

J Am Chem Soc. Author manuscript; available in PMC 2011 July 28

Published in final edited form as:

J Am Chem Soc. 2010 July 28; 132(29): 9990–9991. doi:10.1021/ja1044874.

Pd-Catalyzed O-Arylation of Ethyl Acetohydroximate: Synthesis of *O*-Arylhydroxylamines and Substituted Benzofurans

Thomas J. Maimone and Stephen L. Buchwald*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139

Abstract

An efficient Pd catalyst for the O-arylation of ethyl acetohydroximate with aryl chlorides, bromides, and iodides has been developed. Ethyl acetohydroximate serves as an efficient hydroxylamine equivalent for C-O cross-coupling, thereby allowing for the preparation of *O*-arylhydroxylamines from simple aryl halides. Short reaction times and broad substrate scope, including heteroaryl coupling partners, allows access to *O*-arylhydroxylamines that would be difficult to prepare in a single step by traditional methods. Moreover, the O-arylated products so formed can be directly transformed into substituted benzofurans in a single operation.

Owing to their facile incorporation into a variety of bioactive oxime linkages, 1 use as tagging elements for library synthesis, 2 as well as serving as key starting materials for the synthesis of benzofurans, ³ O-arylhydroxylamines (aryloxyamines) represent valuable synthetic building blocks. Historically, this motif has been constructed via S_NAr-type processes of various hydroxylamine equivalents (e.g. N-hydroxyphthalimide, ethyl acetohydroximate) with highly electron-deficient aromatic systems, including arene-metal complexes.⁴ In addition, N-transfer reagents have also been employed to form the N-O linkage from the corresponding phenol.⁵ Given the limited generality in these processes, recent emphasis has been placed on the copper-mediated construction of Ar—ON(R) bonds. Maitra and Wailes have reported the coupling of oximes with aryl iodides catalyzed by a CuI/1,10- Phenanthroline system. 6 In addition, both Huang and Meyer have reported the coupling of oximes with arylboronic acids utilizing Cu(II) salts. ⁷ To date, however, it is perhaps the copper-mediated coupling of aryl boronic acids with N-hydroxyphthalimide, reported by Sharpless and Kelly, that represents the most general route to Oarylhydroxylamines. We envisioned that a Pd-catalyzed coupling of simple aryl halides with a suitable hydroxylamine equivalent (Figure 1) could potentially address many of the shortcomings of the aforementioned Cu-based methodologies—namely low to moderate yields, long reaction times, difficulty with substrates containing ortho-substituents, lack of heterocyclic substrates, and the necessity to employ aryl iodides or arylboronic acids as

sbuchwal@mit.edu.

coupling partners. Herein, we report a Pd-catalyzed method that utilizes commercially available ethyl acetohydroximate as the hydroxylamine equivalent. The *O*-arylated products so formed can easily be cleaved with aqueous acid to produce *O*-arylhydroxylamines or directly processed to substituted benzofurans.

A survey of biarylphosphine ligands revealed that a catalyst based on *t*-BuBrettPhos⁹ (1) was highly active in the cross-coupling of PhBr with ethyl acetohydroximate (Table 1). Ligands 3 and 4 which have previously been employed in Pd-catalyzed C-O coupling processes between aryl halides and alcohols or phenols could be employed for this transformation, albeit with diminished efficiency. ¹⁰ Ligand 6, which lacks the tri-*i*-propyl groups, as well as ligands 2 and 5 which do not contain the di-*t*-butyl phosphine moiety, were all ineffective under these conditions. The high activity displayed with 1 was crucial due to both the thermal sensitivity of the product N—O linkage, ¹¹ as well as the ability of Pd(0) to oxidatively add into this bond at elevated temperatures. ¹²

The generality of the coupling process is shown by the examples in Table 2. Aryl chlorides, bromides, and iodides could all be employed, with aryl bromides being optimal and electron-rich aryl chlorides being most problematic. ¹³ Using 1% Pd, ¹⁴ 2% **1**, and Cs₂CO₃ as base, many electron-neutral or- deficient aryl bromides were found to undergo complete conversion within 1 hour at 65°C in toluene. The couplings of 1,4-bromochlorobenzene and 1,2-bromofluorobenzene were performed on scales of 5 and 10 mmol, respectively. In addition, a variety of heteroaryl halides including pyridinyl, quinolinyl, pyrimidinyl, and benzothiazolyl were found to readily undergo coupling. Heterocycles containing acidic *N*-H groups, such as indoles and imidazoles, have proven problematic to date. We have found that for aryl bromides containing *ortho*-alkyl substituents, the use of ligand **4** gives superior results to that with **1**, presumably due to its smaller size. Using this system even hindered substrates with an *i*-propyl or phenyl group in the *ortho* position undergo efficient coupling (Table 2). The *O*-arylated products can be easily hydrolyzed to the free oxyamines by exposure to aqueous HCl (Table 3).

