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Abstract
Estradiol and progesterone bind to their respective receptors in the hypothalamus and
hippocampus to influence a variety of behavioral and physiological functions, including
reproduction and cognition. Work from our lab and others has shown that the nuclear receptor
coactivators, steroid receptor coactivator-1 (SRC-1) and SRC-2, are essential for efficient estrogen
receptor (ER) and progestin receptor (PR) transcriptional activity in brain and for hormone-
dependent behaviors. While the expression of SRC-1 in brain has been studied extensively, little is
known about the expression of SRC-2 in brain. In the present studies, we found that SRC-2 was
highly expressed throughout the hippocampus, amygdala and hypothalamus, including the medial
preoptic area (MPOA), ventral medial nucleus (VMN), arcuate nucleus (ARC), bed nucleus of the
stria terminalis, supraoptic nucleus and suprachiasmatic nucleus. In order for coactivators to
function with steroid receptors, they must be expressed in the same cells. Indeed, SRC-2 and ERα
were coexpressed in many cells in the MPOA, VMN and ARC, all brain regions known to be
involved in female reproductive behavior and physiology. While in vitro studies indicate that
SRC-2 physically associates with ER and PR, very little is known about receptor-coactivator
interactions in brain. Therefore, we used pull-down assays to test the hypotheses that SRC-2 from
hypothalamic and hippocampal tissue physically associate with ER and PR subtypes in a ligand-
dependent manner. SRC-2 from both brain regions interacted with ERα bound to agonist, but not
in the absence of ligand or in the presence of the selective ER modulator, tamoxifen. Analysis by
mass spectrometry confirmed these ligand-dependent interactions between ERα and SRC-2 from
brain. In dramatic contrast, SRC-2 from brain showed little to no interaction with ERβ.
Interestingly, SRC-2 from both brain regions interacted with PR-B, but not PR-A, in a ligand-
dependent manner. Taken together, these findings reveal that SRC-2 is expressed in brain regions
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known to mediate a variety of steroid-dependent functions. Furthermore, SRC-2 is expressed in
many ERα containing cells in the hypothalamus. Finally, SRC-2 from brain interacts with ER and
PR in a subtype-specific manner, which may contribute to the functional differences of these
steroid receptor subtypes in brain.
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steroid receptor coactivator-2 (SRC-2); estrogen receptor; progestin receptor; hypothalamus;
hippocampus; reproductive behavior

INTRODUCTION
The ovarian steroid hormones, estradiol and progesterone, act in the brain to profoundly
influence a variety of physiological and behavioral events, including development,
cognition, and reproduction (Blaustein and Mani, 2006; Pfaff et al., 2009). Estradiol and
progesterone elicit many of these biological effects by binding to receptors for estrogens
(ER) and progestins (PR), respectively, in specific brain regions. ER and PR are members of
the steroid/nuclear receptor superfamily of transcriptional activators (Mangelsdorf et al.,
1995). In brain, these receptors act in a classic, genomic mechanism by interacting directly
with DNA to regulate gene transcription. In addition, steroid receptors in brain can function
independent of ligand on either DNA or at the membrane to rapidly activate cytoplasmic
signaling pathways (Olesen et al., 2005; Kelly and Ronnekleiv, 2008; Micevych and
Mermelstein, 2008; Vasudevan and Pfaff, 2008; Mani et al., 2009; Tetel and Lange, 2009).

Intracellular ER exist as two subtypes, α and β, which are transcribed from different genes
(Jensen et al., 1968; Shyamala and Gorski, 1969; Kuiper et al., 1996). These two ER
subtypes differ in their abilities to bind ligands (Kuiper et al., 1997; Hall and McDonnell,
1999; Jones et al., 1999; Damdimopoulos et al., 2008), distribution in brain (Shughrue et al.,
1997; Osterlund et al., 1998; Greco et al., 2001; Mitra et al., 2003), and function in brain and
behavior (Ogawa et al., 1998; Ogawa et al., 1999; Bodo and Rissman, 2006; Musatov et al.,
2006). Furthermore, cell culture experiments indicate that ERα is a stronger transcriptional
activator than ERβ due to differences in the AF-1 region (Delaunay et al., 2000). In primates
and rodents PR are expressed in two forms; the full-length PR-B and the N-terminal
truncated PR-A, which are encoded by the same gene but are regulated by different
promoters (Kastner et al., 1990). Under certain cell and promoter contexts, PR-B is a
stronger transcriptional activator than PR-A (Giangrande et al., 1997; Tung et al., 2006) due
to an additional activation function in the up-stream sequences unique to PR-B (Sartorius et
al., 1994; Wen et al., 1994). Studies using isoform specific knockout mice reveal that PR-A
and PR-B have distinct functions in reproductive behavior and physiology (Mulac-Jericevic
and Conneely, 2004; Mani et al., 2006).

Efficient steroid receptor transcription requires a class of proteins known as nuclear receptor
coregulators, which consist of coactivators and corepressors. These coregulators play an
important role in a variety of human diseases, including cancer and some neurological
disorders (Lonard et al., 2007). Nuclear receptor coactivators are rate-limiting in steroid
receptor-mediated gene transcription (Oñate et al., 1995; O’Malley, 2006; Rosenfeld et al.,
2006). The importance of coactivators is further evident in their ability to reverse the
squelching of the transcriptional activity of one steroid receptor by another (Oñate et al.,
1995). In addition to functioning as a bridge between receptors and the general
transcriptional machinery, nuclear receptor coactivators influence receptor transcription
through a variety of mechanisms, including phosphorylation, acetylation, methylation, RNA
splicing and chromatin remodeling (Lonard and O’Malley, 2006; Rosenfeld et al., 2006).

