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Purpose: The purpose of this work is to design a neuronal fiber tracking algorithm, which will be
more suitable for reconstruction of fibers associated with functionally important regions in the
human brain. The functional activations in the brain normally occur in the gray matter regions.
Hence the fibers bordering these regions are weakly myelinated, resulting in poor performance of
conventional tractography methods to trace the fiber links between them. A lower fractional aniso-
tropy in this region makes it even difficult to track the fibers in the presence of noise. In this work,
the authors focused on a stochastic approach to reconstruct these fiber pathways based on a Baye-
sian regularization framework.
Methods: To estimate the true fiber direction �propagation vector�, the a priori and conditional
probability density functions are calculated in advance and are modeled as multivariate normal. The
variance of the estimated tensor element vector is associated with the uncertainty due to noise and
partial volume averaging �PVA�. An adaptive and multiple sampling of the estimated tensor element
vector, which is a function of the pre-estimated variance, overcomes the effect of noise and PVA in
this work.
Results: The algorithm has been rigorously tested using a variety of synthetic data sets. The
quantitative comparison of the results to standard algorithms motivated the authors to implement it
for in vivo DTI data analysis. The algorithm has been implemented to delineate fibers in two major
language pathways �Broca’s to SMA and Broca’s to Wernicke’s� across 12 healthy subjects. Though
the mean of standard deviation was marginally bigger than conventional �Euler’s� approach �P. J.
Basser et al., “In vivo fiber tractography using DT-MRI data,” Magn. Reson. Med. 44�4�, 625–632
�2000��, the number of extracted fibers in this approach was significantly higher. The authors also
compared the performance of the proposed method to Lu’s method �Y. Lu et al., “Improved fiber
tractography with Bayesian tensor regularization,” Neuroimage 31�3�, 1061–1074 �2006�� and Fri-
man’s stochastic approach �O. Friman et al., “A Bayesian approach for stochastic white matter
tractography,” IEEE Trans. Med. Imaging 25�8�, 965–978 �2006��. Overall performance of the
approach is found to be superior to above two methods, particularly when the signal-to-noise ratio
was low.
Conclusions: The authors observed that an adaptive sampling of the tensor element vectors, esti-
mated as a function of the variance in a Bayesian framework, can effectively delineate neuronal
fibers to analyze the structure-function relationship in human brain. The simulated and in vivo
results are in good agreement with the theoretical aspects of the algorithm. © 2010 American
Association of Physicists in Medicine. �DOI: 10.1118/1.3456113�
Key words: diffusion tensor imaging �DTI�, Bayes decision rule, Hotelling transform
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I. INTRODUCTION

Accurate estimation of structural connectivity in the human
brain �in vivo� relies on effective segmentation of white mat-
ter pathways using diffusion tensor imaging �DTI�. Analysis
of images with diffusion weighting in multiple directions can
characterize the anisotropy of water diffusion, which reflects
the local axonal orientation and integrity of fibrous tissues.
Fiber tracking, essentially a reconstruction of continuous
curves from a direction field,1 relates the principal diffusion
direction of water molecules to the orientation of major fi-
bers. Principal component analysis of the tensor data is the
basis of algorithms that track neuronal fiber pathways in the
majority of reported works.2–6 However, noise and partial
volume averaging �PVA� are the major reasons for erroneous
fiber tracking as they deflect the estimated fiber from the true
direction and its effect accumulates over the tracking
process.7,8 To minimize it, several smoothing techniques
have been proposed,9,10 including anisotropic smoothing and
interpolation.11,12

Quite a few probabilistic approaches have been
proposed13–17 to address the problem of noise and PVA dur-
ing fiber tracking. These methods can effectively track fibers
in large regions of white matter since they are capable of
tracking pathways in multiple directions. Uncertainty associ-
ated with fiber tracking is also modeled using Monte Carlo
simulations, a nonparametric procedure for fiber tracking,
with an assumption of normal noise distribution in the MRI
signals.7,18 In spite of this plethora of probabilistic fiber
tracking methods, they are confined to track white matter
pathways and have limited success in tracking fibers close to
gray matter regions, where the fractional anisotropy �FA� is
relatively low. We have previously developed a Bayesian
regularization framework to track neuronal fibers in vivo.19

Uncertainty associated with tracking is modeled by optimiz-
ing a posteriori probability of the estimated tensor elements
in this work. A stochastic Bayesian approach proposed by
Friman et al.20 optimizes the cumulative probability over the
fiber pathway unlike ours where the posteriori probability is
maximized on each step. Experiments with synthetic and in
vivo DTI data have shown that the above method can effi-
ciently reduce the effects of noise and PVA. Recently, Cor-
reia et al.21 demonstrated that estimation of FA and contrast
to noise ratio can be greatly enhanced after Bayesian tensor
regularization.19 Encouraged by these results, we further im-
prove the Bayesian framework by adding a probabilistic
sampling to the fiber tracking process.

The purpose of the work is to analyze the structural con-
nectivity in some vital pathways of the human language sys-
tem in vivo. Language function, though sparsely observed by
French surgeon Broca22 more than a century ago, has re-
ceived considerable attention in cognitive neuroscience.
Studies demonstrate that the structural connectivity pattern
of a region in the brain determines its functional
organization,23 such as connectivity between auditory cortex
and prefrontal areas.24–27 Recently, hemispheric functional
dominance was analyzed in terms of structural connectivity

between functionally active regions in the language
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circuit.28,29 The former uses a non-Gaussian diffusion
model,30 which does not specifically address tracking in low
FA regions. Later, Powell et al.29 used a similar probabilistic
streamline approach,31 where the uncertainty of fiber orien-
tation is a function of FA. The structural connectivity is a
map of connectivity based on statistical measure obtained
from Monte Carlo simulations, rather than actual fiber path-
ways. The confidence measuring the existence of fibers is a
function of distance from the initial seed regions. However,
we will explicitly reconstruct fiber pathways that connect the
important functionally active regions in the human language
system.

