution of the images at the frequencies employed is
wider than the feature dimensions of the normal tissue structures, resulting in a smearing of their
reconstruction.
Conclusions: The results of this study support the utility of 3-D microwave tomography for imag-
ing the distribution of normal tissues in the breast, specifically, dense fibroglandular tissue versus
less dense adipose tissue, and suggest that further investigation of its use for volumetric evaluation
of breast density is warranted. © 2010 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3443569�
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I. INTRODUCTION

Illumination of the human breast at microwave frequencies
has been proposed for several medical imaging applications
relevant to breast cancer. Microwave technology offers the
potential for a low-cost, noninvasive modality in a nonioniz-
ing range of the frequency spectrum. The dielectric proper-
ties contrast between the constituent breast tissues provides
the physical basis for microwave imaging. To date, the pri-
mary motivation for developing microwave systems has been
the need for improved detection of malignant breast tumors.
However, the characterization of the relative density of tissue

in a healthy breast is another compelling potential applica-
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tion for microwaves. Density characterization is a valuable
component in an overall assessment of an individual’s risk of
breast cancer.1 Dense breast tissue results from a large per-
centage of epithelial and connective tissue, collectively re-
ferred to as fibroglandular tissue. The large microwave-
frequency dielectric properties contrast between the dense
fibroglandular tissue and less dense adipose tissue2 offers a
very tractable mechanism for density characterization. This
application of microwave imaging is less sensitive to reso-
lution performance than early stage tumor detection. Further-
more, the capability of microwave imaging to identify the

spatial features and dielectric properties of the networks of
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normal fibroglandular tissue structures is an important base-
line for the development of tumor imaging methods.

High breast density is one of the strongest predictors of
breast cancer risk3 and is fairly common. Approximately half
of all women aged 40–49 and a quarter of all women aged
70–79 have breasts that are at least 50% dense, as measured
by mammography.4 Women with high breast density have a
fourfold to sixfold greater cancer risk than women with less
dense tissue.5 The relative risk of dense breast tissue is
greater than many traditional risk factors1 and the prevalence
of this risk factor is greater than that of most others.6 An
increase in breast density over time has been linked to an
increase in breast cancer risk, while a decrease in density is
associated with decreased risk.3 These study findings point to
the importance of breast density evaluation and monitoring
and their potential role in individualized risk assessment.

The most common clinical approach to evaluating breast
density involves a qualitative visual interpretation of a mam-
mographic image using the Breast Imaging Reporting and
Data System �BI-RADS�7 that was established to describe
the effect of density on diagnostic accuracy.1 Quantitative
measurement has been made possible with computer-aided
algorithms.8–10 However, the accuracy of these techniques is
fundamentally limited by the fact that the mammographic
image is a 2-D projection of a three-dimensional �3-D� phe-
nomenon. Mammographic density is also sensitive to projec-
tion angle, level of compression, and x-ray intensity, which
limit the use of mammography for monitoring changes in
density.1 Breast density can be accurately measured from
3-D magnetic resonance images �MRI� using quantitative
methods.11 However, there are substantial concerns about
high costs and limited access to high-quality MRI services.
Furthermore, breast MRI is time-consuming, problematic for
claustrophobic12 or very obese patients, and prohibited for
women with pacemakers. Thus, neither mammography nor
MRI is ideally suited for evaluating and monitoring breast
density. Three-dimensional tomographic microwave images
may therefore offer advantages in volumetric density mea-
surement for risk assessment and the monitoring of density
over time.

In this study, we investigate the performance of micro-
wave tomography in imaging normal fibroglandular and adi-
pose breast tissues and thereby evaluate the potential for
breast density classification. Our investigation focuses on re-
solving, locating, and estimating the dielectric properties of
healthy fibroglandular and adipose tissue distributions. We
employ a method of 3-D microwave tomography for imaging
the varied and complex dielectric spatial profiles of realistic
breast tissue structures. The imaging method is applied to
multifrequency data synthesized from computational electro-
magnetics simulations of anatomically realistic 3-D numeri-
cal breast phantoms. The high-fidelity phantoms13 contain
MRI-derived distributions of normal adipose and fibroglan-
dular tissues having dielectric properties based on large-scale
dielectric spectroscopy studies.2,14 Our imaging technique is
based on a multiple-frequency inverse scattering method for
reconstructing the 3-D profiles of the parameters of a disper-

sive dielectric model. In our inverse scattering approach the
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forward solutions are obtained from Maxwell’s equations in
the time-domain by the finite-difference time-domain
�FDTD� method. A set of integral Helmholtz equations de-
scribing the electromagnetic scattering are inverted to esti-
mate the unknown dielectric profiles. We implement both the
forward and inverse solutions on a grid of voxels of much
smaller dimension than the wavelength of illumination so the
resolution available to the implementation is not inhibited by
the size of the voxels. The electromagnetic simulations and
large-scale inverse solutions required by the imaging method
are computationally costly on the voxel grid. Computation of
the electromagnetic simulations is accelerated using graphics
processing unit �GPU� hardware, while the computational
challenge presented by the large-scale inverse problem is met
with an efficient regularization and inversion scheme. In ad-
dition, we constrain the inversion algorithm based on a pri-
ori knowledge by restricting the inverse solution to lie within
the known physical range of dielectric properties of the con-
stituent breast tissues. We have implemented a vector field
formulation of the inverse scattering problem in order to
evaluate the validity of the scalar field approximation in this
3-D application. The effect of measurement noise on the im-
aging performance of the system is also studied.

In addition to changing the focus of the investigation from
tumor detection to the imaging of normal tissue profiles,
this work is distinct in several respects from prior microwave
breast imaging studies such as those involving synthetic-
aperture-radar-based methods,15–19 time-reversal tech-
niques,20 and tomographic approaches to inverse scatter-
ing.21–27 Namely, the testbeds employed in this work are
state-of-the-art 3-D numerical breast phantoms13 that are re-
alistic in both dielectric properties and tissue configurations,
and for which the known actual properties distributions serve
as a rigorous benchmark for the imaging results. Recent
large-scale dielectric spectroscopy studies of freshly excised
healthy and diseased breast tissue2,14 suggest that much of
the prior microwave breast imaging research assumed too
large of a dielectric contrast between cancerous and healthy
glandular tissues and too small of a contrast between normal
glandular tissue and fat. Also, existing studies of 3-D micro-
wave tomography of the breast have often focused on piece-
wise homogeneous object domains,22,23,28 which do not ef-
fectively capture the spatial complexity of the small features
and continuously varying properties distribution of the con-
stitutive tissues. Without the presence of a complex fibro-
glandular network adjacent to malignant tissue, the resulting
phantoms overly simplify the tumor detection problem by
creating unrealistically high dielectric contrast and low level
of signal clutter from background scattering. This work also
differs from our earlier work with realistic numerical breast
phantoms29 wherein the 3-D image was formed on a limited-
resolution spatial basis and the phantoms included simple
tumor models. Hence, the effect of the tumor could not be
conclusively distinguished from the normal fibroglandular
breast tissue in the reconstructed images.

