
Relative Expression Analysis for Molecular Cancer Diagnosis
and Prognosis

James A. Eddy, B.S.1,2, Jaeyun Sung, M.S.1,3, Donald Geman, Ph.D.5,6, and Nathan D.
Price, Ph. D.1,3,4,*
1 Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 USA
2 Department of Bioengineering, University of Illinois, Urbana, IL 61801 USA
3 Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801
USA
4 Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801 USA
5 Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218
6 Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD
21218

Abstract
The enormous amount of biomolecule measurement data generated from high-throughput
technologies has brought an increased need for computational tools in biological analyses. Such
tools can enhance our understanding of human health and genetic diseases, such as cancer, by
accurately classifying phenotypes, detecting the presence of disease, discriminating among cancer
sub-types, predicting clinical outcomes, and characterizing disease progression. In the case of gene
expression microarray data, standard statistical learning methods have been used to identify
classifiers that can accurately distinguish disease phenotypes. However, these mathematical
prediction rules are often highly complex, and they lack the convenience and simplicity desired for
extracting underlying biological meaning or transitioning into the clinic. In this review, we survey
a powerful collection of computational methods for analyzing transcriptomic microarray data that
address these limitations. Relative Expression Analysis (RXA) is based only on the relative
orderings among the expressions of a small number of genes. Specifically, we provide a
description of the first and simplest example of RXA, the k-TSP classifier, which is based on k
pairs of genes; the case k = 1 is the TSP classifier. Given their simplicity and ease of biological
interpretation, as well as their invariance to data normalization and parameter-fitting, these
classifiers have been widely applied in aiding molecular diagnostics in a broad range of human
cancers. We review several studies which demonstrate accurate classification of disease
phenotypes (e.g., cancer vs. normal), cancer subclasses (e.g., AML vs. ALL, GIST vs. LMS),
disease outcomes (e.g., metastasis, survival), and diverse human pathologies assayed through
blood-borne leukocytes. The studies presented demonstrate that RXA—specifically the TSP and
k-TSP classifiers—is a promising new class of computational methods for analyzing high-
throughput data, and has the potential to significantly contribute to molecular cancer diagnosis and
prognosis.
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Introduction
High-throughput measurements in biology (e.g., transcriptomics, proteomics, metabolomics)
provide an enormous amount of information, but only implicitly, in the form of raw
expression values. Harnessing this information means converting it to knowledge and, for
the purposes of classification, useful decision rules; this conversion can enable a greater
understanding of cancer and drive advances in personalized medicine. A systems-level
approach, which employs computational and statistical tools to reveal and evaluate patterns
with diagnostic or prognostic value, is critical to fully exploiting these new technologies. In
particular, molecular signatures derived from patterns in gene expression microarray
experiments have great potential to detect the presence of disease, to discriminate among
cancer sub-types, to predict clinical outcomes, and to provide insight into specific changes
that occur during disease progression.

Perhaps the most evident challenge for developing useful molecular signatures is to identify
classifiers that are accurate for a specific study or platform, and that are also robust across a
wide range of settings. Previous studies have aimed to identify sets of individual genes
(“signatures”) whose differential expression is highly correlated with phenotypic changes
(e.g., genes that may be over- or under-expressed in cancer relative to normal). In these
cases, increased or decreased absolute mRNA concentration levels above some threshold
(i.e., more than would be statistically expected by chance for a gene on the microarray) are
put forth as candidates for disease-induced (or causing) perturbations. Unfortunately, the
statistically significant genetic changes often depend largely on the context of the
microarray experiment. Even when thresholds are tuned to produce statistically significant
results, findings can depend heavily on a number of factors, such as the experimental design
and the type of data normalization. Consequently, there may be little to no overlap in the
molecular signatures identified from one platform to another, or by extension, from one
clinical setting to another.

A less evident, but equally important, challenge for phenotype classification using gene
expression data is to develop techniques that not only yield accurate and robust decision
rules, but also provide rules that are easy to interpret and might contribute to biological
understanding. Advanced statistical learning and pattern recognition methods are routinely
applied to transcriptomics and other high-throughput data types. These include neural
networks (1-3), decision trees (4-6), boosting (5,7) and support vector machines (8,9). In
many cases, these methods achieve good classification performance, with sensitivities and
specificities above ninety percent. However, they generally result in extremely complex
decision rules based on nonlinear functions of many gene expression values. Therefore,
whereas advanced methods may be more accurate than those based on the patterns of
individual genes, they usually produce decision rules which are virtually impossible to
interpret. Furthermore, as the number of variables (transcripts) far exceeds the number of
observations in most microarray studies, building more complex classifiers entails a greater
risk of over-fitting the training data and poor generalization.

