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The crawling wave experiment, in which two harmonic sources oscillate at different but nearby
frequencies, is a development in sonoelastography that allows real-time imaging of propagating
shear wave interference patterns. Previously the crawling wave speed was recovered and used as an
indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image
can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes
of some of the artifacts are exhibited. In addition, a differential equation is established that enables
imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change.
The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data;
(2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the
wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid

in the image plane. © 2010 Acoustical Society of America. [DOL: 10.1121/1.3442575]

PACS number(s): 43.35.Mr [PEB]

I. INTRODUCTION

Shear stiffness imaging in tissue is a fast-moving re-
search area inspired by the doctor’s palpation exam. Stiff
regions indicate an abnormality. Experiments that are de-
vised to create displacement that will yield tissue mechanical
properties include: (1) tissue is compressed; stiff tissue com-
presses less; the displacement is measured using ultrasound
or MR; the Lamé parameter, w, is imaged, (Oberai et al.,
2004; Barbone and Bamber, 2002; Konofagou et al., 2000;
Thitaikumar and Ophir, 2007); (2) a time harmonic excita-
tion is applied; the maximum displacement at each point in
the image plane is measured using ultrasound and the dis-
placement is imaged (Gao er al., 1995; Taylor et al., 2000;
Wu er al., 2002); or the displacement, using MR, is measured
at 4 to 8 equally spaced times in a period cycle, the shear
wave speed or the Lamé parameter, u, is imaged (Greenleaf
et al., 1996; Kruse et al., 2000; Braun et al., 2001; Manduca
et al., 2001, 2002, 2003; Ehman et al., 2006; Sinkus et al.,
2007); (3) a traveling wave is created using: (a) a line source
created by a sequence of interior radiation force pushes (Ber-
coff et al., 2002, 2004), and a primarily shear wave, with a
front, travels outward from the source; the speed of the wave
front is imaged (McLaughlin and Renzi, 2006a, 2006b; Tan-
ter et al., 2008); a point source is created by an interior
radiation force push and the local shear wave speed is deter-
mined by measuring the time to peak at a nearby location
(Nightingale et al., 2001a, 2001b; Fahey er al., 2005; Palm-
eri et al., 2006); or (b) two harmonic sources that oscillate at
different but nearly the same frequency; the traveling wave
speed is imaged (Castaneda et al., 2009; Hoyt et al., 2006,
2007a, 2007b, 2007c, 2008a, 2008b; McLaughlin er al.,
2007; Wu et al., 2004, 2006; Zhang et al., 2007, 2008). This
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latter experiment, termed the crawling wave experiment, pro-
vides the data for the shear wave imaging presented in this
paper. Figure 1 shows a diagram of the experimental setup.

In the crawling wave experiment, two sources with dif-
ferent but nearly the same harmonic excitations induce a
moving interference pattern in the spectral variance imaged
by a Doppler ultrasound machine, e.g., the GE Logiq 9. This
moving interference pattern is termed a crawling wave (Wu
et al., 2002, 2004, 2006), and the phase wave speed of this
crawling wave is related to the shear wave speed of the tissue
between the two sources. The phase of the crawling wave
can be determined from the spectral variance and then, using,
e.g., the Arrival Time algorithm (McLaughlin and Renzi,
2006a, 2006b), the crawling wave phase wave speed can be
imaged; see e.g., McLaughlin e al. (2007). In phantoms,
e.g., those utilized in McLaughlin ez al. (2007); Hoyt ef al.
(2006, 2007a, 2007¢, 2008a); Wu et al. (2004, 2006); Zhang
et al. (2007), the crawling wave phase wave speed can be a
good indicator of shear wave speed changes.

At the same time, it is possible for the inclusion to be
positioned so that there are high-speed artifacts in a crawling
wave phase wave speed image. These artifacts can distort the
position of the inclusion and also suggest that the inclusion
has a higher shear wave speed than is actually the case. This
is particularly true when the harmonic sources are point
sources, which is one of the cases targeted in this paper. It is
less of a problem when the sources are line sources.