Yore et al. Page 2

Neuroscience. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The p160 steroid receptor coactivator (SRC) family includes SRC-1/NcoA-1(Oñate et al.,
1995); SRC-2/TIF2/GRIP1/NcoA2 (Voegel et al., 1996; Hong et al., 1997); and SRC-3/p/
CIP/ACTR/AIB1/TRAM-1/RAC3 (Anzick et al., 1997; Suen et al., 1998). These
coactivators dramatically enhance the transcriptional activity of a variety of steroid
receptors, including ER and PR (Oñate et al., 1995; O’Malley, 2006; Rosenfeld et al., 2006).
This p160 SRC family of coactivators, along with other coactivators, is thought to increase
transcriptional activity through a variety of mechanisms, including acetylation of histones,
methylation, phosphorylation and chromatin remodeling (O’Malley, 2006; Rosenfeld et al.,
2006)]. In vitro studies indicate that under most conditions, ER and PR interact with the
SRCs in the presence of an agonist, but not in the absence of ligand or in the presence of an
antagonist or a selective receptor modulator (Oñate et al., 1995; McInerney et al., 1996;
Shiau et al., 1998; Tanenbaum et al., 1998) but c.f. with (Oñate et al., 1998; Webb et al.,
1998; Dutertre and Smith, 2003). Selective ER modulators (SERMs, e.g. tamoxifen) and
selective PR modulators (SPRMs, e.g. RU486) regulate ER and PR activity, respectively, in
a tissue-specific manner (Lewis-Wambi and Jordan, 2005; Wardell and Edwards, 2005; Han
et al., 2007). Whether these receptor modulators block or activate receptor action appears be
dependent on the cellular environment, including the ratio of coactivators and corepressors
(Smith et al., 1997).

While SRC-2 shares some sequence homology with the other two members of the p160
coactivator family, distinct physiological functions of SRC-2 have been identified. SRC-2
knock-out mice reveal that this coactivator is important in fertility and ductal branching in
mammary gland (Gehin et al., 2002; Fernandez-Valdivia et al., 2007; Mukherjee et al.,
2007). Generation of mice in which SRC-2 is ablated specifically in cell types that express
PR (PRCre/+SRC-2flox/flox) has revealed that SRC-2 functions in progestin-dependent
embryo implantation (Fernandez-Valdivia et al., 2007). Microarray analysis of uteri from
SRC-2 null mice reveal that this coactivator is critical for the ability of progesterone to
repress specific genes involved in a variety of functions, including cell cycle and immunity
(Jeong et al., 2007). SRC-2 also functions to regulate glucose production (Chopra et al.,
2008) and bone mass (Modder et al., 2009). Finally, SRC-2 appears to be involved in ERα
regulated cell proliferation of breast cancer cells (Karmakar et al., 2009; Xu et al., 2009).

Studies from our lab and others reveal that nuclear receptor coactivators function in
hormone action in the central and peripheral nervous systems (Tetel, 2009; Tetel et al.,
2009). For example, SRC-1 is expressed in cells containing estradiol-induced PR (Tetel et
al., 2007) and is important for hormone-dependent sexual differentiation of the brain (Auger
et al., 2000), gene expression in brain (Apostolakis et al., 2002; Molenda et al., 2002;
Charlier et al., 2005; Charlier et al., 2006) and sexual behavior (Apostolakis et al., 2002;
Molenda et al., 2002; Charlier et al., 2005; Charlier et al., 2006; Molenda-Figueira et al.,
2006). While the function of SRC-1 in brain has been well-studied, less is known about the
role of SRC-2 in brain. While no detailed neuroanatomical studies have been reported, in
situ hybridization and Western blot analyses reveal SRC-2 is expressed at high levels in the
hippocampus, cerebellum and hypothalamus (Apostolakis et al., 2002; Nishihara et al.,
2003; McGinnis et al., 2007). Moreover, in females SRC-2 is important in hormone-
dependent lordosis and estradiol-induction of PR in the hypothalamus (Apostolakis et al.,
2002). Finally, SRC-2, as well as SRC-1, function in glucocorticoid receptor mediated gene
expression in astrocytes (Grenier et al., 2006; van der Laan et al., 2008).

A variety of cell culture studies indicate that receptor-coactivator interactions occur in a
ligand-dependent manner (Oñate et al., 1995; McInerney et al., 1996; Shiau et al., 1998;
Tanenbaum et al., 1998). Recent work from our lab reveals that SRC-1 from brain
physically interacts with ER and PR in a receptor subtype-specific and ligand-dependent
manner (Molenda-Figueira et al., 2008). However, it is not known if SRC-2 from brain
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physically associates with steroid receptors. In the present studies, we investigated the
expression pattern of SRC-2 in the female rat hypothalamus and asked if SRC-2 and ERα
were coexpressed in cells from hypothalamic regions known to regulate female
reproduction. Furthermore, using pull-down assays, we tested the hypotheses that SRC-2
from brain regions rich in steroid receptors physically associate with ER and PR subtypes in
a ligand-dependent manner.

EXPERIMENTAL PROCEDURES
Experimental animals

Adult female (175–200g) Sprague-Dawley rats from Charles River Laboratories. Inc.
(Wilmington, MA) were housed four animals to a cage in a 14:10 light/dark cycle with
lights off at 11 a.m. Animals were given food and water ad libitum. Female rats were
anesthetized with Ketamine/Xylazine cocktail (100 mg Ketamine and 18 mg xylazine/0.75
ml/kg in saline) and ovariectomized. A one-week recovery period followed to allow clearing
of endogenous hormones. All animal procedures were approved by the Institutional Animal
Care and Use Committees of Skidmore College and Wellesley College.