An important potential benefit of simple and interpretable decision rules is to provide insight
into the underlying biological differences between phenotypes. Notably, malignant
phenotypes in cancer arise from the net effect of interactions among multiple genes and
other molecular agents within biological networks. Genes in networks operate in a
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combinatorial manner—the actions of one gene greatly influence the actions of other genes.
This often limits the information that can be gleaned from the expression patterns of
individual genes. As an alternative approach, studying gene expression in the context of
networks may yield greater insight into mechanisms and functional changes associated with
disease. Recently, methods for analyzing microarray data have focused not on individual
genes, but instead on biologically meaningful pathways or networks (10-13). These
frameworks have been applied to diverse cancer systems and serve as a robust source of
biological discovery (12,14).

At scales smaller than biological networks or even pathways, assessing the relationships
among a small number of genes—for example, the patterns of interactions among just two or
three genes—can provide useful information about biomolecular processes. One way to
probe the interactions among several genes is to study their relative expression, i.e., the
ordering among the expression values, rather than their absolute expression values. One then
searches for characteristic perturbations in this ordering from one phenotype to another. The
simplest form of such an interaction is the ordering of expression among two genes, in
which case one seeks to identify typical “reversals”—pairs of genes for which one of the
two possible orderings is usually present in one phenotype and rarely present in the other.
We refer to the family of such rank-based methods as Relative Expression Analysis (RXA).
This methodology is characterized by replacing each expression level across all genes by its
corresponding rank within a single microarray profile.

Here we focus on RXA methods which involve a small number of gene pairs, each
exhibiting a characteristic “relative expression reversal” between the phenotypes or classes
of interest. Aggregating the decisions from a few such pairs, even just one, is surprisingly
powerful. Basing decisions on one pair is called the top-scoring pair (TSP) classifier (15)
and on k pairs is called the k-TSP classifier (16). Thus, in TSP, a sample is classified based
on a decision rule which only involves comparing the ranks, hence the relative expression
levels, of two genes within a profile. For the k-TSP classifier, the decision rule combines a
disjoint set of TSPs by simple majority voting. Other RXA methods include those based on
the six possible orderings among three genes (the top-scoring triplet classifier (17)) and
comparing the average ranks in two groups of genes (18). Herein we review the TSP and k-
TSP computational methods, focusing on their utility for aiding molecular diagnostics in a
broad range of human cancers. Our review is largely restricted to applications with
transcriptomic data, since this is the most plentiful and has been the most used to date.
However, RXA is generally applicable to any ordinal data type, such as protein expression,
DNA copy number, chromosomal position, and so forth.

Relative Expression Analysis
Microarray Data and Analysis

For those readers less familiar with computational approaches to microarray analysis, we
first describe the typical features of microarray data and common procedures relevant to the
results presented here. Whereas we discuss computational analysis of microarray data in the
context of RXA (Figure 1), the notation, representation of the data, and basic steps are the
same for other approaches. Computational analysis of microarray data typically involves
two steps. First, a classifier is trained on a collection of microarray profiles (samples)
referred to as the training set. This involves selecting a subset of genes and choosing a
mathematical algorithm (decision rule) to apply to the selected genes in order to determine
the phenotype of a new sample. Of course the goal is to identify an algorithm that is
predicted to work well on a new data set, and the second step is then to evaluate the
performance of the classifier on held-out data. Usually, the algorithm works quite well on
the training data and hence validation is essential.
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Microarray data are typically represented as a matrix of G rows of genes and N columns of
samples (e.g., different tumors, tissues, patients, time points). The nth column of this matrix
is therefore a G × 1 vector representing the expression profile xn of the nth sample. Each
profile contains expression values for gene one (g1) through gene G (gG). The expression
level of gene gi is denoted by Xi. In addition, each sample is labeled by a phenotype Y ∈ {A,
B, ...}. For example, yn = A indicates that the nth sample belongs to phenotype A. The
labeled data set to be used for classifier training is F = {(x1, y1), ..., (xN, yN)}.