We propose a novel deterministic tracking approach using
stochastic sampling of the estimated tensors, based on its
variance. The fiber tracking is performed multiple times from
each seed location by calculating the tensors with a pre-
defined value of mean and variance to reconstruct the fiber
pathways. Functional activations in the human brain occur in
gray matter regions, which overlap minimally with the white
matter.32 These regions are characterized by low signal-to-
noise ratio �SNR� and FA values, which may lead to errone-
ous estimation of the underlying fiber direction. A perturba-
tion theory that modulates the random vector with local FA
and adds it to the principal eigenvector in order to track the
fiber pathway was used to analyze the structure-function re-
lationship in our recent work.33 Though we could success-
fully delineate fiber bundles in language circuit, a robust es-
timation of major eigenvectors necessitates the development
of this approach for accurate quantification of structural con-
nectivity between functionally active regions. Briefly, we in-
corporate into the tracking process a stochastic sampling of
the estimated major eigenvector that represents the dominant
fiber orientation with maximum a posteriori probability.
Synthetic data analysis demonstrates the robustness of the
approach even when the SNR is low, hence offering the ca-
pability of delineating neuronal fibers connecting function-
ally activated regions in the gray matter.

The remainder of the paper is organized as follows. Sec-
tion II describes the principle and the proposed probabilistic
Bayesian tracking algorithm. Section III presents the results
from synthetic images that mimic structural connections be-
tween functionally active regions and those from human DTI
data acquired in vivo. Section IV summarizes the major con-
tributions and some of the technical issues, followed by the
conclusion.

II. METHOD

Traditionally, fiber tracking is implemented as line propa-
gation process, i.e., an integration of a position vector at
discrete steps. Equation �1� below describes the simplest pro-
cess of line propagation in tractography1

si+1 = si + �� � �i, �1�

where si is the position vector at discrete step i, �� is the
step size, and �i is the propagation vector. In the basic fiber
tracking method �Euler method�, �i is the principal eigenvec-

tor of the tensor matrix derived from the diffusion weighted
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image �DWI� data. This straightforward estimation of the
propagation vector could be incorrect because noise and PVA
�e.g., fiber crossing� can rotate the principal eigenvector rela-
tive to the true fiber orientation. To overcome this issue, �i

has been estimated in numerous alternate ways, including
improved methods that evaluate tensors at discrete steps
�interpolation12 and estimation of the effect of tensors in vox-
els neighboring the point of interest�. However, evaluation of
the propagation vector could be based on a framework that is
deterministic, probabilistic, or a combination of both. To re-
liably track the fiber pathway, we implemented a Bayesian
principle that maximizes the posteriori probability. This in-
volves deterministic calculation of tensor elements �assumed
to be multivariate normal� from observed variables, followed
by a stochastic sampling modulated with the variance of the
estimated tensor. We will briefly describe the formulation of
the Bayes decision rule to track the neuronal fibers.

II.A. Bayesian principle

The Bayesian decision rule is centered on a simple theory
governed by the following formula �Eq. �2��:

P�� j�d� =
P�d�� j� � P�� j�

P�d�
. �2�

P�� j� is the a priori probability of state � j where � j

denotes a possible state of nature for j=1, . . . ,n. Similarly,
P�d �� j� is the conditional probability density of the variable
d if the state is � j. The posterior probability P�� j �d� is the
probability of being in the state � j given the observed vari-
able d. Hence, Bayes decision is the process of determining
the value of � that maximizes the posterior probability
P�� j �d�. As the cumulative probability P�d� does not depend
on � j, maximizing P�� j �d� is equivalent to maximizing the
product of P�d �� j� and P�� j� �Eq. �3��

�=
�j

arg max�P�� j�d��=
�j

arg max�P�d�� j� � P�� j�, j

= 1 . . . n� . �3�

The true fiber direction is presumably the direction which
maximizes the posterior probability by incorporating all
available data and minimizes the error in the estimation. To
find the true direction of the propagation vector, the prior and
conditional probabilities are calculated in advance. In this
model, these functions are not known a priori and hence
should be modeled using the multivariate normal distribu-
tion. The Bayes decision rule is applied to the diffusion ten-
sor instead of its major eigenvector. As the derived diffusion
tensor matrix from the DWI data is symmetric in nature, six
independent upper diagonal terms, called the tensor element
vectors, d= �D11,D22,D33,D12,D13,D23�t, are assumed to be
multivariate normal d�N�� ,��, where � represents the true
unknown tensor element vector and � is the covariance ma-
trix. The variance of the measured tensor element vector is
associated with the uncertainty due to noise and PVA. The
prior probability P�� j�, which is calculated from the tensor
element vectors in the neighboring voxels of the point of

interest, is also assumed to be multivariate normal, i.e., � j
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�N�m ,��. Both conditional and prior probabilities can be
explicitly described by the equations below. The posterior
probability, being the product of 2, also possesses normal
distribution P�� j �d��N�� ,	�. Readers interested in detailed
analysis may refer to our previous work19 for the analytical
solutions that maximize the posterior probability.

p�d�� j� =
1

�2
�3���1/2exp�−
1

2
�d − � j�t�−1�d − � j�	 , �4�

p�� j� =
1

�2
�3���1/2exp�−
1

2
�� j − m�t�−1�� j − m�	 . �5�

Consequently, the estimated mean value of the tensor el-
ement vector is the result of a one step analytical calculation,
rather than a computationally expensive optimization proce-
dure. The expected mean vector and covariance matrix that
maximize posterior probabilities are as below �Eq. �6��

� = ��−1 + �−1�−1��−1d + �−1m�, 	 = ��−1 + �−1�−1. �6�

The covariance 	 of the estimated tensor element vector �
in this case is smaller than the covariance of multivariate
normal in both conditional and prior probability density
functions as they are positive definite. This indicates that the
optimal solution has reduced the uncertainty in estimating
the tensor elements. The optimized six components of the
mean vector are required to construct the symmetric tensor
matrix and the dominant fiber orientation while tracking fi-
bers. In this work, we focus on a tractography scheme that
can delineate neuronal fibers more reliably in regions with
relatively low FA. Uncertainty in estimating the dominant
fiber direction increases when fiber pathways approach low
FA regions, particularly when the SNR is low. Hence we
proposed a probabilistic sampling technique to sample the
mean vector at each step based on its covariance. At this
point, we hypothesize that each point on the fiber pathway
has an uncertainty associated with tracking, which is a func-
tion of noise, PVA, and the degree of anisotropy of water
molecular diffusion as well. Regions of white and gray mat-
ter interface are less anisotropic; hence the covariance of the
estimated tensor element vector is presumably higher than in
white matter. Adaptive sampling of the estimated tensor ele-
ments, which is a function of the variance �Eq. �6��, mitigates
the effects of noise and PVA. Sampling of individual ele-
ments in the estimated vector is performed using the Hotell-
ing transform.

II.B. Parameter estimation

The parameters associated with conditional and prior
probability density functions, such as the covariance � of the
tensor element vector, mean m, and covariance �, are to be
determined in advance. The conditional probability density
function is defined on the basis of uncertainty of the mea-
sured tensor at every step in the tracking process. However,
the prior probability is defined on the basis of the covariance
within a volume surrounding the position where the principal
eigenvector has to be evaluated. Accurate estimation of �

and � is important to calculate the variance at each step,
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which decides the degree of randomness to be added to the
principal eigenvector. The parameter � depends on the DWI
experimental setup in a pulsed gradient spin-echo experi-
ment, acquired with 32 noncollinear directions. Parameter �
is evaluated by defining a uniform neighborhood to account
for an unbiased estimation of the diffusion direction due to
noise and PVA.

II.C. Estimation of � and d

The covariance matrix � of tensor element vectors can be
estimated directly from the diffusion weighted data. The
voxel signal intensity of a DW image assuming a normal
distribution1,7 of the zero mean noise n�N�0,��

2� can be
described as

S�b̃� = S0 exp
− �
ij=1

3

bijDij� + n = S0 exp�− b11D11

− b22D22 − b33D33 − 2b12D12 − 2b13D13 − 2b23D23�

+ n . �7�

Taking the logarithm on both sides, we can have

f�b̃� = − b11D11 − b22D22 − b33D33 − 2b12D12 − 2b13D13

− 2b23D23 + � . �8�

A fixed number of experiments are performed, which is nor-
mally more than the number of elements in the diffusion

weighting matrix b̃. The multiple noncollinear gradient di-
rections will generate a set of linear equations �Eq. �8��. A
least-square solution for this overdetermined case �Eq. �9��
can estimate the tensor element vector assigned to each voxel
and the covariance � as mentioned below

f = B · d + � , �9�

d = �Bt��
−1B�−1 · Bt · ��

−1 · f , �10�

� = �Bt��
−1B�−1. �11�

Assuming noise in each experiment to be independent, �� is

a diagonal matrix with diagonal elements ��
nn= ���

n�2 /S�b̃n�2,
where n indexes the experiment.

II.D. Estimation of m and �

Theoretically, the prior probability of fiber orientation
should be based on the knowledge of the fiber directions
without experimental data. However, we evaluate this prob-
ability based on the knowledge about fiber orientations in
neighboring regions. A relatively smaller region is included
�eight voxels� in the neighborhood to evaluate these two pa-
rameters. Images may include multiple fibers, perhaps cross-
ing fibers and regions containing both white and gray matter,
if more voxels are included to calculate m and �. The vol-
ume comprising eight voxels allows the model parameters to
be estimated more reliably �Eqs. �12� and �13��. FA is a mea-
sure of coherence of fiber orientation. Hence, calculating a

weighted average of di over a smaller neighborhood sup-
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presses the effect of noise and also PVA, unlike Lu et al.19 In
fact, the eigenvectors corresponding to the mean tensor ele-
ment vector m will be more biased by the neighborhood that
has stronger anisotropic diffusion properties.

m =
1

�k=1

K
FAk

� �
k

K

FAkdk, �12�

�ij =
1

�k=1

K
FAk

� �
k=1

K

�FAk · dik − mi��FAk · djk − mj� ,

i, j = 1,2, ¯ ¯ ,6. �13�

The vector m is the weighted mean value of the tensor
element vector for k=1, . . . ,8, where the covariance matrix
� is computed over the same volume and stored as a 6�6
matrix. To estimate the principal eigenvector at each step, the
tensor element vector d and covariance � are calculated
based on Eqs. �10� and �11�. Both of them are linearly inter-
polated to estimate their values at each location �Eq. �1��.
The prior probability parameters �m and �� are, however,
estimated over a large volume and may be stored in advance
to make tracking faster as these values do not change as long
the tracking position is confined to the same voxel. Once a
seed location is defined, the reconstruction of the pathway is
performed in both directions until termination criteria are
satisfied. In each iteration, the sampling volume is oriented
with the propagation vector from the previous iteration �Eq.
�1��. Both � and � are calculated based on the DW experi-
ment and should be an unbiased estimates of covariance as-
sociated with the tensor elements.