We proceed in Sec. II with a discussion of the test phan-
toms and the acquisition of simulated array measurements.

Section III briefly summarizes the theoretical background for
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electromagnetic inverse scattering and gives the details of
our imaging method. Imaging results for each test phantom
are given in Sec. IV, along with evaluations of the scalar field
approximation, noise performance, and effects of modeling
error. We make concluding remarks in Sec. V.

II. NUMERICAL BREAST PHANTOMS

Clinical studies provide the most faithful test domain for
microwave breast imaging, but present a challenge in the
interpretation and registration of the results because the ac-
tual dielectric properties of the breast interior are unknown.
Although some initial clinical results of microwave breast
imaging have been reported,19,30,31 clinical studies do not
readily lend themselves to rigorous validations of imaging
performance. Both numerical and experimental laboratory
testbeds permit relatively straightforward performance evalu-
ations since the dielectric properties distributions are known
exactly or approximately. Experimental phantoms may be
constructed from synthetic materials that accurately mimic
tissue dielectric properties,32 but the diverse and complex
structural distributions of the breast are difficult to mimic in
an experimental phantom. Accordingly, many prior experi-
mental laboratory studies have been restricted to models con-
sisting of arrangements of homogeneous cylindrical24,26,33 or
spherical17,18,34 targets which do not accurately mimic the
complexity of the breast. Numerical phantoms offer more
flexibility in capturing the structural realism of breast tissue.
The dimensionality and complexity of numerical breast mod-
els have been limited in the past15,22,23,26,28,35–37 by practical
computing constraints and the lack of availability of 3-D
anatomically realistic models. However, such limitations
have been overcome with parallel computing strategies and
the recent development of realistic MRI-derived numerical
breast phantoms.13

The 3-D numerical breast phantoms that serve as test-
beds in this study are adapted from phantoms in the online
repository developed and maintained by the University of
Wisconsin Computational Electromagnetics Laboratory
�UWCEM�.13,38 The repository phantoms are derived from
MRIs of healthy breasts, and thus convey the realistic shape
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FIG. 1. Frequency dependence of the single-pole Debye models for represen
and �b� effective conductivity �eff.
and internal adipose �fatty� and fibroglandular tissue struc-
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ture of the pendant breast. The range of dielectric properties
assigned to each tissue type �adipose, transitional, or fibro-
glandular� are derived from large-scale dielectric spectros-
copy studies of freshly excised breast tissue specimens.2,14

The repository phantoms are defined on a uniform 0.5 mm
voxel grid and include a homogeneous skin layer and a chest
wall. In this section, we describe the modifications made to a
subset of repository phantoms to adapt them for this study.
We also describe the method of acquiring simulated scattered
signals from the customized 3-D numerical breast phantoms.

II.A. Test phantoms

The dielectric properties assumed in the UWCEM nu-
merical breast phantoms vary over the full range spanning
the lower and upper bounds of all reported specimens in a
study of ex vivo tissues.2 Cole–Cole curves reported13 for
those bounds as well as for the 25th, 50th, and 75th percen-
tile values of adipose and fibroglandular tissues are used to
generate a continuum of Cole–Cole curves that model a full
range of dispersion properties of tissue in the breast. Over
the frequency range of interest here, 0.5–3.5 GHz, a single-
pole Debye model sufficiently models the frequency depen-
dence of the complex permittivity of the tissues.

����
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The Debye parameters ��, ��, and �s of the phantom pro-
files are chosen to fit the single-pole Debye model to the
Cole–Cole model over the 0.5–3.5 GHz frequency range.
The resulting Debye models for representative tissues are
plotted in Fig. 1 and their parametric values are given in
Table I. The assumed dielectric properties of the skin layer39

and the coupling medium �similar to vegetable oil� are also
provided in Table I. The relaxation time constant of the
single pole � is set to 15 ps for all materials and is assumed
to be spatially invariant to simplify our electromagnetic
simulation code. The quality of the fit of Eq. �1� to the Cole–
Cole models is negligibly affected by this assumption.

Additional modifications are made to the selected reposi-
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imaging procedure. The 1.5 mm thick homogeneous skin
layer of each phantom is replaced with a 2.0 mm thick ho-
mogeneous layer so that it can be better modeled on the 2.0
mm grid used in the imaging algorithm. In addition, we re-
move the slab regions of the chest wall model from the phan-
toms. Finally, the dimensions of the computational domain
are adjusted to accommodate the phantom and a surrounding
antenna array.

The American College of Radiology �ACR� defines four
classes of breast composition based on mammographic
breast density: mostly fatty, scattered fibroglandular, hetero-
geneously dense, and extremely dense.7 We will henceforth
refer to these as Class 1, Class 2, Class 3, and Class 4,
respectively. We select one representative phantom of each
of the four ACR classes from the repository. The repository
ID numbers of the selected phantoms are 071904, 010204,
062204, and 012304. The exterior surface of the 3-D model
of each phantom is depicted in Fig. 2. Orthogonal 2-D cross-

TABLE I. Debye parameters �infinite and delta relative permittivity �� and
��, and static conductivity �s� of the materials modeled in the numerical
phantoms �valid from 0.5 to 3.5 GHz�.

Materiala �percentile� �� ��

�s

�S/m�

Adipose tissue �minimum� 2.28 0.141 0.0023
Adipose tissue �25th� 2.74 1.33 0.0207
Adipose tissue �50th� 3.11 1.70 0.0367
Adipose tissue �75th� 4.09 3.54 0.0842
Fibroglandular tissue �25th� 16.8 19.9 0.461
Fibroglandular tissue �50th� 17.5 31.6 0.720
Fibroglandular tissue �75th� 18.6 35.6 0.817
Fibroglandular tissue �maximum� 29.1 38.1 1.38
Skin tissue 15.3 24.8 0.741
Coupling medium 2.6 0.0 0.0

a�=15 ps for all tissues.

(a) (b)

(c) (d)

FIG. 2. 3-D numerical breast phantoms and dipole antenna arrays. �a� Class

1, �b� Class 2, �c� Class 3, and �d� Class 4.
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sections of the �� profile of the interior of each phantom are
shown in Sec. IV �see Figs. 9–12�. The �� and �s Debye
parameter profiles are similarly distributed, taking on the
ranges of values given in Table I.

In addition to the four phantoms with realistic heteroge-
neous interiors, our testbeds include a simpler phantom with
a single spherical inclusion in an otherwise homogeneous
interior. This phantom is employed to validate the method
and gain insight into the performance and limitations of the
imaging system. The phantom is constructed by replacing the
interior region of the Class 2 test phantom with a homoge-
neous medium having the mean properties of transitional tis-
sue. Tissue is categorized as transitional when its dielectric
properties fall between the 75th percentile for adipose tissue
and the 25th percentile for fibroglandular tissue �see Table I�.
A 3 cm diameter, homogeneous sphere having the 50th per-
centile properties of normal fibroglandular tissue is added to
the interior of the phantom to provide a simple, high-contrast
scattering target. Transections of this phantom are shown in
Sec. IV �see Figs. 6 and 7�.