As mentioned above, the simplest method for classifying expression profiles based on the
relative ordering of expression values is the top-scoring pair (TSP) algorithm for
distinguishing between two phenotypes A and B. In TSP, a particular pair of genes i and j is
selected during training and the decision rule is simple maximum likelihood: for the sample
to be classified, choose the class, A or B, for which the observed ordering between the
expression values of gi and gj is the most likely. Notice that the observed ordering is either
Xi < Xj or Xi > Xj (we can assume at this point that ties are broken at random). The pair
which is chosen is the one that achieves the highest “score” among all pairs of genes. This
score is a quantitative measure of the degree of relative expression reversal estimated from
the data and used for classifier training, as explained in the following section. For the k-TSP
classifier, the decision rules are conceived in the same manner as in the TSP classifier, but
use a combination of gene-pair markers to obtain potentially better classification accuracy.
There are currently two software implementations available for researchers who wish to
apply these methods: one in Perl (16) and one in R (19).

The TSP and k-TSP classifiers are parameter-free methods that are invariant to all
normalization techniques that are monotonic transformations of the original expression
values within each chip or microarray. That is, if the data are processed in such a way that if
gene gi is expressed more than gene gj before normalization (original data) and it is still
expressed more after normalization (processed data), then the TSP and k-TSP classifiers
derived from the original and processed data are the same. It is in this sense that these
classifiers are “invariant” to normalization. Moreover, the TSP and k-TSP classifiers are
especially favorable in terms of the simplicity of the decision rule and the small number of
genes involved in classification. They are easy to implement in practice since the classifier
only requires measurement of the expression of small number (at most 2k) of genes using
techniques such as RT-PCR. They also remain context-independent by not requiring any
parameter-tuning or data pre-processing based on genes outside of the pairs involved.
Furthermore, since data normalization is not required, RXA classifiers have been shown to
be useful in the integration of data across different studies and platforms for the purpose of
increasing sample size and facilitating meta-analysis of microarray data (20).

Training RXA Classifiers
In relative expression approaches, the features selected are pairs of genes. Consider first
TSP. Because only gene pairs are considered, it is possible to completely enumerate all
possible pairs and select the “best” ones using the training data. The natural criterion is
performance, which anticipates how the pair of genes will be used for classification. As a
result, one then selects the pair of genes gi and gj for which the difference |Prob(Xi < Xj | Y =
A) – Prob(Xi < Xj | Y = B)| is maximized. This can be shown to be equivalent to choosing the
pair of genes which achieves the lowest error rate on the training set. In many cases, there is
a single pair of genes achieving the top score. Otherwise, in order to select a unique pair of
genes, a secondary score is applied which is based on the average difference in expression
values over all samples. An important feature of the top-scoring pair of genes is that it may
not be the case that both genes are highly differentially expressed on the basis of their
individual t-statistics; in fact, one gene may serve as a “pivot” for the other.
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Depending on which of the two probabilities Prob(Xi < Xj | Y = A) or Prob(Xi < Xj | Y = B) is
larger, the decision rule is either:

Rule 1: If expression gene i < expression gene j, THEN class A, ELSE class B.

Rule 2: If expression gene j < expression gene i, THEN class A, ELSE class B.

In the case of k-TSP, the classifier is constructed from the k top-scoring pairs of genes. Each
pair votes for class A or class B the same way as in TSP and the class with the majority vote
is chosen. Effectively, this is the maximum likelihood rule: choose the class for which the k
observed orderings are the most likely. Usually, the pairs are constrained to be “disjoint,”
meaning that a gene cannot appear in more than one pair, and the number of pairs (k) is
determined by cross-validation up to some limit (e.g., kmax = 10) in order to keep the total
number of genes manageable. Consequently, the size of the gene “signature” is two for TSP
and 2k for k-TSP. Unlike other methods, once the signature is determined so is the classifier.
That is, there are no parameters to tune, which reduces over-fitting the training data.

Testing RXA Classifiers
Classifier training is followed by performance evaluation on a test dataset. The gold
standard for testing any predictive method is to use an independent dataset collected solely
for testing. However, due to the scarcity of data, the test set usually consists of samples
collected from the original training dataset and set aside. Even in this case, repeated training
and testing, known as cross-validation, is preferred due to small sample sizes. Such
procedures involve splitting the original training dataset F into two smaller sets: the set of
samples on which the classifier is trained, Ftrain; and the set of samples on which the
classifier is tested, Ftest. Importantly, no information from Ftest can be utilized when
learning the classifier on Ftrain. The data is repeatedly split into training and test groups, and
the cross-validated accuracy is the average classifier performance across all test groups.
Leave-one-out cross-validation (LOOCV) is commonly used, in which the total of N
samples is divided into a training set of size N – 1 with the test set consisting of the single
remaining sample. While error estimation with LOOCV is known to have high variance
relative to the true error (21), it is particularly useful for TSP and k-TSP because there is a
technique (16) which yields a very significant reduction in the computation involved in
looping over all pairs of genes in each loop of cross-validation.