II.E. Probabilistic sampling

The fiber pathways are reconstructed multiple times from
the same seed location. In each instance, the expected mean
tensor element vector � is randomly sampled with a variance
	, a function of covariance associated with conditional and
prior probability density functions. Figure 1 gives an idea
about how the mean vector � is allowed to vary within the
solid angle in a controlled manner depending on the variance
	. We applied the principle of the Hotelling transform to
perform the probabilistic sampling. For example, if X is an N
dimensional vector �in this case N=6, as there are six com-
ponents of the tensor element vector�, with an expected mean
value � and covariance matrix 	, we are free to create a new
variable Y based on a linear combination of existing ones
using a transformation matrix �Eq. �14��

Y = ATX . �14�

The mean value of the new variable

my = ��Y� = AT� . �15�
Alternatively, Y can be defined as
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Y = AT�X − �� , �16�

yielding a mean value my =0 and covariance Cy =A	AT. The
covariance matrix Cy is a diagonal matrix whose elements on
the main diagonal are eigenvalues of the covariance matrix
	. This property can be used to generate a random vector
with mean � and covariance 	. Thus we generated random
vector X

X = �AT�−1Y + � , �17�

with A= �v1,v2, ¯ ,v6� and Y = �1
2 ·y12

2 ·y2 , ¯ ,6
2 ·y6�T.

Here, v and  are the eigenvectors and eigenvalues of cova-
riance matrix 	. Elements of vector y= �y1 ,y2 , ¯ ,y6� are
random numbers with zero mean and variance=1. Tracking
multiple fibers from the same seed regions increases the pos-
sibility of delineating the fibers connecting or getting closer
to the functionally active regions.

II.F. Processing steps

After the required parameters are estimated, a seed region
is defined and the tracking is performed in both directions to
delineate fibers until any of the stopping criteria is met. Since
an adaptive sampling strategy is suggested in a Bayesian
framework, the likelihood of tracking true fibers improves
with the number of times the fiber is tracked from the same
seed location. The implementation of the fiber tracking pro-
cedure is described in the following steps:

�1� Estimate the tensor element vector d and the covariance
matrix � from the experimental data in Eqs. �10� and

FIG. 1. Graphic representation of the tensor element vector �, randomly
sampled with variance 	.
�11� �Appendix B�.
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�2� Calculate the mean m and covariance � based on the
neighborhood information to estimate the prior prob-
abilities in Eqs. �12� and �13�.

�3� Compute the optimized mean tensor element vector �
and corresponding covariance matrix 	 in Eq. �6� based
on previously calculated parameters.

�4� Generate the element vector X in Eq. �17�.
�5� Calculate the principal eigenvector �i by constructing

the symmetric matrix with the elements in X.
�6� Proceed to the next step with the dominant direction in

Eq. �1� and repeat the procedure until any of the termi-
nation criteria is met.

We implemented simple linear interpolation to calculate
the tensor element vector d and covariance � during fiber
tracking. Anisotropic interpolation12 is not used deliberately
to have an unbiased comparison of the result with standard
methods. Termination criteria, such as maximum allowable
curvature and fiber length, are also implemented along with
minimum FA value from the linearly interpolated FA map.
As we are interested in implementing the algorithm to track
the fibers in the language circuit, particularly to quantify fi-
ber connections between functionally active regions, target
specific termination criteria were implemented to delineate
specific bundles that link functionally active regions.

II.G. Synthetic data analysis

We have constructed three synthetic fiber bundles to track
fibers in a much similar fashion as in the language network.
Tracking fibers multiple times from the same seed location is
performed to increase the feasibility of locating fibers in re-
gions where uncertainty due to noise and PVA often limits
the tracking using conventional methods. To evaluate the
performance of the Bayesian probabilistic approach, three
synthetic data sets were constructed with high structural
complexity that mimics the real fiber architecture in the hu-
man brain. The synthetic tensors were constructed for an
eigenvalue trace of 1+2+3=2.0�10−5 cm2 /s. The first
synthetic data set is a 3D spiral �Fig. 2�a�� with a circular
cross-section normal to the medial axis, where the FA is a
function of the distance from the center. The FA value varies
inversely with distance from the center, i.e., from 0.6 to 0.2
at the boundary. Both ends of the synthetic bundle are con-
nected to spheres with diameter twice as large as that of the
connecting bundle. However, the FA distribution is just op-
posite in the end spheres connecting the spiral, i.e., it varies
linearly from 0.1 at the center to 0.15 at the surface. The FA
value at both ends is made deliberately low to match the
properties of gray matter regions.

The orientation of the principal eigenvector is parallel to
the direction of the medial axis in the spirally shaped syn-
thetic bundle. Tensors on the parallel tracts are identical to
each other and are cylindrically symmetric �1�2=3�.
The eigenvalue contrast �=1−2 is a complex function of
FA �Appendix A�. The principal eigenvectors in the end
spheres are generated randomly to account for the absence of

neuronal fibers that provide a guided anisotropic motion to



4279 Mishra et al.: Fiber tracking using Bayesian regularization and sampling 4279
the water molecules. The second set of data is also con-
structed in a similar manner where the FA is low in the
middle of the spiral. The low FA region in the white matter
bundle reflects a weak structural connection between regions
�Fig. 2�b��, which may occur due to certain pathological con-
ditions in patients. The third synthetic bundle is a combina-
tion of two spirals that cross at the middle to mimic crossing
fibers and helps demonstrate the effectiveness of the algo-
rithm to overcome partial volume averaging �Fig. 2�c��.

All the fiber bundles are placed inside a volume where the
FA value is low �0.1�. The tensor matrix is constructed with
randomly generated eigenvectors �Appendix A� and any fiber
leading out of the surface of the bundle will be terminated
due to low FA criteria. The purpose of these experiments is
to provide a comprehensive comparison between few well
established methods used in tractography, such as Euler,
Bayesian, and Friman’s approach, in terms of accuracy, pre-
cision, and robustness to noise and PVA.