In this paper, we develop a new algorithm to recover the
shear wave speed without such artifacts, and we test the al-
gorithm on synthetic data. A major contribution is a deriva-
tion of a linear partial differential equation that enables cal-
culation of the shear wave phase from both the crawling
wave phase and the crawling wave phase wave speed.

Il. MATHEMATICAL MODEL

Tissue 1is viscoelastic. While in previous work
(McLaughlin et al., 2007) we assumed that small displace-
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FIG. 1. Setup of the crawling wave experiment: (a) shear vibration sources,
(b) biomaterial, and (c) ultrasound probe. The light gray area is the image
plane.

ments of propagating waves induced by the crawling wave
experiment in tissues were governed by the equations of lin-
ear elasticity, here we choose a viscoelastic model. We have
chosen the Standard Linear Solid Model (Zener Model)
(Fung and Tong, 2001). This model can have several Max-
well elements in parallel. Here we have one Maxwell ele-
ment in parallel with a spring element, as this model has
been shown to match experimental data (Klatt er al., 2007).
A diagram of our model is shown in Fig. 2.

With the viscoelastic effect included only for the devia-
toric part of the stress-strain relationship, the equations for
this Linear Solid Model become

pu,=VANV -u) + V- (uy(Vu + Vu?))

13
J
+V. f e —(Vu + Vul)ds, (1)
0 as

where 7=,/ u, is the relaxation time for the Maxwell ele-
ment. We will denote the sum of the spring elements as w
=Moot M-

We choose to include the viscoelastic effect for only the
deviatoric part because our calculations with this model
show good agreement with experimental data.

lll. EQUATIONS FOR THE PHASE

Let ¢, be the spatially-dependent phase of the solution
u! due to the excitation from a source on the left side of the
medium oscillating at a frequency w;. Similarly, let —¢, be
the spatially-dependent phase of the solution u? due to the

Ho

Ky N,

FIG. 2. Standard linear solid model with spring (top) and Maxwell element
(bottom) in parallel.
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excitation from a source on the right side of the medium
oscillating at a frequency w,. The Eikonal equations for ¢,
and ¢, are derived as follows.

First, assume the geometric optics approximation (Ji
et al., 2003) for u':

u'(x,7) = Ae'1 =40
where

A A
A=Ag+—+—5+...
iw; (iw))

is the asymptotic expansion of A. Substitute this expansion
into the Linear Solid Model, Eq. (1) and write all terms of
Eq. (1) in powers of w;. Assuming there is enough separation
of scales, the coefficient of each power of w, is separately set
equal to zero. Here we consider only the coefficient of the
term which has the highest power of w;. Setting this coeffi-
cient equal to zero yields

O = MAO N (2)
where

M=[(N+un)V ¢1(V¢1)T+ (M|V¢1|2 - p].

This is the same form as in Ji and McLaughlin (2004), ex-
cept here, consistent with the high-frequency approximation
of geometric optics, w=puy+m;. This also holds if we use
several Maxwell elements in the viscoelastic model; in that
case, u=po+=N_ u, In order for Eq. (2) to have a non-
trivial solution A, the matrix M must be singular. Therefore,
we set det M =0, which implies that either

Vb (%) = \pluw = /ey, (3)

where c; is the high-frequency limit of the shear wave speed,
or

[V (x)| = Vp/(N+2u) = l/c,,

where ¢, is the high-frequency limit of the compression
wave speed. The experiment is designed so that the ampli-
tude of the compression wave is small [see p. 2440,
McLaughlin et al. (2007)], so we assume that the Eikonal
equation in Eq. (3) holds.