O-arylketoximes bearing acidic α -hydrogens are known to rearrange to benzofurans via a [3,3] sigmatropic process, closely paralleling the venerable Fischer indole synthesis. Of interest to us was the prospect of directly converting the products of the Pd-coupling into benzofurans in a process reminiscent of our prior work in the Fischer indolization. After significant experimentation, we found that exposure of the O-arylated ethyl acetohydroximate product to an exogenous ketone and O0 in HCl/dioxane at 70 °C produces the corresponding benzofuran in synthetically useful yields (Table 4).

In summary, a hydroxylamine equivalent has been developed for Pd-catalyzed C-O cross-coupling. Key to the success of this reaction was the use of bulky biarylphosphine ligands 1 and 4, which promote C-O reductive elimination under relatively mild conditions. Broad substrate scope and short reaction times makes this an attractive method to prepare highly substituted *O*-arylhydroxylamines and benzofurans from simple aryl halides.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the National Institutes of Health (NIH) for financial support of this project (GM-58160) and a postdoctoral fellowship to T.J.M. (1F32GM088931). We thank Chemetall for a generous gift of Cs₂CO₃.

References

 Johnson SM, Petrassi HM, Palaninathan SK, Mohamedmohaideen NN, Purkey HE, Nichols C, Chiang KP, Walkup T, Sacchettini JC, Sharpless KB, Kelly JW. J Med Chem. 2005; 48:1576. [PubMed: 15743199]

- Nazarpack-Kandlousy N, Chernushevich IV, Meng L, Yang Y, Eliseev AV. J Am Chem Soc. 2000; 122:3358.
- 3. (a) Sheradsky T. Tetrahedron Lett. 1966; 7:5225. (b) Castellino AJ, Rapoport H. J Org Chem. 1984; 49:4399. (c) Takeda N, Miyata O, Naito T. Eur J Org Chem. 2007:1491.
- (a) Miyazawa E, Sakamoto T, Kikugawa Y. Org Prep Proced Int. 1997; 29:594.
 (b) Cadogan JIG, Rowley AG. Synth Comm. 1977; 7:365.
 (c) Baldoni C, Del Bettero P, Licandro E, Maiorana S. Synthesis. 1988:344.
- 5. (a) Castellino AJ, Rapoport H. J Org Chem. 1984; 49:1348. (b) Tamura Y, Minamikawa J, Sumoto K, Fujii S, Ikeda M. Synthesis. 1977:1. (c) Foot OF, Knight DW. Chem Comm. 2000:975.
- Prithwiraj D, Nonappa, Pandurangan K, Maitra U, Wailes S. Org Lett. 2007; 9:2767. [PubMed: 17580882]
- (a) Feng XH, Zhang GZ, Chen CQ, Yang MY, Xu XY, Huang GS. Synth Comm. 2009; 39:1768.
 (b) Abdelselam A, Meyer AG, Tuck KL. Synlett. 2009:955. A polymer supported Cu-catalyst has also been shown to couple oximes with aryl boronic acids, see: Wang L, Huang C, Cai C. Catalysis Comm. 2010; 11:532.
- 8. Petrassi HM, Sharpless KB, Kelly JW. Org Lett. 2001; 3:139. [PubMed: 11429858]
- For use of 1 see: (a) Fors BP, Dooleweerdt K, Zeng Q, Buchwald SL. Tetrahedron. 2009; 65:6576.
 [PubMed: 20740063] (b) Watson DA, Su M, Teverovskiy G, Zhang Y, Garcia-Fortanet J, Kinzel T, Buchwald SL. Science. 2009; 325:1661. [PubMed: 19679769] (c) Fors BP, Buchwald SL. J Am Chem Soc. 2009; 131:12898. [PubMed: 19737014]
- (a) Vorogushin AV, Huang X, Buchwald SL. J Am Chem Soc. 2005; 127:8146. [PubMed: 15926842]
 (b) Burgos CH, Barder TE, Huang X, Buchwald SL. Angew Chem, Int Ed. 2006; 45:4321.
- Blake JA, Pratt DA, Lin S, Walton JC, Mulder P, Ingold KU. J Org Chem. 2004; 69:3112.
 [PubMed: 15104450]
- 12. For many examples of oxidative addition of Pd(0) into polarized oxime N—O bonds see: Narasaka K, Kitamura M. Eur J Org Chem. 2005:4505.
- 13. We have observed the following trend in rate of C-O coupling: PhBr > PhI > PhCl.
- 14. The use of Pd₂(dba)₃ gives similar results to (allylPdCl)₂.
- (a) Wagaw S, Yang BH, Buchwald SL. J Am Chem Soc. 1998; 120:6621.
 (b) Wagaw S, Yang BH, Buchwald SL. J Am Chem Soc. 1999; 121:10251.