A number of different metrics can be used to measure the performance of classifiers.
Particularly common measures include sensitivity, specificity, and overall accuracy. These
metrics are most easily understood for experiments with a case (e.g., cancer) and a control
(e.g., normal), but can be extended to any binary phenotype comparison as well as to
multiclass problems by decomposing them into sets of binary comparisons. If a classifier
correctly predicts that a cancer profile belongs to the cancer class this is known as a true
positive (TP), and the probability of correctly labeling future cancer samples is the
sensitivity of the classifier (also known as the true positive fraction). Similarly, a true
negative (TN) is when a classifier correctly labels a normal sample and the probability of
doing this on new samples is the specificity of the classifier. Importantly, the sensitivity and
specificity computed on the samples used for training are upwardly biased and not predictive
of cross-validated rates. Finally, overall accuracy can be defined in several ways; perhaps
the simplest is the average of sensitivity and specificity.

RXA in the Study of Cancer
Cancer Studies Using Relative Expression Values Before TSP and k-TSP

Gene-pair relative expression markers, specifically in the form of a two-gene expression-
level ratio, have been previously used for disease classification and prognosis. Gordon et al.
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(22) successfully distinguished between malignant pleural mesothelioma (MPM) and
adenocarcinoma (ADCA) of the lung based on ratios of expression. Although genetically
disparate, the tissues of MPM and ADCA can be difficult to distinguish based on established
histopathological methods. Gorden et al. (22) tested the fidelity of ratio-based diagnosis in
differentiating between the two tissue types in 181 samples (31 MPM and 150 ADCA).
First, the investigators used a training set of 32 samples (16 MPM and 16 ADCA) to identify
differentially expressed genes based on various methods (fold changes, standard t-tests,
expression cutoffs, etc.). They then formed 15 ratios using individual or combinations of
those genes that showed the highest significance in inversely correlated expression levels.
Any single ratio of the 15 examined was at least 90% accurate in predicting diagnosis for the
remaining 149 samples (e.g., test set). They then examined (in the test set) the accuracy of
multiple ratios combined to form a simple diagnostic tool. Using two and three expression
ratios, the investigators found that the differential diagnoses of MPM and lung ADCA were
95% and 99% accurate, respectively. Whereas, in this study, these gene-pairs are not
combined in the same way as TSP, they are sensitive to normalization and parameter
choices. Still, their work illustrates the utility and discriminatory power of gene pairs in
important clinical diagnoses.

Ma et al. (23) found that a two-gene expression ratio derived from a genome-wide,
oligonucleotide microarray analysis of estrogen receptor (ER)-positive, invasive breast
cancers predicts tumor relapse and survival in patients treated with tamoxifen. Tamoxifen is
one of the most commonly used medications in the treatment of early-stage and metastatic
ER-positive breast cancer (24,25). When administered to women with surgically treated ER-
positive breast cancer, tamoxifen therapy reduces the annual risk of recurrence by 40-50%,
leading to a 5.6-10.9% improvement in 10-year survival (26). However, 25-66% of women
diagnosed with ER-positive breast tumors fail to show a prolonged response or develop
early resistance to adjuvant therapy (24,27). Currently, there are no markers that reliably
predict clinical outcome of cancer patients treated with tamoxifen. Therefore, a reliable
means to accurately predict tamoxifen treatment outcome is crucial for early-stage breast
cancer management.

In the tamoxifen study conducted by Ma et al. (23), a set of 60 patients with receptor-
positive primary breast cancers were treated with tamoxifen alone. The results from gene
expression profiling of the extracted tumor tissues before therapy indicated that the
homeobox gene (HOXB13) was over-expressed in patients who experienced disease
recurrence, whereas the interleukin-17B receptor gene (IL-17BR) and EST gene were over-
expressed in those with no evidence of recurrence after a 5-year treatment period. The
investigators evaluated the prognostic utility of each of these three genes by itself and in
combination with genes that have opposing patterns of expression between the two classes.
Results from t-test and ROC analyses revealed that a two-gene ratio of HOXB13 over
IL-17BR had a stronger correlation with treatment outcome than any of the genes alone with
AUC values reaching 0.84, and was able to accurately predict tumor recurrence in adjuvant
tamoxifen-treated patients