Immunohistochemical analysis of SRC-2 expression in brain
For immunohistochemical studies, animals (n=6) were overdosed with sodium pentobarbitol
(89 mg/kg) and chloral hydrate (425 mg/kg) and perfused with 4% paraformaldehyde. Five
thousand units of sodium heparin dissolved in 1 ml of saline were injected into the left
ventricle. Saline (0.15 M, 25 ml) preceded the flow of 250 ml of 4% paraformaldehyde in
0.1 M sodium phosphate buffer (pH=7.2) at a flow rate of 25 ml/min for 10 minutes. Brains
were removed from the cranium, blocked and stored in 0.1 M sodium phosphate buffer
(pH=7.2) containing 20% sucrose at 4oC overnight. Forty μm sections were cut through the
hypothalamus on a freezing rotary microtome and stored in cryoprotectant at −20°C until
immunohistochemistry.

Single-label Immnohistochemistry for SRC-2—Sections were initially rinsed in
0.05M Tris-buffered saline (TBS). Tissue was then rinsed in TBS and incubated in a
solution of 1% H202, 20% normal goat serum and 1% bovine serum albumin in TBS for 20
minutes to decrease nonspecific staining and reduce endogenous peroxidase activity.
Sections were incubated for 48 hours with a mouse monoclonal antibody generated against
amino acids 959–1067 of human SRC-2 (TIF 2, 1.9 μg/ml, BD Trans Lab) in TBS
containing 0.02% sodium azide (NaN3), 1% normal goat serum, 0.1% gelatin and Triton
X-100 (pH 7.6 at 4°C). After rinsing, the tissue was incubated for 90 minutes in biotinylated
goat-anti-mouse secondary antibody (3 ug/ml, Jackson Laboratory, West Grove, PA)
containing NaN3 and Triton X-100 and 1.5% normal goat serum. Tissue was rinsed in TBS
containing NaN3, gelatin and Triton X-100 followed by rinsing in TBS. Sections were then
incubated for 90 minutes in TBS containing 1% avidin DH: biotinylated horseradish
peroxidase H complex (Vectastain ABC Elite Kit, Vector, Burlingame, CA) followed by
rinsing in TBS. Finally, sections were exposed to 0.05% diaminobenzine (DAB) with 3%
hydrogen peroxide with TBS for approximately 10 minutes. The sections were rinsed in
TBS and then mounted on microscope slides and coverslipped using DePeX mounting
medium (Electron Microscopy Sciences, PA). One matched section for each brain area from
the hypothalamus, hippocampus and amygdala (Paxinos and Watson, 1998) were
investigated. SRC-2 immunoreactive cells were visualized under 100x magnification using
an Olympus BX60 microscope.

Dual-label Immunofluorescence for ERα and SRC-2—Brain sections were mounted
onto subbed slides, dried and then washed three times in PBS for 5 min. Tissue was

Yore et al. Page 4

Neuroscience. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



permeabilized with 1% SDS (ACROS), 8% betamercaptoethanol (Sigma) and 4% normal
goat serum (PelFreeze, Rogers, AR) in PBS. To detect ERα and SRC-2, sections were
incubated in a cocktail containing a rabbit polyclonal antibody generated against the last 15
amino acids of rat ERα (1:15,000, C1355, Upstate) and the SRC-2 monoclonal, TIF2 (1.9
ug/ml), in TBS at 4°C overnight. Sections were washed with PBS and then incubated in 1%
BSA and 4% normal goat serum in PBS for 30 min. Sections were incubated for one hour in
a cocktail of fluorescently-labeled secondary antisera containing CY3-labeled goat anti-
rabbit serum (1ug/ml, Jackson ImmunoResearch) for visualization of ERα and FITC-labeled
goat anti-mouse serum (4 ug/ml, Jackson ImmunoResearch) for detection of SRC-2.
Sections were washed in PBS, dried and slides were cover-slipped with Vectashield
mounting medium (Vector Laboratories) diluted 1:1 with 0.3M Tris (pH 8.8). Images of
immunofluorescence from the left side of one matched section per brain region for each rat
(Paxinos and Watson, 1998) were captured at 200X using an Olympus Fluoview FV300
confocal system equipped with Argon and He-Ne lasers. Images of one optical section at a
thickness of 1 μm were taken at the top of each brain section within a consistent region of
interest for all animals per brain region and converted to tif files for analysis. Controls for
the immunohistochemistry included the omission of the primary or secondary antibodies.

Recombinant flag and GST-tagged steroid receptors
Recombinant ER and PR fusion proteins were expressed in Spodoptera frugiperda (Sf9)
insect cells by the Baculovirus/Monoclonal Antibody Facility of the Baylor College of
Medicine as described previously (Tetel et al., 1999; Melvin et al., 2004). Full-length human
ERα or ERβ were fused to a flag tag (viruses kindly provided by Lee Kraus, Cornell Univ.)
(Kraus and Kadonaga, 1998; Melvin et al., 2004). Sf9 cell cultures for ER-flag were
incubated with saturating doses of 200 nM estradiol, 200 nM 4-OH-tamoxifen, or no ligand.
Full-length human PR-A or PR-B was fused to a glutathione S-transferase (GST) tag. Insect
cell cultures for PR-GST (viruses kindly provided by David Bain, Univ. Colorado HSC)
were incubated with saturating doses of 200 nM of the PR agonist R5020, 200 nM of the
SPRM RU486, or in the absence of PR ligand. Sf9 cell pellets were homogenized in
homogenization buffer (10 mM Tris, 10% glycerol, 400 mM NaCl, 1 mM DTT, 1mM
EDTA, pH = 7.4) with protease inhibitors (1:10 dilution, P2714, Sigma, Saint Louis, MO).
Samples were incubated on ice for 30 min, and then centrifuged for 30 min at 4°C at 40,000
rpm and supernatants were stored at −80°C.