II.H. Tracking accuracy and precision

Accuracy and precision of the proposed algorithm and
comparisons with other methods were evaluated with the
first synthetic data set. Due to a lack of any gold standard to
perform quantitative evaluation, we demonstrate the relative
variations of accuracy and precision while tracking the fibers
in a bundle. First, fibers are tracked in both directions from a
seed plane which is normal to the spirally shaped bundle at
the middle. A Monte Carlo simulation of the fiber tracking is
performed from 1000 seed locations on the seed plane ten
times, each time with a different realization of noise. The
addition of noise is performed by increasing the SNR from
10 to 80 in discrete steps of 10. Although the noise distribu-
tion with in vivo DTI data is Rician, Gaussian noise is a close
approximation of Rician noise when the SNR is more than 5.
Tracking accuracy is measured in terms of the number of

successful fiber pathways that reach the regions of interests
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at both ends. Similarly, the precision is quantified by mea-
suring the standard deviation of the distance from the true
pathway and is measured by calculating the shortest distance
on the plane normal to the medial axis.

II.I. Robustness to PVA and weak structural
connectivity

Unlike the first synthetic data set, the other two sets are
designed to closely resemble weak structural connectivity
with a decline in fractional anisotropy toward the middle of
the fiber bundle and PVA due to fiber crossing. The weaker
structural connectivity is simulated by lowering the FA value
in the middle portion of the spiral. The seed plane in this
case is normal to the medial axis below the low FA region
�Figs. 2�b� and 2�c��. The PVA region is simulated by adding
the eigenvectors of the two bundles. More specifically, we
first determined the three eigenvalues based on the FA in the
PVA region. Then the corresponding eigenvectors of the two
separate bundles were added to generate the tensor as men-
tioned in Appendix A. The upper diagonal elements of the
symmetric tensor matrix are considered as the tensor element
vectors. Similarly, two seed planes were defined halfway be-
tween the crossing point and the center of the sphere at the
lower end �Fig. 2�c��. Zero mean Gaussian noise was added
to the diffusion tensor matrix for both phantoms. The SNR
was varied between 10 and 80 in discrete steps of 10. The
fibers were tracked in either direction from the seed planes,
and those reaching either end successfully are stored. The
robustness of the algorithm is measured by comparing the
number of fibers and the standard deviation of the distance
vectors from the successful fibers to the medial axis.

The number of fibers reaching both ROIs is a reliable
measure of robustness of the algorithm. However, the third
data set has a common segment �PVA region� and addition of

FIG. 2. Simulated data. �a� White matter spiral connect-
ing gray matter regions at both ends. �b� Simulated fi-
bers with a low FA region in the middle. �c� White
matter pathways cross each other at the middle to simu-
late PVA. �d� FA distribution profile of the simulated
fiber e in �a�. The arrow indicates the seed planes. �e�
The spirally shaped vector field representing the princi-
pal eigenvectors in the absence of noise. �f� Distances
from the medial pathway are measured on uniformly
spaced normal planes in a bundle where representative
fibers are shown using streamline approach with SNR
=60. �g� View of the direction fields associated with the
principal eigenvector of each bundle �marked region in
�c� expanded with direction fields�.
noise may lead fibers in the first bundle to terminate in the
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second. We therefore define a coefficient of misclassification
�Eq. �18�� to measure this uncertainty in tracking

Cmc =
�q1 � q1�� + �q2 � q2��

q1 + q2
. �18�

q1 and q2: Number of fibers detected on the seed planes in
bundles 1 and 2.

q1� and q2�: Number of fibers terminated in bundles 1 and 2
�upper gray matter regions, Fig. 2�c��.

The valid fibers stored for analysis purpose are those that
terminate in the synthetic gray matter regions at both ends.
Besides that, the other termination criteria are FA threshold
�FA�0.12� and curvature limitation, i.e., if the angular de-
viation between two successive principal eigenvectors �cur-
vature threshold �� is greater than 60°. The step size used in
the tracking is ��=0.4 �Eq. �1�� for both synthetic and in
vivo data. The seed locations seen outside the bundle �Fig. 2�
are prone to quick termination due to the low FA and curva-
ture threshold criteria because eigenvectors outside the
bundle volume are also randomly oriented.

II.J. Fiber tracking on in vivo DTI data

The in vivo data acquisition was performed on twelve
healthy volunteers using a 3 T Philips Achieva MR scanner
with a single shot echo planar pulsed gradient spin-echo im-
aging sequence. Diffusion weighting was performed along
32 noncollinear directions with b value of 1000 s /mm2, rep-
etition time TR=10 s, echo time TE=60 ms, and FOV
256�256�120 mm3. Sixty continuous slices having a ma-
trix size of 128�128 were acquired with an isotropic spatial
resolution of 2�2�2 mm3. These high resolution DWI
data with SNR�50 were used for tensor calculation and
diffusion tensor elements were fitted using a weighted least-
squares approach. The FA maps are calculated from the ten-
sor data. FMRI time series data were subsequently acquired
�200 volumes� with the same imaging geometry while the
subject performed a designated language task. The T2

weighted fMRI data with TR=1988.5 ms and TE=35 ms
have lower spatial resolution of 64�64�30 with voxel size
3.5�3.5�3.5 mm3.

The above data underwent realignment and slice time cor-
rection to remove motion artifacts. A subjectwise analysis of
the fMRI data was done using SPM5 to localize the high
BOLD signal regions that corresponded to language related
functional activation. The individual subjects were normal-
ized with respect to SPM template and the transformations
were applied to the corresponding binary activation maps,
bringing all subjects to a common space. We then calculated
the frequency of occurrence of activated voxels across the
subjects and rejected those voxels which were not activated
in at least three subjects. Three regions which usually are
involved in language processing, namely, Broca’s, Wer-
nicke’s, and the supplementary motor area �SMA�, were lo-
calized manually as the global region of activation. The ac-
tivated voxels in the individual data, which were present in
the globally activated regions, were considered subjectwise