This observation was also confirmed in real-time quantitative PCR analysis, where the
predictive accuracy of the two-gene ratio was 81%. Furthermore, the expression ratio of
HOXB13 over IL-17BR outperformed existing biomarkers for prognosis of breast cancer,
such as patient age, tumor size, grade, and lymph node status. In this study pre-dating any
formal RXA classification approaches, Ma et al. (23) demonstrated the utility of a two-gene
expression biomarker in identifying a subset of patients with early-stage ER-positive breast
cancer who are at a risk for tumor recurrence even with tamoxifen therapy. Such a
biomarker provides a potential means to identify patients appropriate for alternative
therapeutic regimens in early-stage breast cancer.
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Comparative Analysis of TSP and k-TSP Performance in Cancer Classification
Geman et al. (15) introduced the TSP method and demonstrated its efficacy on several gene
expression data sets involving breast, prostate and leukemia cancers. The phenotype
classification problems considered were: (i) predicting the status of lymph nodes (affected
vs. non-affected) in patients with breast tumors using data from (28); (ii) classifying the sub-
types of leukemia (AML vs. ALL) using data from (29); and (iii) distinguishing prostate
tumors from normal profiles using data from (30). The reported accuracies for TSP results
were based on LOOCV, and comparison to randomly permuted data was made to estimate
the statistical significance for each classifier.

In predicting the status of lymph nodes in the breast cancer data set, a cross-validation
classification rate of 79% was achieved from 49 patient samples. The authors also mention a
separate study where estimated error rates for these data—based on LOOCV and using a
wide variety of common machine learning techniques—are summarized for varying
numbers of pre-filtered genes (28). Other methods, more complex than TSP and using many
more genes, did not result in better classification rates, and the low accuracy observed in all
methods applied to date is probably a function of the complexity and similarity of the
phenotypes being separated. In the case of separating AML from ALL, the TSP classifier
correctly classified 68 samples out of 72 samples in cross-validation. In comparison, the
study in Golub et al. (29) used a fifty-gene classifier to predict 65 samples correctly out of
72.

In addition to demonstrating improved performance in classifying breast cancer and
leukemia samples, Geman et al. (15) also investigated the ability of TSP to detect the
presence of prostate cancer. In a previous study, Singh et al. (30) found a strong correlation
between patterns of gene expression of prostate cancer and various clinical and pathological
aspects of the disease. The top-scoring gene pair using the TSP algorithm on their data could
discriminate non-tumor versus prostate tumor samples at a prediction rate of 95%. Hence,
the classification rates using TSP were comparable to the best results reported previously in
the literature, often incorporating hundreds of genes or more in complex decision rules.

The performance of TSP and k-TSP classifiers were compared with those of other machine
learning methods on 19 gene expression datasets involving human cancers in a study by Tan
et al. (16). The study investigated a number of publicly available datasets, with sample sizes
ranging from 33 to 327 for each disease phenotype within a particular dataset. The collection
of datasets comprised various studies of human cancer, including colorectal, leukemia, lung,
prostate, breast, central nervous system, lymphoma, bladder, melanoma, renal, uterus,
pancreas, ovary, and mesothelioma. The classification performance of TSP and k-TSP was
compared to that of decision trees (DT), Naïve Bayes (NB), k-nearest neighbor (k-NN),
support vector machines (SVM), and prediction analysis of microarrays (PAM), which is
essentially linear discriminant analysis. The TSP and k-TSP techniques were also extended
beyond binary classification to the multi-class setting, where several well-known
aggregation strategies, such as “one-vsall” and “one-vs-other,” were applied to combine the
results of binary sub-problems into one final decision rule.

In this study, LOOCV was used in order to estimate the classification rate. The best
classifier based on the average accuracy for the binary classification problems used in this
study was k-TSP (92.01%), followed by SVM (91.18%), PAM (88.91%) and TSP (88.26%).
The differences in accuracies were small, so it was concluded that all four methods perform
classification similarly. The authors also elucidate the biological meaning of the classifiers
by showing the connections between the genes in the markers and their corresponding
cancer types. For the multi-class problems, TSP achieved an average accuracy of 85.12%
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over 10 problems, somewhat less than PAM (88.50%) and SVM (88.10%), which performed
the best overall but used hundreds or thousands of genes.

In the initial variant of RXA, Geman et al. (15) showed that the TSP classifier provides
decision rules that are highly accurate in binary classification problems and involve very few
genes. Tan et al. (16) compared the TSP and k-TSP approach to other machine learning
techniques on a broad source of human cancer gene expression data. The performance of
TSP and k-TSP on both binary and multi-class problems were comparable to those of the
other techniques, while no single method was found to have the best performance across all
datasets. TSP and k-TSP were thus shown to have comparable accuracy to state-of-the-art
methods, involve fewer genes and yield transparent, context-independent classifiers which
are invariant to most forms of data normalization.