Tissue preparation
Ovariectomized rats were overdosed with sodium pentobarbitol (89 mg/kg) and chloral
hydrate (425 mg/kg) and then decapitated. Hypothalamic and hippocampal (containing a
small portion of the cortex dorsal to the hippocampus) tissues were dissected out, flash
frozen on dry ice and stored at −80°C. Brain tissue from female rats (n=54) was pooled in
groups of three for each sample and homogenized in buffer (10 mM Tris, 10% glycerol, 400
mM NaCl, 1 mM DTT, 1mM EDTA, pH = 7.4) with protease inhibitors (1:10 dilution,
P2714, Sigma). Samples were incubated on ice for 30 min., and then centrifuged for 30 min.
at 4°C at 12,000 rpm and supernatants were aliquotted and frozen at −80°C.

ER flag-tagged pull-down
ER flag-tagged pull down assays were conducted at 4 C as described previously (Molenda-
Figueira et al., 2008). Briefly, twenty-five microliters of packed Anti-flag M2 affinity gel
resin (Sigma) were added to each siliconized centrifuge tube and pre-washed 3 times with
TBS and 2 times with 100 mM glycine HCl (pH = 3.5). Resins were next washed 3 times
with Wash Buffer + NaCl (50mM Tris-HCl, 100mM NaCl, 1% glycerol, 50mM Na
Fluoride, pH = 7.4) + TX-100 (0.1% Triton X-100). Equal amounts of recombinant flag-
tagged ER were added to the resin column and rotated on an end-over-end rotator for 1 hour.
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The resins, with immobilized ER, were washed 3 times with Wash Buffer + NaCl. Equal
amounts of pooled hypothalamic or hippocampal whole cell extracts were added to the
immobilized ER-flag and incubated on a rotator for 1 hour. The resins were washed 3 times
with Wash Buffer + NaCl to eliminate non-specific binding, and then samples were eluted
with 2% SDS sample buffer by boiling samples for 5 minutes and stored at −80°C until use.

Samples were analyzed by Western blot as described previously (Molenda-Figueira et al.,
2006) for detection of SRC-2 interactions with ER. Blots were probed for SRC-2 from brain
by incubating overnight with the mouse monoclonal antibody described above (TIF 2, 1.0
μg/ml, BD Trans Lab). Membranes were washed in TBS-T and incubated in a sheep anti-
mouse antibody (1:6000, Amersham Biosciences, Uppsala, Sweden). Following washes in
TBS-T, immunoreactive bands were detected with an enhanced chemiluminescence kit
(ECL; New England Biolabs, Ipswich, MA), and the membranes were scanned using a
PhosphorImager (STORM Scanner 860, Molecular Dynamics) and exposed to film (Blue
Sensitive X-ray film, Laboratory Products Sales, Rochester, NY). Images from the
PhosphorImager were imported into the ImageQuant analysis program (V.5.2, Molecular
Dynamics) and analyzed for integrated density (area of band × mean optical density) of
immunoreactive bands. Membranes were stripped for 2 hours at 70°C in stripping buffer
(2% sodium laurel sulfate, 62.5 mM Tris HCl, 100 mM 2-mercaptoethanol, H2O, pH = 6.7)
and re-probed for flag-tagged ER using a mouse monoclonal antibody generated against the
flag-tag (0.5 μg/ml, anti-Flag M2, Sigma) and a sheep anti-mouse secondary antibody
(1:80,000 dilution, Amersham Biosciences). Immunoreactive bands were analyzed as
described above.

PR-GST pull-down
PR-GST pull down assays were done as described previously (Molenda-Figueira et al.,
2008). Fifty microliters of Glutathione Sepharose 4B packed resins (0.05 μg/μl, Amersham
Biosciences) were added to siliconized centrifuge tubes and pre-treated with ovalbumin (1
mg/ml, Fisher Scientific, Hampton, NH) for 15 minutes on an end-over-end rotator and
rinsed three times with TG buffer (20 mM Tris-HCl, 10% glycerol; pH 8.0) containing 100
mM NaCl (TG + NaCl). Equal amounts of recombinant human PR-GST suspended in TG
buffer were added to resins and incubated on a rotator for 1 hour. Following the incubation,
the resins with immobilized PR-GST were washed four times with TG + NaCl. Equal
amounts of pooled hypothalamic or hippocampal whole cell extracts were added to
immobilized PR-GST and incubated on a rotator for 1 hour. The resins were washed four
times with TG + NaCl.

Samples were eluted in 2% SDS sample buffer as described above and stored at −80°C until
analysis. Samples were analyzed by Western blot, as described above, to detect SRC-2
interacting with PR. SRC-2 immunoreactive bands were detected using a PhosphorImager
and analyzed as described above (STORM Scanner 860, Molecular Dynamics). Membranes
were stripped and probed for PR-A and PR-B, using a mouse monoclonal antibody that
recognizes the N-terminal amino acids 165–534 of both PR-A and PR-B (PR 1294, 0.1 μg/
ml, kindly provided by Dean Edwards, Baylor College of Medicine), followed by a sheep
anti-mouse secondary antibody (1:10,000, Amersham). PR-immunoreactive bands were
analyzed as described above.