Similarly, assuming

u?(x,7) = Bel@2t+42)
yields the same Eikonal equation, satisfied by ¢,; i.e.,

IV eho(x)| = \pl e = e ()

In the experiment, the Doppler spectral variance |ul|? is
imaged for the downward component u of u=u'+u?, which
is the sum of the two shear waves propagating in opposite
directions from the two sources. Under the geometric optics
assumption, from the spectral variance, we obtain the phase
i of the crawling wave (McLaughlin ef al., 2007):

¥(x,1) = Aot — (x), (5)

where
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U(x) = 011 (%) + 025(x) (6)
is the spatially-dependent component of the phase, and Aw
=w|— W)

It is important to note that the geometric optics assump-
tion is a far-field assumption, and we are actually in the near
field. Also, this assumption models forward scattering.
Therefore, we may have some artifacts due to backscattering
that result from using the geometric optics assumption. We
comment on artifacts due to backscattering in Section VIII.

IV. RELATIONSHIP BETWEEN THE CRAWLING WAVE
SPEED AND THE SHEAR WAVE SPEED

Taking the time-derivative of Eq. (5), we obtain

Aw—(v—l’f-d—x)WfM:O.
Vg di

The term in parenthesis is the time derivative of the phase in
the direction normal to lines of constant phase (lleCOI’lSt).
Thus the phase wave speed c,, of the crawling wave phase
satisfies the Eikonal equation

iVl = Aw. (7)

Here we assume ;> w,. See also Osher and Sethian (1988);
Sethian (1999); Osher and Fedkiw (2002).

We can derive a relationship between the shear wave
speed, c,, and the crawling wave speed, c;, from Egs. (3),
(4), and (7) as follows:

2
SV = T + T4
4

+2(l)1(1)2 \Y ¢1 . V¢2

2
(cost(or2)) + 22
C

s

4(1)1(1)2
c;

where cos 0=(V¢,-V,)/ (V|- |Ves|). Then, with an error
of order Aw/w,, the relationship between ¢, and c}, is ex-
pressed as

2\
¢, \Z)lw2|cos(6/2)|c[p. 8)

w

We can see in Eq. (8) that the shear wave speed is almost a
constant scaled factor of the crawling wave speed. If the two
shear waves are propagating directly toward each other, and
their lines of constant phase are parallel, then #=0 and
|cos(6/ 2)J=_l,and the shear wave speed is exactly a scaled
factor 2w, w,/(Aw) times the crawling wave speed. If we
assume this estimate holds and estimate ¢, by the linear re-
lationship, we obtain

We call this estimate the scaled crawling wave speed. This is
the imaging functional F in the preceding paper, McLaughlin
et al. (2007).
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The lines of constant phase of one source may not be
parallel to the lines of constant phase associated with the
second source. We explain this further. First, consider a
single shear wave propagating from a point source in a ho-
mogeneous medium. The wave begins by propagating away
from the source in all directions at the same speed. Thus the
only place where the wave would be propagating straight
across the medium would be at points that lie on the hori-
zontal line going through the point source. Now consider two
shear waves in a homogeneous medium. At points that lie on
the horizontal line between the two point sources, the two
waves propagate in exactly opposite directions, so
|cos(6/2)|=1. However, at any point above or below that
line, neither wave is propagating directly across the medium,
and so the two waves are not propagating in exactly opposite
directions. See Fig. 3 for wavefront images in a constant
medium.

Second, consider just one shear wave in an inhomoge-
neous medium with an inclusion on the horizontal line
through the point source. The shear wave propagates in a
horizontal direction on that line, and nearly horizontal direc-
tion in a neighborhood about that line. When the wave
reaches the inclusion, it travels faster through it than it does
through the areas above and below the inclusion. Thus, after
the wave has passed through the inclusion, the shape of the
wavefront has changed. Before the inclusion, the front was
nearly vertical in a neighborhood of the horizontal line from
the source, whereas after the wave reaches the inclusion, the
wave front is much more rounded. Therefore, the area in
which the wave is propagating approximately straight across
the medium is much smaller. When we have two shear waves
propagating in opposite directions whose fronts both have a
very round shape, the approximation =0 is even less accu-
rate. The approximation contains more error when the inclu-
sion does not lie on the horizontal line between the two
sources, because both waves enter the inclusion at directions
that, even on initiation, are not horizontal. See Fig. 4 for
wavefront images in an inhomogeneous medium.