II.B. Scattered-field data acquisition

Each test phantom is surrounded by a cylindrical array of
40 electrically short dipole antennas, as shown in Fig. 2.
Each dipole arm is 6 mm long and the excitation gap is 2
mm. The cross-section of each antenna is 2�2 mm2. The
antennas are evenly distributed on five elliptical rings of
eight antennas each, with adjacent rings rotated by 22.5°.
The dimensions of the array are customized to fit each test
phantom. The five rings are evenly spaced between the pos-
terior and anterior coronal planes of each phantom. The di-
mensions of the major and minor axes of the array’s elliptical
cross-section are chosen such that the array conforms to the
phantom with a minimum spacing of 1 cm between each
antenna element and the skin surface.

We use the FDTD numerical method40 to simulate array
measurements of the numerical breast phantoms. In each
simulation, one antenna in the array is sourced by exciting
the electric field in the gap between the dipole arms. The
source function is a modulated Gaussian pulse having a 3 dB
bandwidth from 0.87 to 3.75 GHz. The 3-D computational
domain is composed of 0.5 mm cubic grid cells and is ter-
minated with uniaxial perfectly matched layer boundary con-
ditions for dispersive media.40 The antenna measurements
are observations of the copolarized field component in the
source gap. The time-domain scattered fields recorded at ev-
ery antenna in the array are converted to phasors at the fre-
quencies of interest by discrete Fourier transform. The four
frequencies used in our reconstructions are 1.0, 1.5, 2.0, and
2.5 GHz.

In addition, we simulate measurements on the simple
phantom and Class 2 phantom after down-sampling them to
a uniform 2.0 mm grid. The down-sampled grid matches the
resolution of the grid used by the imaging algorithm de-
scribed in Sec. III. Imaging the down-sampled phantoms al-
lows us to remove, and thereby identify, the effects of mod-

eling error on the imaging results. Acquiring simulated
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measurements in the same computational domain as is used
by the inverse scattering algorithm is often referred to as an
“inverse crime.”

The difference in resolution between the 0.5 mm data-
acquisition grid and the 2.0 mm imaging grid leads to an-
tenna modeling mismatch and simulation artifacts such as
increased numerical dispersion. We reduce the mismatch er-
ror using a calibration step.21,29 Array measurements are
made in a homogeneous immersion medium in both the data
acquisition and imaging domains. Ratios of the array-only
phasor measurements through each transmit-receive channel
are applied as complex correction factors to the acquired
data. In this study, the calibration measurements of the data-
acquisition grid and the imaging grid nominally agree within
about 5%.

III. IMAGING METHOD

Multiple scattering interactions in a heterogeneous target
region result in nonlinearity of the electromagnetic scatter-
ing. Thus, an iterative method of nonlinear optimization is
used to estimate the dielectric profile based on the measured
scattered fields. Each iteration of the algorithm consists of a
set of electromagnetic simulations and an inversion of a lin-
ear approximation to a system of scattering equations. The
unknown dielectric properties are estimated simultaneously
at multiple frequencies using a parametric model of the com-
plex permittivity over frequency. This section describes elec-
tromagnetic scattering from a heterogeneous dielectric target,
the nonlinear optimization method used to image the dielec-
tric profile, the details of the implementation, and a discus-
sion of the key assumptions made in our solution.

III.A. Electromagnetic inverse scattering and the
distorted Born iterative method

Electromagnetic inverse scattering methods operate on a
set of field measurements of a penetrable, unknown target
region V. A known source illuminates the region and the
resulting field is measured at one or more observation points
outside of V. An estimate of the unknown dielectric profile
��r� in V is reconstructed based on a relationship between
the fields scattered from the region and the dielectric profile
within that region. For a measurement at location r at a given
frequency �, this relationship can be expressed by an inte-
gral equation41

Es�r� = Et�r� − Ei�r�

= �2��
V

Ḡb�r�r��Et�r�����r�� − �b�r���dr�, �2�

where Es is the scattered electric field, Et is the total field, Ei

is the incident field in the presence of the background per-

mittivity �b�r�, and Ḡb is the dyadic Green’s function for the
background. The profile of the dielectric contrast over V is
formed by the difference between the dielectric profile of the
unknown region ��r� and the background profile �b�r�.

A set of field measurements of a target space thus presents

a system of equations of the form of Eq. �2� in which the
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unknown quantity of interest is the dielectric contrast ��r�
−�b�r�. However, there are several well-known complica-
tions in obtaining a solution to the system. The number of
unknowns in V is often much greater than the number of
measurements, yielding an underdetermined system without
a unique solution. The Green’s function may not be available
analytically when the background is not a canonical region
such a homogeneous space or a half space. Furthermore, the
total field within V is unknown and is a function of ��r�,
making the system nonlinear in the unknown contrast func-
tion.

We employ the distorted Born iterative method41 �DBIM�
to obtain a solution to the nonlinear problem. At each itera-
tion of the DBIM, the total field within the actual profile is
approximated by the field in an estimated heterogeneous
background profile. The fields within this background profile
Eb replace Et in Eq. �2�. The approach requires computation
of the fields at the antennas and inside V for each iterate of
the background profile. These field computations are collec-
tively referred to as the forward solution. The DBIM is
equivalent to a Gauss–Newton approach42 to nonlinear least-
squares optimization problems.43 At each iteration, a system
of scattering equations is constructed from the forward solu-
tion and the measurement data. The system is then inverted
to find an approximate solution to the contrast between the
current estimate of the background profile and the true phan-
tom profile. This part of the algorithm determines the update
to the background profile and will be referred to as the in-
verse solution. The DBIM algorithm alternates between for-
ward and inverse solutions, updating the background profile
�b�r� at each iteration until convergence is reached in the
minimization of the residual scattering.

III.B. Forward solution

We use the FDTD method in the forward solution to ob-
tain 3-D, full-wave field solutions for an estimated back-
ground profile. FDTD is a useful method for the simulta-
neous acquisition of multifrequency vector field data over
the full bandwidth of interest. The sample spacing of the
forward solution grid must be dense enough to limit numeri-
cal dispersion in the FDTD simulation, but sparse enough to
limit the computational cost of the simulations. We select a
uniform 2.0 mm sample spacing for the forward FDTD so-
lutions to balance this trade-off. Since multiple FDTD simu-
lations of the numerical phantoms are still computationally
costly on a 2.0 mm grid, we run the simulations on a GPU-
based hardware accelerator to achieve a feasible imaging
time. Alternative numerical techniques for reducing the com-
putation time of the forward solution have been presented
elsewhere.44–46

An independent simulation is performed for each antenna
in the array. The time-domain background field Eb is re-
corded at all other antennas and at every voxel within the
reconstruction region, V. The measurements are then con-
verted to the phasor domain by discrete Fourier transform.
The background fields are the fields associated with the cur-

rent estimate of the unknown profile which is used as the
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background profile at each iteration of the DBIM. Although
the fields observed in the FDTD forward solution are total
field quantities, we refer to them in the inverse scattering
context as background fields to distinguish them from the
unknown total field Et that existed in the actual profile dur-
ing measurement.