Mass Spectrometry
Rat hypothalamic extracts (approximately 40 mg of tissue per condition) were exposed to
immobilized ERα in the presence of 200 nM estradiol or no ligand. Eluted samples were
resolved in adjacent lanes by SDS-PAGE and the region of the gel corresponding to SRC-2
was excised, digested with trypsin and desalted as described previously (Zhao et al., 2003;
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Tilton et al., 2007). The peptide mixture was injected onto a C18 trap and then separated on
a reversed phase nano-HPLC column (PicoFritTM, 75 μm × 10 cm; tip ID 15 μm) with a
linear gradient of 0–50 % mobile phase B (0.1 % formic acid-90 % acetonitrile) in mobile
phase A (0.1 % formic acid) over 120 min at 200 nl/min. LC-MS/MS experiments were
performed with a LTQ linear ion trap mass spectrometer (ThermoFinnigan, San Jose, CA)
equipped with a nanospray source; the mass spectrometer was coupled on-line to a
ProteomX® nano-HPLC system (ThermoFinnigan, San Jose, CA). The mass spectrometer
was operated in the data-dependent mode using XCalibur software. The most intense seven
ions in each MS survey scan were automatically selected for MS/MS. This approach allows
the detection of individual proteins in the nanogram range and has been used to identify
SRC-1 in multiprotein complexes using immunoaffinity purification as well as low
abundance transcription factors such as RelA/p65 NFkB (Zhao et al., 2003; Tilton et al.,
2007). The acquired MS/MS spectra were searched with SEQUEST algorithm from the
SWISSPROT Protein Database on the Bioworks 3.2 platform (ThermoFinnigan, San Jose,
CA).

Statistical analysis
The amount of SRC-2 in each pull-down sample was normalized to the amount of SRC-2 in
the input whole cell extract by creating a ratio of the integrated density of the SRC-2
immunoreactive band to the integrated density of input of SRC-2 for the experiment. Unless
stated otherwise, the integrated density of immunoreactive bands was analyzed using a two-
way ANOVA (SPSS) to determine differences between receptor subtypes and ligand
conditions. A Tukey’s HSD test was used for post-hoc comparisons. Differences were
considered significant at a probability of less than 0.05.

RESULTS
SRC-2 and ERα are coexpressed in individual cells in brain

SRC-2 immunoreactivity (SRC2-IR) was observed at high levels in the female rat ventral
medial nucleus (VMN), arcuate nucleus (ARC), posterodorsal medial amygdala (MePD),
medial preoptic area (MPOA) and supraoptic nucleus (Figure 1), as well as the bed nucleus
of the stria terminalis (BNST), suprachiasmatic nucleus and hippocampus. Moderate to
lower levels of SRC2-IR were detected in the habenular and paraventricular nuclei. These
findings are consistent with, and extend, previous work revealing SRC-2 expression in the
hypothalamus and hippocampus of rats (Apostolakis et al., 2002;McGinnis et al., 2007) and
mice (Nishihara et al., 2003).

Consistent with previous studies, we found ERα-IR cells in the same regions of the preoptic
area, hypothalamus and amygdala as described previously in rats using
[3H]autoradiography, in situ hybridization and immunohistochemistry (Stumpf and Sar,
1971; Pfaff and Keiner, 1973; Cintra et al., 1986; Lauber et al., 1990; Simerly et al., 1990;
Blaustein, 1992; Tetel et al., 1994). Moreover, many ERα-IR cells also expressed SRC-2 in
the VMN and ARC (Figure 2), as well as the MPOA and BNST. In addition, there were
ERα-IR cells that did not express SRC-2 and SRC2-IR cells that lacked ERα. Omission of
the primary monoclonal antibody for SRC-2 from the immunohistochemical procedure
resulted in no detectable SRC-2 immunoreactive cells in any brain region. Omission of the
primary antibody for ER from the immunohistochemical procedure resulted in no ER-IR
cells. In further confirmation of the specificity of the double label immunofluorescent
technique, as stated above, intensely labeled ER-IR cells devoid of SRC-2 were observed, as
well as SRC2-IR cells that lacked ER-IR.
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SRC-2 from brain associates more with agonist-bound ERα than with ERβ
ER-flag tag pull-down assays were performed to determine whether SRC-2 interacts with
ERα or ERβ and whether these associations were ligand-dependent. Western blot analysis of
pull-down assays revealed that SRC-2 from female rat hypothalamus interacted with ERα in
the presence of the agonist, estradiol, while little interaction was detected when ERα was not
bound to ligand or bound to the SERM, tamoxifen (Figure 3B). Quantification of these
ligand-dependent interactions between SRC-2 from the hypothalamus and ERα are shown in
Figure 3D. As in the hypothalamus, SRC-2 from the hippocampus physically interacted with
ERα in the presence of estradiol, but not when unbound or bound to tamoxifen (Figures 3A
& C; F(2, 24) = 37.06, P < 0.0001). These findings indicate that SRC-2 from hypothalamus
or hippocampus interacts with ERα in a ligand-dependent manner.