These calculations suggest that: either (1) the point
sources need to be sufficiently far from the region of interest;
or (2) the point sources need to be replaced by sources that
don’t induce these artifacts; and/or (3) the artifacts are re-
moved by adding a step to the algorithm that computes the
shear wave speed from the crawling wave data. Note that
line sources are utilized in Castaneda et al. (2009). As we
show later, line sources do not produce the type of artifacts
that point sources produce.

V. SIMULATING THE SPECTRAL VARIANCE

As discussed earlier, our model is described by the vis-
coelastic equations (1). Since the experiment is designed to
have most of the information in one component, we make a
simplification and use a wave equation model:

t
J
pu,=V-(uoVu)+V- f ,u,le_O_S)/T]&— V uds, 9)
0 S

We create synthetic data by solving the viscoelastic wave Eq.
(9). It is important to test the algorithm on spectral variance
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FIG. 3. Wavefronts in a homogeneous medium. (a) and (e): wavefronts due to a single point source at (—0.025,0). (b) and (f): closeups of the regions outlined
in (a) and (e). (c) and (g): wavefronts due to a single point source at (0.025,0). (d) and (h): closeups of the regions outlined in (c) and (g).

data obtained from the viscoelastic wave equation simulation
because this data is a good representation of the data col-
lected experimentally. To generate accurate synthetic data,
we implement the following procedures.

We consider the case where w; and 7, are constant. We
write the modulus u as ,u,0=,u,8+,uf), where ,u,g is the con-
stant background and ) is the increase or decrease of w in
the inhomogeneity. We write the solution u as u=u’+u’
where u° is the homogeneous solution, solving

t
Jd
puy =V - (ug V) + V- J e — v 1 0ds.
0 os
Then the scattered wave u® satisfies
! d
pus, =V - (uoVu')+V- f ,u,le_(’_s)”lg Vu'ds + f,
0
where f=V-(u§VuO).
In the case of two point sources located at (x,,y;) and
(x5,v,), the formula for u® is:
i .
ul(x,y,1) = ZH(()I)(klrl)e”"l’ +

i .
L e,

where

ri= \’/(x—xi)2+ (y_)’i)z’ i=1,2

and
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[P .
ki=—w;\| ———, =1,2,
' i Go(wi) l

where G° is the homogeneous part of the complex modulus:

0, 07 My
My + 07

0 lOMTy

Gw) = =g+

inI +1 '
In the case of two line sources located at x=x; and x=x,, the
formula for u° is

Lo .
+ —etka xz—x)et(uﬂ'
2

u’(x,y,1) = kleikl("_xl)ei“’"

1

For better accuracy, we compute u° using the exact for-

mulas and we solve for only the scattered wave ©® numeri-

cally using a second-order numerical scheme. Then we com-
pute the spectral variance:

|u|2 = |u0 + us|2.

In addition, since u* is an outgoing solution, we assume
the Sommerfeld radiation condition for the scattering field.
Since the simulation can only be performed in a finite com-
putational domain, we need to implement appropriate ab-
sorbing boundary conditions to prevent numerical reflections
of outgoing waves. Collino and Tsogka (2001) introduced the
perfectly matched absorbing layer (PML) model by the split-
field approach for a general hyperbolic system. Here we fol-
low their idea and surround the interior domain of interest by
artificial absorbing layers where waves are trapped and at-
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FIG. 4. Wavefronts in an inhomogeneous medium with a polynomial inclusion located at the center of the image plane. (a) and (e): wavefronts due to a single
point source at (—0.025,0). (b) and (f): closeups of the regions outlined in (a) and (e). (c) and (g): wavefronts due to a single point source at (0.025,0). (d) and

(h): closeups of the regions outlined in (c) and (g).

tenuated. The setup of the first-order system that is solved in
the layer follows the derivation in Collino and Tsogka
(2001).