As there are no analytical Green’s functions available for
the heterogeneous background profiles estimated at each it-
eration of the DBIM, the Green’s functions must be com-
puted. For a unit source at a given antenna feed point r in V,
the Green’s function defines the field received at a particular
antenna at rm. This quantity can be found using the principle
of reciprocity47 and the background field measurements al-
ready obtained by the forward solution. A particular advan-
tage of computing the Green’s function from the existing
forward solution is that the exact radiative behavior of the
antennas, including the mutual coupling, is built into the
Green’s functions and therefore, no correction factors are
necessary, with the exception of the calibration for antenna
modeling error described in Sec. II. The background Green’s
functions can be calculated from the source current and the
incident field measurements Ei based on a simple
relationship.48 Here, only the z-directed tensor elements of
the background Green’s functions are computed since the
dipole antennas are z-polarized. For a z-directed source cur-
rent Iz of length L at the mth transmitting antenna the effec-
tive Green’s function tensor is calculated at each r�V as

Ḡb�rm�r,��

=
j

��LIz�
0 0 0

0 0 0

Ex
i �r�rm,�� Ey

i �r�rm,�� Ez
i�r�rm,��

� . �3�

The first two rows of the tensor are zeroed since no
x-directed or y-directed sources are used. Equation �3� is
used in the vector field formulation of the integral in Eq. �2�.
When the scalar field approximation22,29,49 is used, cross-
polarization scattering effects are assumed to be negligible.
Thus, Ex

i and Ey
i are set to zero in Eq. �3�, reducing the

Green’s function tensor to a single element. This approxima-
tion is employed to reduce the computational requirements
of the inverse solution and reduce the memory required to
store the forward solution. We note, however, that there is no
scalar approximation employed in our full-wave 3-D FDTD
computation of the forward solution itself; we use the ap-
proximation only in the construction of the inverse system.

III.C. Frequency-dependent model of unknown
dielectric properties

The imaging algorithm seeks to estimate the complex per-
mittivity profile of the unknown region over a set of discrete
frequencies. Rather than reconstruct the profile indepen-
dently at each frequency, it is advantageous to enforce an
assumed frequency dependence of the tissue properties. This
approach can reduce the number of degrees of freedom in the
system, thereby restricting the size of the solution space and

easing the computational burden of the imaging algorithm. In
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prior studies, a general dispersive formulation has been
presented24 along with sample solutions using linear and
logarithmic two-parameter dispersion relations. A single-pole
Debye model of dielectric dispersion has also been
employed.29

If the chosen model does not adequately capture the ac-
tual frequency dependence of the tissues, the model error
will corrupt the resulting image. Except over narrowband
ranges, an assumption of frequency independent dielectric
properties is demonstrably inaccurate.2,14,39,50 A linear depen-
dence does not capture the dispersive effects at microwave
frequencies due to the water content in biological tissues.
Instead, dielectric models which include the relaxation be-
havior explicitly, such as the Debye and Cole–Cole relations,
are naturally adept at capturing this frequency dependence.

We elect to use the single-pole Debye model as it employs
one less parameter than the Cole–Cole model, it can be in-
corporated into FDTD in a straightforward manner, and it fits
the dispersive behavior of breast tissues well over the fre-
quency range of interest.51 Furthermore, the single-pole De-
bye model uses the same number of parameters as would be
needed to model both permittivity and conductivity with
first-order models of frequency dependence. We assume the
relaxation time constant parameter � to be invariant to reduce
the number of unknowns and to keep the dispersion model
linear with respect to the unknown parameters. The time con-
stant is fixed in the inverse solution to the same value used
by the data-acquisition simulations and the forward solution.

III.D. Linear system of scattering equations

The first-order Born approximation to Eq. �2� is linear in
the unknown contrast function ��r�−�b�r�. We will denote
the contrast function over r�V more compactly as 		��r�
.
To achieve a simultaneous solution of the multiple-frequency
system, the complex permittivity variables in Eq. �2� are re-
placed by the frequency-dependent Debye model of Eq. �1�
with known time constant �. The relationship between the
field and the contrast function is then linear in the remaining
three parameters of the Debye model: ��, ��, and �s. The
contrast functions of these three parameters 		���r�
,
		���r�
, and 		�s�r�
 are the new unknowns over r�V.
Since these parameters are all real-valued, Eq. �2� is split into
a pair of real and imaginary equations so that the solution
space is limited to real values.

For an array of N antennas, there are N2F total frequency-
domain measurements, where F is the number of discrete
frequencies to be included in the solution. We discard redun-
dant data from reciprocal channels to retain a single unique
measurement for each transmit-receive antenna pair. We also
discard monostatic data since these observations include the
source field. Each of the remaining MF measurements,
where M =N�N−1� /2, yields a pair of real and imaginary
vector equations.

The resulting set of 2MF equations is then discretized by
a Riemann sum over the reconstruction region V. We assume
knowledge of the location and properties of the skin region

and restrict V to the interior breast volume. The region is
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discretized using the same uniform 2 mm voxel basis used in
the forward solution. The set of K voxels within V is vector-
ized so that the unknown contrast function for each Debye
parameter forms a K�1 vector. These three vectors are col-
lected into a single 3K�1 vector x. For each equation, the
remaining elements of the summand form a row of a 2MF
�3K matrix A. The differences between the measured fields
and the fields computed by the forward solution are collected
into a vector of residual scattered fields b. The resulting lin-
ear system Ax=b is then structured as follows for each chan-
nel d between a transmitter at rm and a receiver at rn:

�
R	B1

�
 R�B1
�� R	B1

�

I	B1

�
 I	B1
�
 I	B1

�

]

R	BM
� 
 R	BM

� 
 R	BM
� 


I	BM
� 
 I	BM

� 
 I	BM
� 

�� 	����

	����
	��s�

� = �
R	E1

s

I	E1

s

]

R	EM
s 


I	EM
s 

� , �4�

where the R	 
 and I	 
 operators denote the real and imagi-
nary parts of the complex argument. In Eq. �4�,

Bd
p = � cp��1��b1

d��1� ¯ bK
d ��1��

]

cp��F��b1
d��F� ¯ bK

d ��F��
� ,

Ed
s = �Ez

t�rn�rm,�1� − Ez
i�rn�rm,�1�

]

Ez
t�rn�rm,�F� − Ez

i�rn�rm,�F�
� ,

where bk
d���=�2��oḠb�rn �rk ,��Ei�rk �rm ,��, c����=1,

c����= �1+ j���−1, and c����= �j��o�−1.