Specific Cancer Studies Using TSP or k-TSP
TSP-based classification methods have been applied to a number of specific cases of
predictive studies in cancer. These studies can be broadly divided into those that identify
classifiers for disease diagnosis and studies that develop relative expression classifiers for
disease prognosis. Specifically, diagnosis can refer to determination of the presence or
absence of disease, the particular sub-type of a disease, or in some cases the stage of disease.
In contrast, prognosis aims to predict the outcome of patients with the disease. Examples of
disease prognosis include response to treatment, survival time, and tumor metastasis.
Importantly, a number of the studies presented here demonstrate not only the power of TSP
methods to accurately classify microarray profiles, but also their utility for integrating
microarray datasets from different sources and even across different measurement
technology platforms.

Gene-pair Classifiers for Diagnosis—Gastrointestinal stromal tumor (GIST) and
leiomyosarcoma (LMS) are common mesenchymal tumors with similar phenotypic features.
A whole-genome gene expression study of 68 well-characterized tumor samples identified a
two-gene relative expression classifier using TSP that distinguished GIST and LMS with
99.3% accuracy on microarray samples and 97.8% accuracy in cross validation (31). The
classifier, which predicts GIST when OBSCN > C9orf65 and LMS otherwise, was validated
using RT-PCR on 20 samples from the original dataset and on 19 independent samples,
achieving 100% accuracy. Immunostaining for the Kit protein marker is currently the best
test to differentiate GIST and LMS. Using expression of c-Kit to classify samples (with a
cutoff determined by 1D linear discriminate analysis) achieved only 87.3% accuracy. That
is, as some GIST samples have low Kit expression and some LMS samples have high Kit
expression, testing for levels of the protein marker was more prone to error than predictions
based on the OBSCN/C9orf65 expression ratio.

The TSP classification method is invariant to standard procedures for monotonic data
normalization, as it relies only on the ranks of gene expression values within the microarray.
As such, using TSP for classification enables the integration of microarray profiles from
multiple datasets, thereby increasing the sample size of the training data and the predictive
potential of the classifiers. Xu et al. (20) identified a TSP marker for prostate cancer (HPN >
STAT6) that achieves high accuracy, sensitivity, and specificity on two datasets from
different platforms. Performance of the HPN/STAT6 TSP marker—trained on integrated
microarray data—was better than other TSP classifiers trained on individual datasets. In
training the classifier, three microarray datasets from different prostate cancer studies were
integrated and TSP was applied to analyze both individual and integrated datasets. It was
found that TSP markers vary between individual datasets, but as more samples are added to
the integrated training dataset, TSP selection becomes consistent. Stability analysis was also
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performed to calculate the appearance frequency of markers (i.e., how often the same TSP
markers were selected) when samples were randomly removed from the dataset. The TSP
marker was tested on an independent cross-platform dataset, comprising prostate tumor
expression values from both Affymetrix and spotted cDNA platforms. Samples in the
independent test set were classified with 93.8% accuracy, 91.7% sensitivity, and 97.7%
specificity.

Gene-pair Classifiers for Cancer Prognosis—Xu et al. (32) integrated three
independent microarray datasets containing 358 total samples for prediction of distant
metastases in breast cancer. All samples in the integrated dataset were obtained from lymph-
node-negative patients who had not received adjuvant systemic treatment. Gene expression
data was directly merged using 22,283 probe sets on the Affymetrix HG-U133A microarray,
and the top 200 “features” were selected as gene pairs with the highest TSP scores. In
accordance with clinical treatment guidelines defined by the St. Gallen (Switzerland) expert
consensus and the NIH, the goal of the authors was to achieve the highest possible
specificity while maintaining high sensitivity (~90%). The optimal signature size (80 pairs,
112 distinct genes) was determined in k-fold cross-validation, and a likelihood ratio test
(LRT) for classification based on this signature achieved 88.6% sensitivity and 54.6%
specificity in an independent external test set of 154 samples. Since the LRT assumes
statistically independent gene pairs, the decision rule amounts to weighted voting among the
gene pair classifiers and hence is very similar to k-TSP.