In dramatic contrast to the high levels of association between SRC-2 and estradiol-bound
ERα, little interaction was detected between agonist-bound ERβ and SRC-2 from brain
(Figure 3). SRC-2 from the hypothalamus interacted with ERβ in a ligand-dependent manner
to some extent (Figure 4B; F(2, 9) = 6.004, P < 0.03), while there was a trend towards
association of SRC-2 from hippocampus with ERβ bound to estradiol (Figure 3C & D).
Moreover, SRC-2 from either brain region interacted more with estradiol-bound ERα than
ERβ (hippocampus: F(1, 24) = 27.47, P < 0.0001; hypothalamus: (F(1, 18) = 13.58, P <
0.003). These findings suggest that SRC-2 physically associates with ER in a receptor sub-
type specific manner.

Mass spectrometry confirms the ligand-dependent interactions of hypothalamic SRC-2
with ERα

In order to independently confirm the western blot data for estradiol-dependent binding of
ERα to SRC-2 from rat brain, we employed an unbiased mass spectrometry approach. Rat
hypothalamic extracts were exposed to immobilized ERα in the presence of estradiol or no
ligand and eluted samples were resolved by SDS-PAGE. Gel slices corresponding to the
putative SRC-2 region of the 2 lanes were digested with trypsin, and peptides analyzed by
LC-MS/MS. Table 1 shows that database searching identified three highly significant,
doubly charged peptides corresponding uniquely to rat SRC-2 (UniProt Accession #
Q9WUI9) in the gel slice from the estradiol treated sample. All three peptides had XCorr
values 3.5 and Cn 0.40 with excellent identification of fragments ions. These peptides
corresponded to amino acids 100–112, (SDVSSTGQGVIDK), 693–705
(LLQDSSSPVDLAK), and 714–731 (ELNQESSGTAPGSEVTVK). In confirmation of the
western blot analyses, no SRC-2 peptides were identified in the sample lane from
unliganded ERα.

PR interacts with neural SRC-2 in a receptor subtype-specific manner
PR-GST pull-down assays were done to determine if SRC-2 from rat brain physically
interacts with PR-A or PR-B, and if these interactions occur in a ligand-dependent manner.
Western blots from GST-tag pull-down assays indicated that SRC-2 from hippocampus
interacted with PR-B in the presence of the agonist R5020, but little to no interactions were
detected with PR-B in the absence of ligand or in the presence of the SPRM, RU486 (Figure
4A & C; F(2, 40) = 9.19, P < 0.002). Similar findings were made with SRC-2 from the
hypothalamus, suggesting that SRC-2 from these brain regions interact with PR-B in a
ligand-dependent manner (Figure 4B & D; F(2, 39) = 9.20, P < 0.002). While the ligand-
dependent interactions of SRC-2 from brain with PR-A did not reach significance, there was
a trend towards these interactions occurring in a ligand-dependent manner (Figure 4C & D).
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DISCUSSION
In vitro studies indicate that SRC-2 interacts with ER and PR, and dramatically enhances the
transcriptional activity of these steroid receptors (Voegel et al., 1996; Hong et al., 1997).
While the function of SRC-1 in hormone action in brain and behavior has been studied in
some depth (Tetel, 2009; Tetel et al., 2009), the role of SRC-2 in brain function has not been
well-defined. Thus, the present study investigated if SRC-2 was expressed in steroid-
sensitive brain regions. In order for SRC-2 to function with steroid receptors, SRC-2 must
be expressed in receptor-containing cells. Therefore, we asked if individual cells
coexpressed SRC-2 and ERα. Finally, we tested the hypothesis that SRC-2 from brain
regions rich in steroid receptors physically associates with ER and PR subtypes in a ligand-
dependent manner.

Previous analyses by Western blots have shown that SRC-2 is expressed in the rat
hypothalamus (Apostolakis et al., 2002; McGinnis et al., 2007). The present studies used
immunohistochemistry to extend these findings to reveal that SRC-2 is expressed at high
levels in the female rat MPOA, VMN, ARC, posterodorsal medial amygdala, bed nucleus of
the stria terminalis, supraoptic nucleus, suprachiasmatic nucleus and hippocampus. In
addition, moderate to lower levels of SRC-2 were detected in the habenular and
paraventricular nucleus. Moreover, many cells in the MPOA, VMN and ARC coexpressed
ERα and SRC-2. These results extend our previous findings that other nuclear receptor
coactivators, SRC-1 and CBP, are expressed in ERα-containing cells in the female
hypothalamus (Tetel et al., 2007). In addition, many ERα containing cells in these brain
regions also express PR (Blaustein and Turcotte, 1989; Warembourg et al., 1989),
suggesting that a subpopulation of the coexpressing cells identified in the present study also
express PR. While not all ERα-containing cells expressed SRC-2, it may be that the
immunohistochemical technique was not sensitive enough to detect low levels of SRC-2.
Alternatively, it is possible that this sub-population of ERα-expressing cells is regulated by
other coactivators. In addition, there were SRC2-IR cells that did not express ERα,
suggesting that SRC-2 may function with other receptors, including those for androgens
(AR) and glucocorticoids (GR), in these cells (Voegel et al., 1996; Hong et al., 1997). In
future studies, it will be important to determine if SRC-2 is coexpressed with other steroid
receptors, including ERβ, PR, AR and GR. The present findings provide neuroanatomical
evidence suggesting that SRC-2 functions in ERα action in brain regions discussed above
that are known to be involved in a variety of functions, including reproduction (Pfaff et al.,
2009), stress (Krishnan and Nestler, 2008), circadian rhythms (Silver et al., 1996; Hastings
et al., 2008), metabolism (King, 2006; Musatov et al., 2007) and cognition (Fugger et al.,
2000; Bodo and Rissman, 2006).