III.E. Inverse solution

The linear model of the scattering system in Eq. �4� is
ill-posed. It is also highly underdetermined on the selected
voxel basis since 2MF
3K. Our inversion strategy uses a
conjugate gradient method to find a regularized, approximate
solution to the system of normal equations

ATAx = ATb . �5�

III.E.1. Inexact Newton step

As previously noted, the DBIM is equivalent to a Gauss–
Newton method of optimization. An approximation x̂ to the
inverse of Eq. �5� is then an inexact Newton step used to
update the estimate of the background profile �b�r� over r
�V. We use the conjugate gradient for least-squares
�CGLS� algorithm to find an approximate inverse of Eq. �5�.
The CGLS minimizes the residual norm of the system
�Ax−b�2 over the Krylov subpace52 span	ATb , �ATA�ATb ,
. . . , �ATA�3K−1ATb
.

The CGLS algorithm eases the memory requirements of
the inverse solution considerably. Since only two matrix-
vector products of A need to be computed per iteration, the
complete normal matrix ATA never needs to be constructed

and stored in memory. However, the matrix A on the 2.0 mm
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voxel basis often cannot be accommodated in memory either,
in which case the matrix-vector products must be computed
in blocks, with each block of A having to be recomputed
twice per CGLS iteration.

III.E.2. Regularization

In prior work,29 a Tikhonov regularization method was
applied to a conjugate gradient inversion algorithm, using a
series of trial solutions to determine the regularization
parameter.53 This approach is reasonable for such reduced
dimensionality approaches,29 but is far too computationally
costly for large-scale linear systems.

We avoid the need for any trial solutions by executing the
CGLS algorithm without applying any regularization term to
Eq. �5� and terminating the algorithm prior to convergence.26

The early termination method takes advantage of the self-
regularizing properties of the CGLS.53 This strategy is indis-
pensable in light of the memory restrictions and resulting
computational inefficiency faced by the CGLS algorithm.

III.E.3. Constraints

Unconstrained methods of optimization will operate over
the full R3K solution space. However, at minimum, we know
that any nonphysical solution ����o and ��0� is invalid.
We can take further advantage of data on the bounds of
breast tissue properties2,14 and the observation that ���0 in
biological tissues. Applying these simple bound constraints
to reduce the span of the solution space can aid in the solu-
tion of an underdetermined, ill-posed system.

In addition, we observe that the parameters ��, ��, and �s

of the Debye models of breast tissues are roughly propor-
tional in the sense that they are all at the low end of their
range in adipose tissue and at the high end in fibroglandular
tissue. We propose that bound constraints on these spatially
correlated parameters can therefore be made interdependent.
Specifically, we bound �� by its full range �see Table I� but
restrict the bounds on �� and �s based on the largest and
smallest ratios between the values of these two parameters
and those of �� over the adipose and fibroglandular entries in
Table I. At each DBIM iteration, current estimates of �� are
multiplied by these ratios to obtain new bounds for �� and
�s at each voxel of V. The tightened bounds on �� and �s are
intended to promote the spatial correlation of the Debye pa-
rameters that would be expected of accurately reconstructed
profiles.

Often, bound constraints are enforced after completion of
the optimization algorithm by simply projecting the inverse
solution onto the allowed solution space. This approach can
undermine the optimality of the inverse solution in a non-
sparse system where the elements of the solution have non-
negligible interdependencies. A nonlinear transform to en-
force the bounds within the contrast update has been
proposed elsewhere.54 In this work, we accomplish the con-
straint within the optimization routine using a projected-
restarted method.55 In this approach, the inverse solution is
projected onto the allowed solution space after the initial

CGLS algorithm terminates. The CGLS algorithm is then
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restarted using the projected solution as the initial guess. The
new solution is then projected and CGLS algorithm is run
again. The projecting and restarting is performed a predeter-
mined number of times during each inverse solution and re-
sults in a bounded solution of improved optimality.

III.E.4. Termination

Terminating the CGLS algorithm too early over-
regularizes the solution and reduces the spatial resolution.
Terminating too late under-regularizes the solution and al-
lows the magnification of noise errors to corrupt the solution.
We use an L-curve method to determine an appropriate ter-
mination condition for the algorithm. For ill-posed systems,
a plot of the solution norm �x j�2 versus the residual norm
�Ax j −b�2 over the CGLS iterations j=1,2 ,3. . . will depict
an “L” shape as the step length of the contrast update begins
to grow faster than the scattering residual is reduced. Our
criterion for choosing a solution is the iteration at which the
plot has maximum curvature. This selection achieves a re-
duction in the residual while preventing small singular val-
ues from erroneously growing the solution. The method is
illustrated by a sample L-curve in Fig. 3. We observe that for
our numerical phantoms this heuristic generally selects the
fourth or fifth CGLS iteration at every DBIM iteration. We
fix the projected-restarted constraint method to three restarts
of the CGLS algorithm.

III.E.5. Background update

The estimates of the contrast functions found by the in-
verse solution 	��̂��r��, 	���̂�r��, and 	��̂s�r�� are combined
into an estimate of the complex permittivity contrast 	��̂�r��,
according to Eq. �1�. The contrast estimate is added to the K
sample points of the ith background profile to create the new
background for the next DBIM iteration

�i+1
b �rk� = �i

b�rk� + 	��̂�rk��, k = 1, . . . ,K . �6�

The next iteration commences with the forward solution of
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FIG. 3. At a sample DBIM iteration, the norm of the CGLS solution is
plotted versus the norm of the CGLS residual at each iteration of the algo-
rithm. The knee of the L-curve �indicated by the “�” marker� locates the
iteration at which to terminate the CGLS algorithm.
the new background profile.
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III.F. Assumptions and initial conditions

Imaging performance is quite sensitive to the termination
heuristics and regularization techniques employed by the op-
timization algorithm. Allowing the DBIM to run for too
many iterations can allow noise and other errors to corrupt
the image. Too few DBIM iterations restricts the ability of
the method to overcome the nonlinearity of the problem. In
this work, we determine convergence of the DBIM algorithm
based on the norm of the residual scattering �b�2, computed
after each forward solution. This quantity is a measure of the
similarity between the fields scattered by the test object and
the fields scattered by the reconstructed object. We define
convergence to be the ith iteration at which �bi−1�2− �bi�2 is
less than 1% of �b1�2. The selection of this threshold is based
on our observations of marginal improvement in image qual-
ity for additional iterations at the expense of increased influ-
ence of noise and model error.