$$R + Pd/L$$

$$"NH2OH"$$

$$R_1$$

$$R_1$$

$$R_2$$

$$R_1$$

$$R_1$$

$$R_2$$

$$R_1$$

$$R_1$$

$$R_2$$

$$R_3$$

$$R_4$$

$$R_2$$

$$R_3$$

$$R_4$$

$$R_4$$

$$R_4$$

$$R_4$$

$$R_4$$

$$R_5$$

$$R_4$$

$$R_4$$

$$R_4$$

$$R_5$$

$$R_6$$

$$R_7$$

$$R_8$$

$$R_8$$

$$R_1$$

$$R_2$$

$$R_1$$

$$R_2$$

$$R_3$$

$$R_4$$

$$R_4$$

$$R_4$$

$$R_5$$

$$R_6$$

$$R_7$$

$$R_8$$

$$R_8$$

$$R_8$$

$$R_1$$

$$R_9$$

Figure 1. Desired Transformation.

Ne Me	
(allylPdCl) ₂ (0.5 mol %) Ligand (2 mol %) Cs ₂ CO ₃ , toluene 65 °C, 1 h	
+ Eto Me	
ă- ()	

Maimone and Buchwald

N √OEt	$\mathrm{Conversion}^b$	100%	70%	51%	%0	%0	%0	
(allylPdCl) ₂ (0.5 mol %) Ligand (2 mol %) CS ₂ CO ₃ , toluene 65 °C, 1 h	Ligand	1	3	4	2	w	9	
+ Eto Me	Entry	1	2	3	4	5	9	

^a PhBr (1.5 mmol), ethyl acetohydroximate (1.9 mmol), Cs₂CO₃ (2.3 mmol), (allylPdCl)₂ (0.5 mol %), Ligand (2 mol %), toluene (3 ml), 65 °C, 1 h.

b determined by GC.

Page 5

 $\label{eq:Table 2} \mbox{Palladium-Catalzyed O-Arylation of Ethyl Acetohydroximate.}^{a}$

R + Eto Me	(allyIPdCl) ₂ (0.5 - 2.5 mol %) 1 or 4 (Pd:L = 1:2) Cs ₂ CO ₃ , PhMe 65 °C, 1-12 h	R O N OEt
93%, X = Br	$Me_{2}N \longrightarrow O \cdot N \longrightarrow OEt$ $95\%, X = Br \qquad Me$	67%, X = 1 Me
(L = 1, 1% Pd, 1 h) OMe	(L = 1, 1% Pd, 1 h)	(L = 1, 1% Pd, 8 h)
93%, X = Br Me	70%, X = CI	0 N OEt Me 88% ^b , X = Br
(L = 1, 2.5% Pd, 1 h) Me O·N OEt	(L = 1, 1% Pd, 1 h)	(L = 1, 1% Pd, 1 h) Me O . N OEt
90%, X = I (L = 1, 1% Pd, 4 h)	$86\%^c$, X = Br (L = 1, 2.5% Pd, 2 h)	Me
N OEt N Me X = Br 79%, R = <i>i-Pr</i> 90%, R = Ph	92%, X = Br (L = 1, 2.5% Pd, 4 h)	92%, X = Cl (L = 1, 2.5% Pd, 2 h)
(L = 4, 1% Pd, 2 h) N O N OEt 90%, X = Br (L = 1, 2.5% Pd, 6 h)	Me - N OEt Me 75%, X = CI (L = 1, 5% Pd, 12 h)	N OEt Me 85%, X = Cl (L = 1, 2.5% Pd, 4 h)

 $[^]a$ ArX (1 mmol), Ethyl Acetohydroximate (1.25 mmol), Cs₂CO₃ (1.5 mmol), (allylPdCl)₂ (0.5 – 2.5 mol %), **1** or **4** (2 – 10 mol %), PhMe (2 ml), 65 °C, 1–12 h; isolated yields, average of 2 or more runs.

b yield on a 10 mmol scale = 87%.

 $^{^{}c}$ yield on a 5 mmol scale = 88%.

Table 3

Oxime Hydrolysis.a

 $^{{}^{}a}\text{Oxime (1 equiv), HCl (6 M in H2O, 2 equiv), 1,4-dioxane (0.5 M), 0 °C} \rightarrow \text{rt, 1 h; isolated yields, average of 2 runs on a 0.5 - 1.0 mmol scale.}$

One-Pot Synthesis of Benzofurans^a

a Oxime (1 equiv), ketone (2 equiv), H2O (5 equiv), HCl (4 M in dioxane, 5 equiv), 1,4-dioxane (0.2 M), 70 °C, 1-2 h; isolated yield, average of 2 runs on a 0.5 – 1.0 mmol scale.

Page 8