We also tested the hypothesis that SRC-2 from female rat hippocampus and hypothalamus,
regions rich in ER and PR (Pfaff and Keiner, 1973; MacLusky and McEwen, 1978;
Blaustein et al., 1988)(Shughrue et al., 1997; Osterlund et al., 1998; Greco et al., 2001;
Mitra et al., 2003), physically associates with ER and PR subtypes in a ligand-dependent
manner. Using pull-down assays with brain tissue, we found that SRC-2 from hypothalamic
and hippocampal extracts interacted with flag-tagged ERα when bound to the agonist
estradiol. In contrast, little to no interactions were observed between SRC-2 and ERα in the
absence of ligand or in the presence of tamoxifen, indicating that this SERM is acting as an
antagonist in our assays. Analysis by mass spectrometry confirmed that SRC-2 from rat
brain interacted with ERα in a ligand-dependent manner. These results are consistent with in
vitro studies that show SRC-2 interacts with ERα in the presence of agonist (Voegel et al.,
1996; Hong et al., 1997; Webb et al., 1998; Privalsky et al., 2009). In addition, these
findings support previous studies that SRC-2 acts in the hypothalamus to modulate estrogen
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action (Apostolakis et al., 2002) and suggest that SRC-2 functions with ERα in cognition in
the hippocampus (Fugger et al., 2000; Bodo and Rissman, 2006).

In contrast to ERα, ERβ did not interact with SRC-2 from hippocampus under any ligand
condition, including when bound to estradiol. In addition, ERβ bound to estradiol interacted
very weakly with SRC-2 from hypothalamus. This weak interaction between agonist-bound
ERβ and SRC-2 from brain is in contrast to cell culture studies indicating over-expressed
SRC-2 does interact with ERβ (Kraichely et al., 2000; Routledge et al., 2000; Zhao et al.,
2005; Cvoro et al., 2008). One explanation for the differences between the present results
using SRC-2 from rat brain and other studies using recombinant SRC-2 (Kraichely et al.,
2000) may be that over-expression of coactivators leads to altered interactions with
receptors. In addition, the presence of other factors in brain that may mediate appropriate
receptor-coactivator associations point to the significance of using biologically-relevant
tissue in studying these important interactions. Finally, cell culture studies suggest that both
ERα and ERβ can recruit SRC-2 and other coactivators in the absence of ligand under
certain phosphorylation conditions (Webb et al., 1998; Yi et al., 2002; Bai and Giguere,
2003). While we detected little to no interactions between ER and SRC-2 from brain in the
absence of ligand, it will be important to investigate whether physiologically-relevant events
that modulate ligand-independent activation can influence receptor-coactivator interactions
in brain.

Both ERα and ERβ are expressed in the hypothalamus (Shughrue et al., 1997; Kuiper et al.,
1998; Osterlund et al., 1998; Greco et al., 2001; Mitra et al., 2003). Hypothalamic ERα are
necessary for the full expression of female sexual behavior (Rissman et al., 1997; Ogawa et
al., 1998; Ogawa et al., 1999; Kudwa and Rissman, 2003; Musatov et al., 2006), while
expression of ERβ in the hypothalamus seems to be more important in anxiety and the stress
response (Isgor et al., 2003; Imwalle et al., 2005; Lund et al., 2005; Bodo and Rissman,
2006). These dramatic differential functions of the ER subtypes in brain and behavior may
be explained in part by the differential interactions of these receptor subtypes with
coactivators reported here. In addition, in some cell lines, ERα is a stronger transcriptional
activator than ERβ (Delaunay et al., 2000). Thus, the present findings that SRC-2 from brain
interacts strongly with ERα, but not ERβ, provide a possible mechanism for the functional
differences of these ER subtypes.

Our results also show that SRC-2 from rat hippocampus or hypothalamus physically interact
with PR-B in a ligand-dependent manner. SRC-2 from both of these brain regions associated
more with PR-B in the presence of the agonist, R5020, than in the absence of ligand or in
the presence of the SPRM, RU486. In contrast, while there was a trend towards ligand-
dependent interactions of SRC-2 from the hippocampus or hypothalamus with PR-A,
statistical significance was not reached, suggesting PR isoform specific interactions with
SRC-2. These differential interactions between SRC-2 and the PR isoforms are supported by
some cell culture studies (Giangrande et al., 2000), while other studies indicate that PR-A
can interact with SRC-2 under certain promoter contexts (Heneghan et al., 2007). Cell
culture studies suggest that under certain circumstances, PR-B is a stronger transcriptional
activator than PR-A (Giangrande et al., 1997; Giangrande et al., 2000; Tung et al., 2006),
likely due to the additional activation function (AF-3) of PR-B (Sartorius et al., 1994; Wen
et al., 1994). Moreover, studies using PR-A and PR-B specific knock-outs reveal that both
receptors are important for the full display of progesterone-facilitated lordosis (Mani et al.,
2006). Interestingly, PR-A has a greater role than PR-B in ligand-independent lordosis
facilitated by the cyclic AMP analogue, 8-bromo-cAMP (Mani et al., 2006). In future
studies, it will be important to investigate the function of SRC-2 and other coactivators in
ligand-independent activation of PR.
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As discussed in our previous work (Molenda-Figueira et al., 2008), it should be noted that
human ER and PR proteins were used to detect interactions with rat SRC-2 from brain.
Therefore, we cannot exclude the possibility that SRC-2 from rat brain may interact
differently with rat ER or PR compared with human. However, the ligand binding domains
(LBDs) of human ER (α and β) and PR, the most important receptor region for mediating
SRC-2 interactions (Heery et al., 1997; Feng et al., 1998), have highly homologous protein
sequences (89–92% identical) with the LBDs of rat ER and PR, respectively (Kastner et al.,
1990; Kato et al., 1993; Harris et al., 2002). Given that protein-protein interactions are
sensitive to protein structure, in future studies it will be important to study the interactions of
rat SRC-2 with rat ER and PR using other approaches such as coimmunoprecipitation
assays. Even so, the high degree of homology between rat and human LBDs of ER and PR,
the ligand dependency of the interactions detected in the present studies, and the
confirmation by mass spectrometry, indicate that these results offer important information
about the interactions between ER and PR with SRC-2 from brain.