The initial guess provided to the DBIM routine is also
crucial to the imaging performance of the DBIM. While con-
vergence behavior can be relatively insensitive to initial con-
ditions, the fidelity of the reconstruction can be quite sensi-
tive to the initial guess. A reasonable choice for a
homogeneous initial guess is to use the dielectric values of
the often predominant adipose tissue. An initial reconstruc-
tion step can also be used29,56 to find an improved homoge-
neous initial guess or to find a coarse heterogeneous initial
guess. In the contrast-source method back-propagation of re-
ceived fields can be used to obtain an initial estimate of the
incident fields in the reconstruction region.57 Such a profile
of field magnitudes could be used to generate an initial pro-
file of dielectric properties for the DBIM. In this work, we
have made use of a priori knowledge of the true average
dielectric properties of the interior of the test phantoms and
use the volumetric average of the Debye parameter profiles
as a homogeneous initial guess. The average Debye proper-
ties of each phantom are given in Table II. Methods of esti-
mating the average properties of the imaging volume have
been reported.29,58

The scattering from the skin region and chest wall repre-
sent a primary source of interference in microwave breast
imaging methods. There exist techniques for the cancellation
of the skin response16 and for imposing known boundary
conditions at the chest wall.59 Several approaches have been
proposed for identifying the location and thickness of the

60,61

TABLE II. Debye parameters �infinite and delta relative permittivity �� and
��, and static conductivity �s� of the homogeneous initial profile assumed
by the DBIM algorithm for each realistic phantom.

Phantoma �� ��

�s

�S/m�

Class 1 3.62 2.66 0.0586
Class 2 3.97 3.12 0.0697
Class 3 7.42 9.58 0.219
Class 4 7.88 10.3 0.236

a�=15 ps for all tissues.
skin layer. The dielectric properties of the skin have been
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extensively documented39 and there is potential for direct
measurement in a clinical setting via dielectric spectro-
scopy.62 These approaches to estimating the skin region may
be superior to the inclusion of the skin region in the recon-
struction region of an inverse scattering technique, since its
thickness and distinct surfaces are poorly reconstructed by
the frequencies typically used in microwave tomography. We
therefore assume in this work that the skin surface, thickness,
and properties are known a priori, are included in the back-
ground profile, and are unchanged at each iteration of the
DBIM. Despite this assumption, there remains a substantial
difference between the fields scattered from the 0.5 mm res-
olution skin region in the data-acquisition model and the
down-sampled 2.0 mm resolution skin region of the forward
solution models. This error arises from both the stair-
stepping of the down-sampled skin region and the additional
numerical dispersion of the larger FDTD grid cells.

IV. RESULTS AND DISCUSSION

We apply the DBIM algorithm to the data acquired from
the set of numerical breast phantoms described in Sec. II. We
empirically validate the imaging method using a piecewise
homogeneous breast model with a single spherical inclusion.
In addition, we investigate the imaging performance in real-
istic phantoms with respect to a number of important issues.
Namely, we characterize the imaging artifacts arising from
numerical and discretization errors in the forward model, ex-
amine the validity of the scalar field approximation, and
evaluate the sensitivity of the imaging system to noise.

Each data set contains multistatic channel measurements
from the 40-element array, excluding nonreciprocal and
monostatic channels, at each of four frequencies �1.0, 1.5,
2.0, and 2.5 GHz�. The frequency list is chosen to satisfy
several trade-offs. The highest frequency is the primary de-
sign parameter in determining system resolution and must be
balanced against the increase in the computation cost of the
FDTD forward solution with frequency as well as the de-
crease in the stability of the inverse solution due to decreas-
ing tissue penetration depth. Inclusion of lower frequencies
help stabilize the inverse solution and increases the amount
of scattering information at the expense of increasing the size
of the linear system. In general, the selection of frequencies
for practical imaging systems will be a function of consider-
ations such as signal-to-noise ratio �SNR�, immersion me-
dium, array population and element size, and the condition-
ing of the inverse system.

Reconstructions of dielectric profiles are often presented
as the complex permittivity at a particular frequency. Since
we enforce the frequency dependence of the Debye model
and solve for the contrast function parametrically, we elect to
display the Debye parameters ���, ��, and �s� directly. The
resulting images provide complete multiple-frequency infor-
mation of the reconstruction. The diagnostic potential of dis-
persion profiles has previously been noted.24

Presenting 3-D images of complex, heterogeneous objects
in 2-D cross-sections is a challenge, particularly when the

reconstruction blurs detailed structures into adjacent 2-D lay-
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ers. Simple and often-used 1-D transections of the recon-
structions are even more limited in demonstrating the agree-
ment between complicated 3-D profiles. Hence, we begin by
imaging the simple case of a large, high-contrast, spherical
scatterer placed within a homogeneous breast interior. The
resulting reconstruction is presented in both 1-D and 2-D
cuts to validate the imaging method. We then illustrate our
3-D reconstructions of realistic tissue distributions using
three orthogonal 2-D cross-sections through the parametric
reconstructions. These 2-D cross-sections are selected to bi-
sect the extent of the breast phantom along the Cartesian
axes in the coronal, sagittal, and axial planes.

We introduce two scalar metrics in support of quantitative
comparisons between reconstructions. The first metric is an
error measure based on the normalized root mean square. It
is designed to represent the error relative to the actual pro-
files of all three Debye parameter estimates with a single
metric. The proposed error metric is given as

e2 =
1

�K
��� − �̂�

��
�

2
+ ��� − ��̂

��
�

2
+ ��s − �̂s

�s
�

2
� , �7�

where K, the total number of voxels in V, is the length of
each parameter vector. The hat notation, e.g., �̂, denotes an
estimated quantity. The second metric is intended as measure
of the qualitative similarity of two spatial profiles and is
insensitive to the scaling of the profiles. The two 3-D profiles
to be compared are vectorized and the metric is computed as
the cosine of the angle between the vectors. Let  be the
angle between two Debye parameter profiles represented by
vectors p1 and p2. Then the similarity measure is

cos�� =
�p1

Tp2�
�p1�2�p2�2

. �8�

When a reconstruction is referenced against an exact profile,
the exact profile is obtained by down-sampling the phantom
to the 2.0 mm grid so the dimensions of the phantom match
the dimensions of the reconstruction. This case will be de-
noted by subscripted angle e. The case of one reconstruc-
tion compared against another reconstruction will be denoted
by subscripted angle r. The similarity measure of Eq. �8�
can be evaluated for a particular Debye parameter, e.g., p
=��, or each of the parameter profiles can be vectorized and
concatenated as p= ���

T ��T �s
T�T to evaluate the similarity

of the complete frequency-dependent complex permittivity
profiles.

IV.A. Simple phantom

The data used in the reconstruction of the simple phantom
are noiseless and the DBIM algorithm employs the scalar
field approximation. We reconstruct images from two data
sets: The first is obtained from the phantom of 0.5 mm res-
olution and the second is obtained from the down-sampled
phantom of 2.0 mm resolution. The latter is the inverse crime
case, in which the forward model grid is identical to the

data-acquisition grid.