functionally active regions. These regions were mapped back
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to the individual space by coregistering the fMRI data with
respect to the DWI �b=0� data. The transformation was then
applied to the binary activation maps to localize the function-
ally active regions in the individual subject space. All sub-
jects except one demonstrated significant activation in all
three regions of interest. We then defined a seed plane nor-
mal to the lines joining the centroids of Broca’s to the SMA
�path 1� and Wernicke’s to Broca’s region �path 2�. The di-
ameter of the seed plane was 0.8 and 1.2 times the distance
between the centroids of the functionally active regions con-
nected by paths 1 and 2, respectively �all calculations were
done in unit voxels�. We deliberately made the seed plane
larger in path 2 because dorsal and the ventral pathways
connecting Broca’s to Wernicke’s region are well separated.
The seed planes were uniformly sampled and the radius was
defined to include all possible fiber pathways that connect
the two regions, though they were masked out and were not
considered for tracking. The step size and fiber termination
criteria were exactly same as in case of synthetic data �step
size=0.4, FA threshold �0.12, and curvature threshold �
�60°�. We deliberately preferred lower FA and curvature
threshold because we were interested in delineating fibers
close to functionally active regions which usually are con-
fined to gray matter region. Figure 4�a� shows all valid fiber
pathways that cross the seed plane normal to the path joining
Broca’s to the SMA region. Figure 4�b� has retained only
those fibers which connect the functionally active regions in
the concerned area. The fibers shown in Fig. 5 are plotted
after tracking those five times from the uniformly sampled
seed planes in both directions, each time from 2000 seed
locations. However, the same seed plane was more finely
sampled with 10 000 seed locations for fiber tracking using
Euler’s, Friman’s, and Lu’s method. We have used our own
code to delineate neuronal fibers, which was previously de-
veloped for our work12,19 and was modified for this particular
purpose.

III. RESULTS AND DISCUSSION

III.A. Tracking accuracy and precision analysis
„synthetic data…

The first set of synthetic data was used in a tracking ex-
periment to determine and compare the accuracy and preci-
sion of our approach with respect to other methods. The
orientation of the principal eigenvectors are quite coherent in
the noise free model unlike those found with in vivo data,
and hence are easily trackable using Euler’s method �princi-
pal eigenvectors are shown in Fig. 2�e� on the fiber path-
way�. Addition of noise, however, makes it more difficult to
reconstruct the fibers, particularly when the FA is low. Our
approach tracks the fibers ten times on the same seed plane,
each time using 1000 seed locations for different realizations
of noise. Tractography results using Euler, Friman and Lu et
al. are compared with the mean number of fibers traced with
our approach as we perform fiber tracking multiple times.
Friman’s method was implemented to sample 10 000 points
at a finer scale on the same seed plane for synthetic data,

unlike what we did in our approach. The program rounds up
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the mean number of fibers to its nearest value as it was
originally intended to compare the results to deterministic
methods. It is shown that the mean number of successful
fibers has an increasing trend when the SNR increases �Fig.
3�a��. For high SNR, all the methods tend to have similar
success rate; however, when the SNR is low, our method
outperforms the other three.

We have also randomly chosen ten fibers generated using
each method and calculated the standard deviation of the
distance vector from the medial pathway. The shortest dis-
tance is measured from the center of an intersecting plane,
normal to the medial path to the intersecting fiber points
�Fig. 2�f��. The normal planes are drawn at 12 uniform inter-
vals on the medial line. Figure 3�b� plots the mean value of
standard deviations for each level of noise. It shows that the
standard deviation in our method is higher than Friman’s and
Lu’s method when the data are less noisy and almost com-
parable to other methods when the data are noisier. However,
it decreases with increasing SNR and is minimal for the Eu-
ler method.

III.B. Tracking robustness to PVA and weak structural
connectivity

Figure 3�c� presents the number of reconstructed fibers in
a synthetic spirally shaped bundle whose middle region has
low fractional anisotropy �Fig. 2�b��. It can be observed that
our approach performs better than other three methods in
terms of number of fibers particularly when the level of noise
is high and has comparable performance with less noisy data.
Table I compares the robustness to PVA of the four algo-
rithms quantitatively when noise is added to the data. The
tensor in the PVA region is approximated by adding the
eigenvectors associated with both the fiber bundles in the
overlapping region; hence the resultant fiber orientation may
not align with either of them. As a result, when noise is
added to these data, the tracking produces erroneous fibers.
The voxels in the overlapping region comprises of 132 vox-
els, which is shared by both fiber bundles. The calculated
value of angular difference between the principal eigenvec-
tors in these voxels varies between 52.32° and 88.05°. Each
bundle is tracked from two different seed planes as shown in
Fig. 2�c�. The vector field in Fig. 2�g� demonstrates the
variation of direction field in both bundles. We believe this
variation of angle between principal eigenvectors is a realis-
tic simulation of fiber bundles.

The synthetic fiber bundle is simulated in a 128�128
�192 image volume assuming each voxel to be isotropic.
The bundle volume is calculated by summing up each voxel
through which the each fiber in the bundle passes. The vox-
els that are common on multiple paths are considered once to
avoid redundancy in calculating bundle volume. Hence the
number of voxels in each bundle is a direct measure of
bundle volume. We measured the bundle volume by varying
the SNR, as in other analysis for two synthetic bundles
shown in Figs. 2�a� and 2�b�. The overall bundle volume in
both cases ��1� FA varies uniformly �Fig. 2�a�� and �2� low

FA region at the middle �Fig. 2�b��� are found to be higher in
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our approach. However, bundle volume using Friman’s ap-
proach is also significantly greater than Euler’s and slightly
bigger than Lu’s approach for low SNR �Figs. 3�d� and 3�e��.
In some cases there were few fibers, which terminated in the
gray matter area belonging to the other bundle. The metric
defined in Eq. �18� quantifies the misclassification by calcu-
lating the ratio of the wrongly terminating fibers to the total
number of fibers detected. Table I shows the number of fibers
tracked successfully and the misclassification ratio. Interest-
ingly the misclassification ratio for our approach is slightly
high in comparison to Lu’s and Friman’s approach for low
SNR but decreases rapidly as SNR increases.