The calculations here are in two dimensions, but corre-
spond to a three-dimensional experiment. The oscillating
point source in 2d corresponds to a line source oscillating
perpendicular to the plane of interest in 3d. The line source
in 2d corresponds to a planar source in 3d. The circular in-
clusion in 2d corresponds to a cylindrical inclusion in 3d.

VI. CRAWLING WAVE SPEED IMAGES

Given the spectral variance |u|>, we can recover the
crawling wave speed by first computing the crawling wave
arrival times by cross-correlation (Renzi, 2004; McLaughlin
and Renzi, 2006a, 2006b), also including an optimization
technique that encourages continuity in the arrival times, and
then computing the crawling wave speed by Eq. (7). To cal-

culate the derivatives of i, we use an averaging method
(Anderssen and Hegland, 1999) which controls the noise in
the derivatives.

We consider three examples, all with a polynomial in-
clusion in wg, but each with the inclusion centered in a dif-
ferent location. We solve the viscoelastic wave equation in a
two-dimensional domain Q={(x,y) e R?:-0.025=x
=0.025,-0.025=y=0.025}. We use frequencies w,
=101*27 and w,=100*27. We use point sources located at
x==*0.025*=2Ax, y=0 and line sources located at x
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= *£0.025*£2Ax. Recovered crawling wave speed images
from both point sources and line sources are shown in Fig. 5,
along with the exact wave speed images.

With point sources, we see significant differences be-
tween the exact speed and the scaled crawling wave speed.
In an image of the crawling wave speed, artifacts appear that
do not appear in an image of the shear wave speed. The
shape of the inclusion, which should be a perfect circle, be-
comes elongated. In some examples, depending upon the lo-
cation of the inclusion in relation to the two sources, the
inclusion appears to have a “tail.” This can be seen in the last
two examples, which have the inclusion located close to the
corner of the medium. This occurs because, as the two shear
waves pass through the inclusion and into the area where the
tail appears, their lines of constant phase are not parallel and
their propagation directions make 6 near 7 so that cos(6/2)
is near zero. Given the relationship

|
o —walwzc”— 1 .
BT Aw YT Jeos(02)]

we see that having 6 near 7 causes the scaled crawling wave
speed to be much higher than the shear wave speed. It should
be noted that the colorbar has been adjusted, so the high-
speed artifacts are significantly higher even than the images
show. With line sources, we have significantly less artifact,
because =0 is generally a more accurate assumption.

In these examples, with a single inclusion in a constant
background, we notice that the artifact is smallest when the

Lin et al.: Shear wave speed recovery using crawling wave data



inclusion is halfway between the point sources. However, as
we can see in the last two examples, when the inclusion is
not directly in line with the two sources, the image of the
crawling wave speed depicts its location to be closer to the
edge of the medium than it actually is. This is a result of
having point sources close to, or in, the region of interest.
When we have line sources, the position of the inclusion
relative to the sources does not have much effect.

Vil. RECOVERING THE SHEAR WAVE SPEED

Since the scaled crawling wave speed can give the type
of artifact shown in the previous section, we now develop an
algorithm to recover the true shear wave speed.

We cannot solve Eq. (8) directly without knowing the
phases ¢, and ¢,, because cos(6/2) depends on V¢, and
V,. An alternative possibility is to solve the following sys-
tem of equations for ¢, ¢,, and c;:

|V¢1| = l/cs’ |V¢2| = l/cm
X cAw
Ch=E—F——————.
Y 2\ w wnlcos(612))|

In this paper, we instead derive a first-order partial differen-
tial equation (PDE) for ¢;, where all that is needed is

c‘;,,VlAp,Aw,wl, and w,. We then solve the PDE and use the
phase ¢, to calculate the shear wave speed.