4219 Shea et al.: Microwave imaging of realistic numerical breast phantoms 4219
0 2 4 6 8 10 12

0

2

4

6

8

10

12

14 0

10

20

30

0 2 4 6 8 10 12 14

0

2

4

6

8

10
0

10

20

30

0 2 4 6 8 10 12

0

2

4

6

8

10
0

10

20

30

0 2 4 6 8 10 12

0

2

4

6

8

10

12

14 0

10

20

30

40

0 2 4 6 8 10 12 14

0

2

4

6

8

10
0

20

40

0 2 4 6 8 10 12

0

2

4

6

8

10
0

10

20

30

40

0 2 4 6 8 10 12

0

2

4

6

8

10

12

14 0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

0

2

4

6

8

10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

0

2

4

6

8

10
0

0.2

0.4

0.6

0.8

1

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

FIG. 4. 3-D inverse crime reconstruction of the simple phantom with spherical inclusion, shown in coronal �x−y, top row�, sagittal �y−z, middle row�, and
axial �x−z, bottom row� cross-sections of the reconstructed Debye parameters. ��a�–�c�� � , ��d�–�f�� ��, and ��g�–�i�� � �S/m�. Axes in cm.
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FIG. 5. 3-D reconstruction of the simple phantom with spherical inclusion, shown in coronal �x−y, top row�, sagittal �y−z, middle row�, and axial �x−z,
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The 3-D reconstructions of the 2.0 and 0.5 mm resolution
cases are illustrated by the 2-D cross-sections of Figs. 4 and
5, and the similarity metrics with respect to the exact phan-
tom are cos�e�=0.995 and cos�e�=0.967, respectively.
Substantial imaging artifacts caused by the modeling error of
the coarser resolution grid used in the forward solver are
clearly observed in Fig. 5.

Figures 6 and 7 show 1-D transections of the exact phan-
tom and the corresponding reconstructions taken through the
true center of the spherical inclusion. These plots confirm the
accurate location and dimension of the reconstructed inclu-
sion. The transections of Fig. 7 illustrate the reduced fidelity
of the reconstruction caused by numerical and modeling mis-
match, while those of Fig. 6 show the overestimation of the
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infinite permittivity ��, as well as some artifacts in the static
conductivity �s, even when numerical and modeling errors
are suppressed.

IV.B. Realistic phantoms

Noiseless data from the simulation of the four MRI-
derived phantoms on the 0.5 mm resolution grid are used to
reconstruct each of the phantoms using the DBIM algorithm
with the scalar field approximation. The convergence of the
norm of the residual scattering fields is shown in Fig. 8 for
each phantom. The convergence condition described in Sec.
III F requires between four and six iterations, as shown the
figure. In addition, Fig. 8 plots the similarity metric cos�e�
between the reconstructed and exact profiles versus DBIM
iteration. This metric is seen to increase convergently as the
residual scattering decreases. A positive slope of the cos�e�
curve at termination suggests that the reconstruction could be
further improved with additional iterations.

Visual agreement between the exact phantom profiles and
the 3-D reconstructed profiles is evident in the cross-
sectional images of Figs. 9–12. �Only �� is presented in
these figures since the three reconstructed Debye parameter
profiles are noted to be highly correlated in each phantom, as
in the simple phantom images of Figs. 4 and 5.� These results
demonstrate the ability of the imaging method to accurately
locate areas of dense tissue in all four phantoms.

There is a deficit of resolution available from the micro-
wave illumination relative to the smallest dimensions of the
fibroglandular features within the breast. The resolution is
limited by the bandwidth of the data used in the imaging
algorithm, effectively resulting in a spatially averaged recon-
struction of the actual distribution. The images show that
reconstructions of dense areas of tissue are smeared and that
the smallest features of the tissue structures are not recon-

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
Class 4

DBIM Iteration

R
e
s
id

u
a
l
N

o
rm

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
Class 3

DBIM Iteration

R
e
s
id

u
a
l
N

o
rm

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

DBIM Iteration

R
e
s
id

u
a
l
N

o
rm

Class 2

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

DBIM Iteration

R
e
s
id

u
a
l
N

o
rm

Class 1

0.6

0.7

0.8

0.9

c
o
s
(φ

e
)

0.6

0.7

0.8

0.9

c
o
s
(φ

e
)

0.6

0.7

0.8

0.9

c
o
s
(φ

e
)

0.6

0.7

0.8

0.9

c
o
s
(φ

e
)

Residual Norm

cos(φ
e
)

FIG. 8. Convergence of the DBIM algorithm for the four heterogeneous
phantoms. Left-hand y-axes: Normalized convergence of the residual scat-
tering norm. Right-hand y-axes: Similarity metrics between the reconstruc-
tion at each iteration and the actual phantom profile. Here, the cos�e�
metric is computed for the concatenation of all three Debye parameters.
structed. The resolution deficiency also contributes to the



axial �x−z, bottom row� cross-sections. Axes in cm.

axial �x−z, bottom row� cross-sections. Axes in cm.

4221 Shea et al.: Microwave imaging of realistic numerical breast phantoms 4221

Medical Physics, Vol. 37, No. 8, August 2010
underestimation of the absolute dielectric properties ob-
served in some areas of fibroglandular tissues. The abrupt
transition between tissue types in the phantom profiles is
reconstructed as a more gradual change in contrast, and this
behavior tends to broaden and underestimate the reconstruc-
tion of the fine details of fibroglandular tissue structures. In
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FIG. 11. Class 3 phantom: ��a�–�c�� Exact and ��d�–�f�� reconstructed pro-
files of �� shown in coronal �x−y, top row�, sagittal �y−z, middle row�, and
axial �x−z, bottom row� cross-sections. Axes in cm.
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FIG. 12. Class 4 phantom: ��a�–�c�� Exact and ��d�–�f�� reconstructed pro-
files of �� shown in coronal �x−y, top row�, sagittal �y−z, middle row�, and
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FIG. 9. Class 1 phantom: ��a�–�c�� Exact and ��d�–�f�� reconstructed profiles
of �� shown in coronal �x−y, top row�, sagittal �y−z, middle row�, and
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FIG. 10. Class 2 phantom: ��a�–�c�� Exact and ��d�–�f�� reconstructed pro-
files of �� shown in coronal �x−y, top row�, sagittal �y−z, middle row�, and
axial �x−z, bottom row� cross-sections. Axes in cm.
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addition, the cylindrical array geometry does not fully illu-
minate the anterior and posterior of the breast volume, fur-
ther smearing the features of the reconstructed profile along
the array axis. Finally, the effective resolution may also be
limited by over-regularization of the inverse solution.