III.C. Fiber tracking on in vivo DTI data

The in vivo tracking of neuronal fibers is performed on
both pathways �path 1: Broca’s to SMA and path 2: Wer-
nicke’s to Broca’s� in the language network in the left hemi-
sphere because all the subjects have shown left hemispheric
asymmetry while performing the language task. Figure 4�a�
shows an example of all the fibers that could be traced on the
circular grid defined normal to the path connecting Broca’s
and SMA regions and Fig. 4�b� shows the fibers that termi-
nate in the functionally active regions. Figures 5�a�–5�d�
shows fiber bundles in paths 1 and 2 delineated using our
approach as well as other methods. For this particular case,
our approach shows clearly a thicker bundle containing
roughly 40% more than Euler’s method. The dorsal and ven-
tral pathway for a particular subject is shown in Fig. 5�e�
using our approach. The known arcuate fasciculus connect-
ing Broca’s to Wernicke’s region was trackable in all 11 sub-
jects using our and Friman’s approach �one subject was ex-
cluded due to undetectable activations in all three regions�.
The ventral path in the arcuate fasciculus could be tracked in
six subjects only using our method, though there are less
argument about the existence and function of this pathway in
the human auditory system.34 However, Euler’s method was
only able to track the dorsal connection of arcuate fasciculus
in eight subjects and was unable to trace any of the ventral
pathways.

We calculated the mean bundle volume in individual path-
ways across subjects in each method using the following
procedure. The isotropic voxel of the mean DWI data was
used to calculate the bundle volume. Each voxel had a size
of 2�2�2 mm3 and was subdivided in to eight subvoxels
of 1�1�1 mm3 and the number of subvoxel inside which
the fiber pathways lands up in each step were stored. The
subvoxels that are common on multiple paths are considered
only once to avoid redundancy. The number of voxels in
each bundle is a direct measure of bundle volume in mm3.
Figure 6 and Table II provide a quantitative and comparative
presentation of ability of different algorithms to track fiber
pathways using all the four methods, which clearly demon-
strate the better performance of our method in terms of num-
ber of bundles tracked and the bundle volume. However,
number of fibers, particularly in the ventral pathway connect-

ing Wernicke’s to Broca’s region, and consistency in terms of
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STD of number of fibers across subjects is marginally supe-
rior in Friman’s approach, though it could track only five
fiber pathways in this path.

IV. CONCLUSION

We have proposed in this work a novel method for adap-

FIG. 3. �a� Number of fibers vs SNR. The plot shows the mean number of
deviation for each set of measurements is also shown. �b� The standard dev
in the bundle using our approach and other three different methods. Standa
fiber bundle with a weak link between gray matter regions. Our approach sho
seed position. �d� Bundle volume vs SNR calculated using different metho
synthetic fiber bundle with a week structural link �Fig. 2�b��.
tive tracking of neuronal fiber pathways in the human brain.
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Compared to the work we proposed earlier, there are two
major contributions in the present work. First, this new
framework extends the previous deterministic Bayesian
tracking into an adaptive one that allows probabilistic track-
ing in the gray matter and performs closer to deterministic
tracking in the white matter. Since brain functional regions

s tracked ten times from each seed location for our method. The standard
of the measured distance from the medial axis to ten representative fibers
iations are plotted vs SNR. �c� Number of fibers vs SNR for the synthetic
e mean number of fibers tracked over ten simultaneous iterations from each
r the synthetic fiber bundle in Fig. 2�a�. �e� Similar calculation done for
fiber
iation
rd dev
ws th
ds fo
reside in the gray matter, such an adaptive framework pro-
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FIG. 4. �a� An example of 3D view of all valid fiber pathways that cross the seed plane normal to the path connecting Broca’s and SMA region. �b� Shows

the fibers that terminate in the concerned functionally active region. The grid shown is the seed plane.

Medical Physics, Vol. 37, No. 8, August 2010



the arcuate fasciculus, i.e., arrow �dorsal pathway� and white �ventral pathway�.
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TABLE I. Effect of PVA is analyzed by calculating the number of successful fibers that connect starting and terminating gray matter regions in the simulated
bundles. q1 and q2 are the number of fibers that start from bundles 1 and 2. The results for the improved Bayesian approach are the mean value of the number
of fibers over five runs. The terminated fibers at the other end of the respective bundle are presented in the second row. The coefficient of misclassification
is in the third row and the best values for each case are shown in bold font.

Method

SNR=10 SNR=20 SNR=30 SNR=40 SNR=50 SNR=60 SNR=70 SNR=80

q1+q2 q1+q2 q1+q2 q1+q2 q1+q2 q1+q2 q1+q2 q1+q2

Improved Bayesian Start 55.8+61.4 70.9+73.4 66.9+74.8 64.8+70.5 65.6+62.5 75.4+82.1 64.6+83.0 86.7+94.4
Terminate 63.5+52.3 72.6+70.9 68.4+72.8 63.1+72.4 63.8+64.1 76.4+80.7 64.2+83.4 88.1+94.1
Mean Cmc 0.1433 0.0291 0.0247 0.0266 0.0265 0.0152 0.0054 0.0094

Lu’s method Start 48+49 45+48 57+60 64+63 81+81 95+86 85+87 81+89
Terminate 50+47 50+43 51+66 62+65 79+83 91+90 80+92 78+92

Cmc 0.0412 0.1075 0.1026 0.0315 0.0247 0.0552 0.0581 0.0353
Friman’s method Start 49+57 50+59 61+65 67+59 82+85 88+76 84+83 78+85

Terminate 56+40 53+56 57+69 60+66 79+88 86+78 79+88 76+87
Cmc 0.1458 0.0550 0.0634 0.1904 0.0359 0.0243 0.0598 0.0245

Euler’s method Start 24+29 26+27 30+37 43+41 56+65 60+59 79+67 71+73
Terminate 28+25 30+23 27+40 47+37 58+63 59+60 76+70 72+72