A. Derivation of the first-order PDE for the shear
wave phase

We derive a first-order partial differential equation for
the phase ¢;, beginning with the equation for the spatially-
dependent phase of the crawling wave, which is given by

':0= w )+ .
Let l?/= 12// ;. We take the gradient of both sides,
VI=Vg+ 2V 6,
W)
take the dot product of both sides with V¢,
2 , W
V-V =V |*+ . Vg, Vo,
1

multiply the second term on the right-hand side by

(ValVoi)/ (Vo Vi) =1,

3 o V|Vl
V-V =V [P+ =V, Vo
T e T TV e
and simplify, using the definition

cos 0=(Vp,-V,)/(|V ||V, |), where A(x) is the angle be-
tween V¢, (x) and V¢,(x), giving

2 w
V-V, = |V(151|2 + w_2|V¢2||V¢1|COS 6.
1

Substituting [V¢;|=1/c, and |V¢,|=1/c,, and using Eq. (8),
we have
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A 1+ (wy/w))cos & (1+cosd) Awcos b
Vip-Vo, = 2 = 2 - 2
Cs Cy W Cg
(Aw)? (Aw)>  Awcos 6
2w1w2c2121 20 0] we;

We neglect the last two terms, where the error in doing so is
O(Aw/ w,), obtaining

A Aw)?
V¢~V¢1=(—w)2. (10)
2“’1“)2sz

Note that it is possible to derive and solve a PDE for ¢, in

the same way, letting lZ’= 12// ®,, obtaining

> (Aw)®
V- Vo= —.
2(})1 wHC 12/
While both ¢, and ¢, satisfy very similar PDEs, they have
different boundary conditions on the left and right bound-
aries of the region of interest, and so the solutions are not the

same.

B. Shear wave speed recovery algorithm

The shear wave speed recovery algorithm for wave
equation data has the following outline:

1. Filter the spectral variance in time to remove all but the
Aw frequency content;

2. Find the phase IAﬂ by interpreting the values of 1;0 as arrival
times and cross-correlating the time traces of |u/?;

3. Calculate pr and c, using averaging to compute the de-
rivatives;

4. Solve the PDE (10) for ¢;;

5. Calculate V¢, and c,, using averaging to compute the
derivatives.

We note that the first step eliminates the effect of high-
frequency noise in the data. For steps 2 and 3, our methods
are the same as described in Section VI. Steps 4 and 5 are
described in detail below.

1. Calculating ¢, from the PDE

To find the phase ¢, of the shear wave from the source
on the left side of the medium, we need to solve the first
order PDE:

To handle this equation in a stable and efficient manner, we
adopt a first-order, fully-implicit upwind marching scheme
which is unconditionally stable. The discretization of the
PDE for the implicit upwind scheme is as follows.

If sgn( ‘Zx,i,j) =sgn( ‘Zy.i,j):
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A A (Aw)?
PreijOrbrij+ by ijOldrijm="—""75 "

2w wHC> .
V2% i j

and if sgn(y; )=—sgn(ih,; ):

2 A (Aw)?
Ui jO DL+ Uy O = 7 s
wlwzclzl[j

where

3{¢ _ ¢],i,i+l - d)l,i,i.
+P1,i,j— d ’
X

5)¢ o ¢1,i,{+1 - ¢1,i—1,{+1.
— P10 j+1 dy )

§X¢1 i1 = ¢1,i+1,{+1 - ¢l,i,{+l ]
sbs, dy

This scheme gives a diagonally-dominant linear system
at every pseudo-time step x;. The stability result follows
from a von Neumann stability analysis. We choose initial
conditions on the left side of the domain consistent with the
source type, so that for a line source, the initial condition is