Over-expression of the Src tyrosine kinase in pancreatic cancer is thought to play a
significant role in tumor development and progression. The in vivo efficacy of an orally
active small molecule Src inhibitor AZD0530 was investigated in a collection of pancreatic
tumor xenografts (33). The k-TSP algorithm was applied to gene expression profiles from
the tumors in order to identify predictive biomarkers of response to AZD0530. Tumor
growth index (TGI) was used to morphologically classify xenografts as sensitive (TGI <
50%) or resistant (TGI > 50%) to AZD0530 treatment. In the training set of 16 xenografts (3
sensitive, 13 resistant), the TSP classifier LRRC19 > IGFBP2 most accurately predicted
cases as sensitive (and correspondingly predicted cases as resistant when LRRC19 ≤
IGFBP2).

The k-TSP classifier achieved an estimated LOOCV accuracy of 97.8% on the microarray
data set. The two-gene predictor was tested and validated on eight independent xenografts
not included in the original training set and achieved an overall accuracy of 87.5%,
specificity of 83.3%, and sensitivity of 100%. RT-PCR was performed on the two genes in
the eight independent xenografts, showing the relative expression of LRCC19 and IGFBP2
was the same as measured by microarray gene expression in all cases. This stability across
different measurement platforms is critical for application in the clinic, and represents an
advantage of methods based on RXA.

A two-gene expression ratio (RASGRP1/APTX) has been found that accurately predicts
response to the drug tipifarnib in patients with acute myeloid leukemia (AML) (34). The
TSP algorithm was applied to transcriptional profiles of bone marrow samples from newly
diagnosed AML patients—including 13 responders and 13 patients with progressive disease,
achieving 92.3% sensitivity and 100% specificity (96% accuracy) in LOOCV. External
validation of the two-gene classifier was performed in an independent dataset of 54 samples
from patients with relapsed or refractory AML (10 responders, 44 with progressive disease).
When applied to the independent test set, the classifier predicted tipifarnib response with
sensitivity of 80% and specificity of 52.3%. This reduction in accuracy compared to
LOOCV may derive from the initial very small sample set not being sufficient to represent
the amount of variance in the population, and thus further data collection and classifier
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development is needed. Still, the results are encouraging considering the subtle difference of
the phenotypes being considered and the small amount of training data.

In another study, Weichselbaum et al. (35) applied k-TSP to a previously determined gene
expression signature—the IFN-related DNA damage signature (IRDS)—in order to develop
a therapy-predictive marker of adjuvant chemotherapy for metastatic breast cancer. 78 breast
cancer patients were divided into two IRDS status groups (IRDS(+) and IRDS(–)) using
hierarchical clustering of microarray data. The k-TSP classifier was trained using 49 genes
in the IRDS along with 534 previously-defined intrinsic breast cancer genes, with the
optimal number of gene pairs determined using 10-fold cross validation. Each of the seven
selected gene pairs in the k-TSP classifier contained one IRDS gene and a second gene for
comparison. Classification was based on a majority vote, where samples were classified as
IRDS(+) if expression of the IRDS gene was higher than the other gene in at least four of the
seven pairs.

For the purpose of employing a non-binary measure for survival analysis, the number of
positive-scoring gene pairs was used to define a TSP IRDS score. Specifically, the sum of
pair-wise comparisons in which the IRDS gene was more highly expressed defined an
ordinal scale from zero to seven, with seven representing the most IRDS(+)-like pattern. To
examine the IRDS as a predictive marker for therapy outcome, a data set of 295 patients
with early stage breast cancer was analyzed based on the TSP IRDS score. A multivariate
Cox proportional-hazards model for metastatic risk when an interaction with chemotherapy
is considered revealed a hazard ratio of 1.2—signifying a 1.2-fold increased risk of
metastasis for each incremental increase in the TSP IRDS score from 0 to 7. These
statistically significant results suggested that an association of the IRDS with clinical
outcome depends on the use of adjuvant chemotherapy.

Broad Application of TSP in Disease Diagnosis and Prognosis
A more recent study has shown that two-transcript classifiers have the potential to reliably
classify diverse human diseases (36). In this study, the investigators sought to assess the
effectiveness of the TSP approach in the identification of diagnostic classifiers in a number
of human diseases including bacterial and viral infection, cardiomyopathy, diabetes, Crohn's
disease, and transformed ulcerative colitis through analysis of both local diseased tissue and
the immunological response assayed through blood-borne leukocytes. The results of this
study showed that several diseases of solid tissues could be reliably diagnosed through TSP
classifiers based on the blood-borne leukocyte transcriptome. The TSP method identified
multiple predictive gene pairs for each phenotype, with LOOCV accuracy ranging from 70
to nearly 100 percent. Performance compared favorably with that of pre-existing
transcription-based classifiers, and in some cases approached the accuracy of current clinical
diagnostic procedures. Thus, this study provided further evidence that the TSP classifier
represents a simple yet robust method to differentiate between phenotypic states based on
gene expression profiles of diverse human pathologies. The experimental simplicity of this
method results in measurements that can be easily translated to clinical practice.