IV.C. Other performance considerations

The effect of the forward model error on the realistic
phantoms is investigated by reconstructing the inverse crime
case using simulated measurements of the down-sampled
Class 2 phantom. The reconstructed �� profiles from the 0.5
and 2.0 mm phantoms are compared in Fig. 13. The similar-
ity measure between the two reconstructions is cos�r�
=0.970. Artifacts in the Class 2 reconstruction due to mod-
eling error are minimal in comparison to the artifacts in the
case of the simple phantom �see Fig. 5�. The severity of the
artifacts in the simple phantom and the comparative absence
of such artifacts in the Class 2 phantom suggest that our
fixed-iteration CGLS termination heuristic may under-
regularize the reconstruction in the case of the simple scat-
tering target.

The benefit of the bounding and constraint method de-
scribed in Sec. III is evaluated by comparing the similarity
metric for reconstructions with and without the constraints.
The similarity measures in both cases are shown for each
Debye parameter in Fig. 14. These results show that for each
of the four realistic phantoms, the quality of the reconstruc-
tion is improved when the bounding and constraint tech-
niques are employed. Figure 14 clearly indicates that the
static conductivity profile is the least successfully recon-
structed of the Debye parameters in this multifrequency so-
lution. This observation helps explain the benefit of the
bounding method, which restricts the range of values of �s

based on the estimated profile of a better reconstructed pa-
rameter ��. Since the bounds on both �� and �s are tight-
ened considerably at each iteration based on ��, the
projected-restarted constraint technique aids in the optimiza-
tion of the inverse solutions within those bounds. The im-
provement in the �s profile is illustrated in Fig. 15 by com-
paring the constrained and unconstrained reconstructions of
the Class 2 phantom.

The fidelity of the scalar field approximation in 3-D im-
aging is investigated by imaging the Class 2 phantom using
the vector field formulation of Eq. �2�. The contribution of
the additional information available to the vector formulation
is revealed by comparing the reconstructions of the vector
and scalar formulations. The �� profiles reconstructed in
each case are shown in Fig. 16. There is little difference
between the solutions obtained by the two formulations. The
peak values of the dense areas of the reconstruction in the
vector case are only a few percent higher than those in the
scalar case. The similarity measure between the two recon-
structions is cos�r�=0.989, confirming the visual agree-
ment.

Strictly speaking, we have not implemented a full vector
formulation, since the polarization of the dipole antennas re-

stricts the system to scalar sourcing and observation of
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z-directed fields. We also note that the scalar field approxi-
mation is referred to in this work in the context of the inverse
solution. There is no need for the scalar approximation in the
forward solution or simulated data acquisition, since 3-D
FDTD is a full-wave numerical method. The scalar approxi-
mation is employed in this study due to insufficient memory
resources for applying the method to the vector formulation
of the large Class 1 phantom.
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We evaluate imaging performance in the presence of
noise by adding increasing levels of white Gaussian noise to
the measurement data acquired from the Class 2 phantom.
The profile reconstructed at each noise level is quantitatively
compared to the profile reconstructed for the noiseless case.
The error between the noiseless and noisy reconstructed pro-
files is plotted in Fig. 17 by the metrics e2, cos�e�, and
cos�r� versus SNR. Figure 17�a� depicts the classical log-
log relationship between estimation error and additive white
Gaussian noise. The slope of this line depends in part on the
regularization and termination techniques used in the imag-
ing algorithm. Representative cross-sections of the recon-
structions over a range of SNR are shown in Fig. 18. Cor-
ruption of the images due to noise is apparent, as the
accurately located areas of fibroglandular density in the
noiseless reconstruction begin to shift and disappear at SNR
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levels below about 20 dB. The decay of the similarity met-
rics with decreasing SNR, shown in Fig. 17�b�, confirms this
threshold. We note that the reference signal level of the SNR
is defined here as the mean of the measured total fields at
each frequency over all multistatic measurements of the
phantom.

The forward solution is executed on a 128-core GPU us-
ing Acceleware’s FDTD library �Acceleware, Calgary, Al-
berta, Canada�, while the inverse solution is executed on a
four-core CPU using MATLAB code. The 40 antenna simula-
tions of the forward solution are run in serial on the GPU,
each taking about 30 s. The inverse solution requires about 5
min on a memory-limited system, for a total time per itera-
tion of about 25 min. Parallelization of the forward simula-
tions, implementation of the inverse solution on the GPU,
and advances in GPU performance is expected to reduce the
time per DBIM iteration by about a factor of 10.63

V. CONCLUSION

We have presented 3-D imaging results for microwave
tomography of realistic numerical breast phantoms of vary-
ing fibroglandular tissue density. The inverse scattering
method employs a constrained solution that is shown to be
robust across the full range of ACR density classifications.
The successful reconstruction of the fibroglandular tissue
distributions suggest the utility of the method to density
characterization and related risk assessments. As the ACR
classifications are based on the percentage of fibroglandular
tissue in a 2-D mammographic projection, 3-D density as-
sessments may offer improved or complementary informa-
tion. Microwave imaging thus has the potential to play a role
in an individualized risk assessment which includes an esti-
mate of cancer risk based on breast density characterization.

Our implementation of a 3-D microwave inverse scatter-
ing method also serves as a reference point for more compu-
tationally efficient techniques. The use of the scalar field
approximation in the complex 3-D scattering environment is
supported by the strong similarity of the imaging results to
those of the full vector formulation. Solution of the inverse
problem on a high resolution voxel basis provides a bench-
mark for methods that seek to exploit the lower resolution of
the microwaves by using lower-dimensionality spatial bases
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inverse problem is obtained by the use of an efficient regu-
larization and constrained inversion technique.

Applying microwave inverse scattering techniques to data
simulated from realistic numerical models offers valuable in-
sight into the performance and challenges that can be ex-
pected in experimental laboratory and clinical investigations.
Using simulated data allows for the selective treatment or
idealization of practical issues whose effect on imaging per-
formance is otherwise difficult to attribute. In this way we
can analyze a complicated system in an incremental manner.
Conversely, there are practical challenges which cannot be
faithfully represented by a computational model and the as-
sociated simplifying assumptions. Though several practical
issues are demanding of further study, the presented imaging
results underscore the feasibility of microwave inverse scat-
tering techniques in application to 3-D breast imaging.

Future work in system development and tumor detection
is motivated by the performance of the microwave imaging
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system in reconstructing the dielectric properties and spatial
profile of realistic distributions of normal breast tissue. The
expectation of low contrast between malignant and normal
glandular tissue increases the importance of spatial reso-
lution and estimation accuracy to enable direct visual diag-
nosis from the morphology of an invasive malignant growth.
The resolution of the images presented in this paper suggests
that direct visual diagnosis is challenging without further res-
olution improvements, for example, by adding higher fre-
quency data or by adopting edge-preserving regularization
techniques. Alternatively, different approaches to microwave
tumor detection, such as the use of differential imaging with
exogenous contrast agents to enhance the relative contrast of
malignant tissue,64,65 may be considered.
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