¢1=0,
and for a point source, the initial condition is
bi=r/ CS»

where r, is the distance from the source and ¢ is the high-
frequency approximation of the background shear wave
speed. If we have line sources, we adopt a zero Neumann
boundary condition on the top and bottom boundaries. If we
have point sources, then if the outflow condition is satisfied,
the numerical scheme will automatically solve for values on
boundary points, but if the inflow condition is required, we
adopt a Dirichlet boundary condition; that is, we use the
value of ¢, which would be valid if there were no inclusion;
ie.,

¢] = r]/Ci,).

For this simulation data, c? is known. For experimental data,
we would have to use an estimate; for example, one could
use as an estimate the results from compression tests on soft
tissue similar to that being imaged, or alternatively, an aver-
age wave speed could be obtained from the time it takes for
a wave initiated on one side of the tissue to propagate across
the tissue.

To solve for the phase ¢,, we use a similar procedure
except we specify initial conditions in the right side of the
domain and solve from right to left.

VIIil. SHEAR WAVE SPEED IMAGES

In Fig. 6, we show the recovered shear wave speed for
the three cases introduced in Fig. 5, for both point and line
sources.

We can see in these images that the artifacts in the
crawling wave speed using point sources have been signifi-
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cantly reduced in our shear wave speed images. The shear
and crawling wave speeds using line sources are very similar.
This is as we expect based on the previous analysis.

We note that the ring-like artifacts around the inclusion
still appear in the shear wave speed images. These artifacts
are a result of backscattering of the wave after it hits the
inclusion. As the geometric optics approximation models for-
ward scattering, we would not expect our algorithm to re-
move these artifacts.

In the case of point sources, we also see some artifacts
propagating in from the upper and lower boundaries. These
are a result of our using the high-frequency approximation of
the shear wave speed on the boundary. These could be
avoided by adapting the algorithm to take into account
frequency-dependent wave speed; we will do this in the fu-
ture.

In Fig. 7, we show the term |cos(6/2)|. For point
sources, the cosine term is significantly less than 1 in pre-
cisely the places where the scaled crawling wave speed had
high-speed artifacts. For line sources, the cosine term is
never significantly less than 1.

IX. CONCLUSIONS AND FORTHCOMING WORK

Based on the foregoing calculations and numerical re-
sults, we suggest that (1) if the scaled crawling wave speed is
to be used as an estimate of the shear wave speed, then an
experimental setup with 2d line sources will yield a more
accurate estimate; and (2) if 2d point sources are to be used,
then (a) the scaled crawling wave speed images will have
less artifact when the inclusion is close to the line between
the two sources, and (b) an accurate image of the shear wave
speed can be obtained by using the first-order PDE (10) and
the Eikonal Eq. (3).

In summary, we have shown that it is possible to recover
the shear wave speed, and the shape and location of an in-
clusion, from the data that is collected in the crawling wave
experiment. We have done so by deriving and solving a par-
tial differential equation for the phase of the shear wave.

We note that there are several advantages to using 2d
line sources over 2d point sources. First, as mentioned
above, the scaled crawling wave speed is a better approxi-
mation of the shear wave speed and thus a better indicator of
tissue stiffness. Second, when solving the PDE for the shear
wave phase, knowledge of the shear wave speed on the
boundary is not required for line sources.

In a sequel paper, we apply the shear wave speed recov-
ery algorithm to in vitro prostate data obtained in the crawl-
ing wave experiment, and compare our wave speed images
to histology images.

In a future publication, we will consider the frequency-
dependence of the shear wave speed and adapt the shear
wave speed recovery algorithm accordingly, and compare the
results of that algorithm to the results of the algorithm dis-
cussed in this paper, which is based on a high-frequency
assumption. We will also calculate synthetic data in three
dimensions.

Lin et al.: Shear wave speed recovery using crawling wave data
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