Beyond TSP and k-TSP
Top-Scoring Pair of Groups—In an effort to identify a robust common cancer
signature, Xu et al. (18) performed a large-scale meta-analysis of cancer gene expression
datasets in order to identify a universal cancer signature, and validated their signature using
a variant of RXA to separate cancer from normal samples across a wide range of cancers.
More specifically, the authors integrated nearly 1,500 microarray gene expression profiles
from 26 published cancer data sets across 21 major human cancer types using two different
Affymetrix microarray platforms. Michiels et al. (37) had shown that molecular signatures
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are strongly dependent on the samples in the training data and advocated the use of repeated
random sampling for signature validation. In (18), the authors applied an RXA method,
referred to as the top-scoring pair of groups (TSPG) classifier, combined with a repeated
random sampling strategy to identify of a common cancer signature consisting of 46 genes.
The TSPG classifier is an extension of the TSP classifier from two individual genes to two
groups of genes. Being an RXA method, it is based entirely on the internal ranking of the
genes in the signature. The signature is divided into two disjoint groups, and the average
rank is computed for each group and two averages are compared. The decision rule is again
maximum likelihood; to choose the class for which the observed ordering between the two
rank averages is most likely. It can also be shown that TSPG is a special case of k-TSP,
where k is the product of the two group sizes. Given a new expression profile, the classifier
was found to discriminate most human cancers from normal tissues, including a validation
on six different independent test datasets generated from different Affymetrix microarray
platforms. Upon further validation, this cancer signature may be used to improve
understanding of cancer pathogenesis and therapeutic targets, and hence lead to the
development of effective treatment regimens.

Top-Scoring Triplets—Lin et al. (17) proposed an extension of TSP which bases
prediction entirely upon the relative expression ordering among three genes, referred to as
the “top-scoring triplets” (TST). The decision rule is to select the class which makes the
observed ordering the most likely. In many cases, one gene serves as a “reference” whose
expression falls between the expressions of two differentially expressed genes. The
objective is to achieve a more discriminating decision mechanism than TSP but without
sacrificing interpretability. The investigators explored the different roles the three genes play
in the decision mechanism from previous cancer studies, and also applied this methodology
to two problems in breast cancer: a cross study validation based on predicting ER status and
a clinically relevant application to predicting germ-line BRCA1 mutations. Further analysis
on protein-protein interactions among the triplets of genes aided in understanding the
biological roles of the classifiers.

Conclusions and Future Directions
The advent of high-throughput measurement technologies for the comprehensive, rapid, and
inexpensive detection of biomolecular signatures in human cells, tissues, and serum has led
to the generation of a tremendous amount of raw, unprocessed information. However,
analyzing and interpreting these data in order to enhance our understanding of human health
and genetic diseases (i.e., cancer) continues to be a challenge in the scientific community. In
the case of gene expression microarray data, standard statistical learning methods have been
used to identify decision rules that can accurately distinguish disease phenotypes. These
techniques have been shown to produce accurate classifiers, but still lack the convenience
and simplicity desired for extracting any underlying biological rationale for the decision
rules.

In this review, we have provided a detailed description of the concepts and methodologies of
the TSP and k-TSP classifiers, two bioinformatics techniques for gene expression-based
molecular classification based on the analysis of relative expression values. Due to the
simplicity of the classifier and ease of biological interpretation, as well as its independence
to data normalization and parameter-fitting, the TSP and k-TSP methods have been applied
in several studies to perform molecular classification of various pathologies, primarily
cancer. These methods, as we have shown above, display highly accurate classification
performance in distinguishing a broad range of disease phenotypes (e.g., cancer vs. normal),
cancer subclasses (e.g., AML vs. ALL, GIST vs. LMS), disease outcomes (e.g., metastasis,
survival), and diverse human pathologies assayed through blood-borne leukocytes. We have
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also shown that natural extensions of the basic TSP and k-TSP methods can incorporate
more genes and allow for indirect microarray data integration and hence large-scale meta-
studies. Further work on RXA includes the use of biological network information for
phenotype classification and biological discovery as well as decision tree-based strategies
for classification of multiple disease phenotypes.
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Figure 1.
Schematic overview of phenotype classification with the top-scoring pair (TSP) algorithm in
cross validation.
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