Cmc 0.1509 0.1509 0.0896 0.0952 0.0331 0.0168 0.0411 0.0139
FIG. 5. A 3D view of neuronal fibers connecting Broca’s to SMA region overlaid on FA map using �a� improved Bayesian algorithm, �b� Lu’s method, �c�
Friman’s method, and �d� Euler’s method. �e� An individual case showing two separate pathways: �1� Broca’s to Wernicke’s area and �2� Broca’s to SMA. The
volumes are the functionally active regions delineated based on a designated language task. The 3D view clearly shows both dorsal and ventral pathways of
Medical Physics, Vol. 37, No. 8, August 2010



arcuate fasciculus separately�, �b� mean bundle volume, and �c� mean number of
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vides a useful tool for integrated studies of the structure-
function relations in the human brain. Second, the proposed
framework has been successfully applied to study the lan-
guage circuits of eleven human subjects whose functionalac-
tivations were detected. Experimental results with simulated
and in vivo data are in good agreement with the theoretical
aspects of the algorithm. Comparisons of the performance
with conventional �Euler’s� method as well as Bayesian and
Bayesian stochastic approaches indicate that a random sam-
pling with a controlled variance can be helpful in overcom-
ing difficulties to track fibers in such situations. Though the
algorithm is computationally expensive in comparison to
Lu’s method, due to the repeated tracking of the fibers from
the same seed locations, the performance is superior due to
its ability to delineate fibers in noisy and low FA regions.
The random sampling of the estimated tensor element vec-
tors is responsible for marginal increase in mean standard
deviation using our approach. From the practical point of
view, this approach can be used as a supporting tool for
quantitative analysis of structure-function relationships in
cognitive neuroscience as none of the methods proposed so
far are able to fully quantify the structural connectivity in the
language system, except few proposals to lateralize func-
tional behavior in relation to structural connectivity. How-
ever, an effective and accurate integration of DTI and fMRI

tracked in two important pathways �including the dorsal and ventral part of
fibers, using four different approaches.
TABLE II. Quantitative presentation of the fiber path ways tracked using
different methods. NFB: Number of fiber bundles, MBV: Mean bundle vol-
ume, MNF: Mean number of fibers, and STD: Standard deviation of the
number of fibers.

Method
Broca’–SMA

�Path 1�

Wernicke’s–Broca’s
�Path 2�

Dorsal Ventral

Improved Bayesian algorithm NFB 11 11 6
MBV 2837.33 3109.21 626.06
MNF 178.76 201.5 46.8
STD 16.12 20.03 7.22

Lu’s method NB 11 10 6
MBV 2616.45 2819.2 643.17
MNF 172.91 187.3 37.17
STD 21.64 18.68 8.23

Friman’s method NB 11 11 5
MBV 2757.44 2672.4 516
MNF 161.43 194.70 51.32
STD 20.53 17.34 6.64

Euler’s method NB 9 8 ¯

MBV 1702.55 1958.37 ¯

MNF 103.33 98.75 ¯

STD 12.27 10.62
FIG. 6. Bar plot that compares three vital parameters, i.e., �a� number of bundles
is beneficial to detailed analysis of distributed language net-
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work. Although such integrated studies are in beginning
stage, we believe they will open up a new avenue for inves-
tigations into the structural basis of functional relations in
human brain.

APPENDIX A: EIGENVECTORS ESTIMATION FOR
SYNTHETIC FIBER BUNDLE

We have

FA =�3

2
�

��1 − �2 + �2 − �2 + �3 − �2

��1
2 + 2

2 + 3
2�

,

where  is the mean eigenvalue.
In case 2=3,

2FA2�1
2 + 22

2� = 3�1 − �2 + 6�2 − �2,

2FA2�1
2 + 22

2� =
4

3
�1 − 2�2 +

2

3
�2 − 1�2,

FA2�1
2 + 22

2� = �1 − 2�2,

2
2�1 − 2FA2� + 2�− 21� + 1

2�1 − FA2� = 0.

Solution to the above quadratic equation if the principal
eigenvalue is known

2 =
1�1 − �1 − �1 − FA2��1 − 2FA2��

�1 − 2FA2�
,

since the trace is assumed to be constant �C=2.0
�10−5 cm2 /s�.

1 + 22 = C ,

1 +
21�1 − �1 − �1 − FA2��1 − 2FA2��

�1 − 2FA2�
= C ,

1 =
C


1 + 2
�1 − �1 − �1 − FA2��1 − 2FA2��

�1 − FA2�
� .

Hence, 2= �C−1� /2.
If the unit principal eigenvector v1 is in the direction of

the spiral, any two orthogonal unit vectors �v2 and v3�v1�
generated randomly can construct the tensor element vector
d for the synthetic data.

d = v . 1 0 0

0 2 0

0 0 3
� . v−1,

v = �v1v2v3�

APPENDIX B: SIMULATION OF DTI DATA FROM IN
VIVO DW DIRECTION INFORMATION

The pixel signal intensity, S in a pulse gradient spin-echo

experiment is
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ln
 S

S0
� = − b � �nxnynz�d11 d12 d13

d21 d22 d23

d31 d32 d33
�nx

ny

nz
� ,

where n= �nxnynz� is the unit diffusion direction vector in the
experiment �we considered 32 directions for the simulated
data�, b is the scalar diffusion weighting factor, and S0 is the
signal intensity in the nondiffusion weighted data.

⇒ nx1
2 ny1

2 nz1
2 2nx1ny1 2ny1nz1 2nz1nx1

¯ ¯ ¯

nx17
2 ny17

2 nz17
2 2nx17ny17 2ny17nz17 2nz17nx17

�
d11

d22

d33

d12

d13

d23

�
←¯ ¯ ¯ ¯B¯ ¯ ¯ ¯→

since the matrix D is symmetric. B is a 32�6 matrix made
of direction information and �� in Eq. �10� is a square matrix
�32�32� �= �Bt��

−1B�−1. However, � is an identity matrix in
case of synthetic data.
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