In summary, these findings indicate that SRC-2 is expressed in steroid sensitive regions in
the hypothalamus. Moreover, a subpopulation of hypothalamic cells coexpress SRC-2 and
ER, extending our previous work showing the coexpression of other coactivators (SRC-1
and CBP) with steroid receptors in brain (Tetel et al., 2007). In addition, using pull-down
assays, we found that SRC-2 from hypothalamus and hippocampus interact differently with
the ER and PR subtypes. These results support previous work showing that SRC-2 is
important for ER-mediated induction of PR in brain and the expression of hormone-
dependent female sexual behavior (Apostolakis et al., 2002). Presumably, these interactions
between SRC-2 and receptors are important for reproductive development in males and
females (Gehin et al., 2002; Fernandez-Valdivia et al., 2007; Mukherjee et al., 2007),
pregnancy (Gehin et al., 2002), hormone-dependent gene transcription in brain (Apostolakis
et al., 2002) and female sexual behavior (Apostolakis et al., 2002). In addition, the present
findings reveal the importance of using biologically-relevant brain tissue when studying
these interactions. Finally, estrogens and progestins are involved in a variety of human
diseases. For example, estrogen therapy may reduce the risk of Alzheimer’s disease (Pike et
al., 2009). Interestingly, expression in brain of an ERα mutant, that may prevent coactivator
binding, has been correlated with Alzheimer’s disease (Ishunina and Swaab, 2009). In future
studies, it will be critical to determine the functional significance of the differential
interactions of SRC-2 with the receptor subtypes on gene expression in brain and the
potential role in disease.
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Abbreviations

AR androgen receptor

ARC arcuate nucleus

BNST bed nucleus of the stria terminalis

CBP CREB binding protein

ER estrogen receptor

GR glucocorticoid receptor
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GST glutathione-S-transferase

IR immunoreactivity

LBD ligand binding domain

MePD posterodorsal medial amygdala

MPOA medial preoptic area

PR progestin receptor

SERM selective estrogen receptor modulator

SPRM selective progestin receptor modulator

SRC-1 steroid receptor coactivator-1

SRC-2 steroid receptor coactivator-2

VMN ventral medial nucleus of the hypothalamus
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Figure 1.
SRC-2 immunoreactive cells in the A) posterodorsal portion of the medial amygdala
(MePD), B) supraoptic nucleus (SON), magnification bar = 500 μm, and C) ventromedial
nucleus of the hypothalamus (VMN) and arcuate nucleus (ARC) of the female rat. Inset
shows nuclear immunostaining of cells from the VMN, magnification bar = 10 μm. opt =
optic tract; ox = optic chiasm; 3V = third ventricle.
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Figure 2.
Coexpression of SRC-2 and estrogen receptors (ER) in cells in the ventromedial nucleus of
the hypothalamus (A–C) and arcuate nucleus (D–F). Sections were simultaneously
immunostained for ERα (A and D) and SRC-2 (B and E). Overlaid images from the VMN
(C) and ARC (F) show cells expressing both ERα and SRC-2. Open arrows point to cells
containing ERα only (red), hatched arrows point to cells containing SRC-2 only (green) and
solid arrows point to cells expressing both ERα and SRC-2 (orange/yellow). Magnification
bar = 50 μm
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Figure 3.
SRC-2 from rat hypothalamic whole cell extracts associates with ERα, but not ERβ, in a
ligand-dependent manner. SRC-2 from A) hippocampus or B) hypothalamus interacts with
ERα in the presence of estradiol (lane 2), but not in the absence of ligand (lane 3) or in the
presence of the SERM, tamoxifen (lane 4). SRC-2 interacts weakly with ERβ bound to
estradiol (lane 5) with little to no interaction in the absence of ligand or tamoxifen (lanes 6
& 7). Inputs (2% of total) of SRC-2 from hippocampal or hypothalamic extracts are shown
in lane 1.
C) SRC-2 from hippocampus physically associates with ERα bound to estradiol, but not in
the absence of ligand or in the presence of tamoxifen. In contrast, SRC-2 interacts weakly
with ERβ. D) Hypothalamic SRC-2 interacts with ERα, and to a much lesser extent with
ERβ, in a ligand dependent manner. *p < 0.05, n = 4–5 per treatment group.
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Figure 4.
Progestin receptor (PR) interactions with SRC-2 from brain. SRC-2 from A) hippocampal or
B) hypothalamic whole cell extracts interacts with PR-B, and to a lesser extent PR-A, in the
presence of the agonist R5020, but not in the absence of ligand or in the presence of the
SPRM, RU486. Inputs (2% of total) of SRC-2 from hippocampal or hypothalamic extracts
are shown in lane 1.
SRC-2 from the C) hippocampus and D) hypothalamus interacts with PR-B in the presence
of the agonist R5020, but not in the absence of ligand or in the presence of the SPRM,
RU486. SRC-2 from each brain region interacts with PR-A to a lesser extent. *p < 0.05, n =
8 per treatment group.
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